13 research outputs found

    Black-Box Complexity of the Binary Value Function

    Full text link
    The binary value function, or BinVal, has appeared in several studies in theory of evolutionary computation as one of the extreme examples of linear pseudo-Boolean functions. Its unbiased black-box complexity was previously shown to be at most log2n+2\lceil \log_2 n \rceil + 2, where nn is the problem size. We augment it with an upper bound of log2n+2.42141558o(1)\log_2 n + 2.42141558 - o(1), which is more precise for many values of nn. We also present a lower bound of log2n+1.1186406o(1)\log_2 n + 1.1186406 - o(1). Additionally, we prove that BinVal is an easiest function among all unimodal pseudo-Boolean functions at least for unbiased algorithms.Comment: 24 pages, one figure. An extended two-page abstract of this work will appear in proceedings of the Genetic and Evolutionary Computation Conference, GECCO'1

    Reducing the Arity in Unbiased Black-Box Complexity

    Full text link
    We show that for all 1<klogn1<k \leq \log n the kk-ary unbiased black-box complexity of the nn-dimensional \onemax function class is O(n/k)O(n/k). This indicates that the power of higher arity operators is much stronger than what the previous O(n/logk)O(n/\log k) bound by Doerr et al. (Faster black-box algorithms through higher arity operators, Proc. of FOGA 2011, pp. 163--172, ACM, 2011) suggests. The key to this result is an encoding strategy, which might be of independent interest. We show that, using kk-ary unbiased variation operators only, we may simulate an unrestricted memory of size O(2k)O(2^k) bits.Comment: An extended abstract of this paper has been accepted for inclusion in the proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2012

    The Sampling-and-Learning Framework: A Statistical View of Evolutionary Algorithms

    Full text link
    Evolutionary algorithms (EAs), a large class of general purpose optimization algorithms inspired from the natural phenomena, are widely used in various industrial optimizations and often show excellent performance. This paper presents an attempt towards revealing their general power from a statistical view of EAs. By summarizing a large range of EAs into the sampling-and-learning framework, we show that the framework directly admits a general analysis on the probable-absolute-approximate (PAA) query complexity. We particularly focus on the framework with the learning subroutine being restricted as a binary classification, which results in the sampling-and-classification (SAC) algorithms. With the help of the learning theory, we obtain a general upper bound on the PAA query complexity of SAC algorithms. We further compare SAC algorithms with the uniform search in different situations. Under the error-target independence condition, we show that SAC algorithms can achieve polynomial speedup to the uniform search, but not super-polynomial speedup. Under the one-side-error condition, we show that super-polynomial speedup can be achieved. This work only touches the surface of the framework. Its power under other conditions is still open

    Benchmarking a (μ+λ)(\mu+\lambda) Genetic Algorithm with Configurable Crossover Probability

    Get PDF
    We investigate a family of (μ+λ)(\mu+\lambda) Genetic Algorithms (GAs) which creates offspring either from mutation or by recombining two randomly chosen parents. By scaling the crossover probability, we can thus interpolate from a fully mutation-only algorithm towards a fully crossover-based GA. We analyze, by empirical means, how the performance depends on the interplay of population size and the crossover probability. Our comparison on 25 pseudo-Boolean optimization problems reveals an advantage of crossover-based configurations on several easy optimization tasks, whereas the picture for more complex optimization problems is rather mixed. Moreover, we observe that the ``fast'' mutation scheme with its are power-law distributed mutation strengths outperforms standard bit mutation on complex optimization tasks when it is combined with crossover, but performs worse in the absence of crossover. We then take a closer look at the surprisingly good performance of the crossover-based (μ+λ)(\mu+\lambda) GAs on the well-known LeadingOnes benchmark problem. We observe that the optimal crossover probability increases with increasing population size μ\mu. At the same time, it decreases with increasing problem dimension, indicating that the advantages of the crossover are not visible in the asymptotic view classically applied in runtime analysis. We therefore argue that a mathematical investigation for fixed dimensions might help us observe effects which are not visible when focusing exclusively on asymptotic performance bounds

    More Effective Crossover Operators for the All-pairs Shortest Path Problem

    No full text
    The All-Pairs Shortest Path problem is the first non-artificial problem for which it was shown that adding crossover can significantly speed up a mutation-only evolutionary algorithm. Recently, the analysis of this algorithm was refined and it was shown to have an expected optimization time of Θ(n3.25(logn)0.25)\Theta(n^{3.25}(\log n)^{0.25}). In this work, we study two variants of the algorithm. These are based on two central concepts in recombination, \emph{repair mechanisms} and \emph{parent selection}. We show that repairing infeasible offspring leads to an improved expected optimization time of O(n3.2(logn)0.2)\mathord{O}(n^{3.2}(\log n)^{0.2}). Furthermore, we prove that choosing parents that guarantee feasible offspring results in an optimization time of O(n3logn)\mathord{O}(n^{3}\log n)

    More effective crossover operators for the all-pairs shortest path problem

    No full text
    The all-pairs shortest path problem is the first non-artificial problem for which it was shown that adding crossover can significantly speed up a mutation-only evolutionary algorithm. Recently, the analysis of this algorithm was refined and it was shown to have an expected optimization time (w. r. t. the number of fitness evaluations) of Θ(n3.25( logn)0.25). In contrast to this simple algorithm, evolutionary algorithms used in practice usually employ refined recombination strategies in order to avoid the creation of infeasible offspring. We study extensions of the basic algorithm by two such concepts which are central in recombination, namely repair mechanisms and parent selection. We show that repairing infeasible offspring leads to an improved expected optimization time of O( n3.2(logn)0.2). As a second part of our study we prove that choosing parents that guarantee feasible offspring results in an optimization time of O(n3logn). Both results show that already simple adjustments of the recombination operator can asymptotically improve the runtime of evolutionary algorithms.© 2012 Elsevier B.V. All rights reserved.Benjamin Doerr, Daniel Johannsen, Timo Kötzing, Frank Neumann, Madeleine Theil
    corecore