153 research outputs found

    The complexity of Boolean functions from cryptographic viewpoint

    Get PDF
    Cryptographic Boolean functions must be complex to satisfy Shannon\u27s principle of confusion. But the cryptographic viewpoint on complexity is not the same as in circuit complexity. The two main criteria evaluating the cryptographic complexity of Boolean functions on F2nF_2^n are the nonlinearity (and more generally the rr-th order nonlinearity, for every positive r<nr< n) and the algebraic degree. Two other criteria have also been considered: the algebraic thickness and the non-normality. After recalling the definitions of these criteria and why, asymptotically, almost all Boolean functions are deeply non-normal and have high algebraic degrees, high (rr-th order) nonlinearities and high algebraic thicknesses, we study the relationship between the rr-th order nonlinearity and a recent cryptographic criterion called the algebraic immunity. This relationship strengthens the reasons why the algebraic immunity can be considered as a further cryptographic complexity criterion

    Algorithm 959: VBF: A Library of C plus plus Classes for Vector Boolean Functions in Cryptography

    Full text link
    VBF is a collection of C++ classes designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This implementation uses the NTL library from Victor Shoup, adding new modules that call NTL functions and complement the existing ones, making it better suited to cryptography. The class representing a vector Boolean function can be initialized by several alternative types of data structures such as Truth Table, Trace Representation, and Algebraic Normal Form (ANF), among others. The most relevant cryptographic criteria for both block and stream ciphers as well as for hash functions can be evaluated with VBF: it obtains the nonlinearity, linearity distance, algebraic degree, linear structures, and frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions are presented. Finally, three real applications of the library are described: the first one analyzes the KASUMI block cipher, the second one analyzes the Mini-AES cipher, and the third one finds Boolean functions with very high nonlinearity, a key property for robustness against linear attacks

    Implementing Symmetric Cryptography Using Sequence of Semi-Bent Functions

    Get PDF
    Symmetric cryptography is a cornerstone of everyday digital security, where two parties must share a common key to communicate. The most common primitives in symmetric cryptography are stream ciphers and block ciphers that guarantee confidentiality of communications and hash functions for integrity. Thus, for securing our everyday life communication, it is necessary to be convinced by the security level provided by all the symmetric-key cryptographic primitives. The most important part of a stream cipher is the key stream generator, which provides the overall security for stream ciphers. Nonlinear Boolean functions were preferred for a long time to construct the key stream generator. In order to resist several known attacks, many requirements have been proposed on the Boolean functions. Attacks against the cryptosystems have forced deep research on Boolean function to allow us a more secure encryption. In this work we describe all main requirements for constructing of cryptographically significant Boolean functions. Moreover, we provide a construction of Boolean functions (semi-bent Boolean functions) which can be used in the construction of orthogonal variable spreading factor codes used in code division multiple access (CDMA) systems as well as in certain cryptographic applications

    Highly Nonlinear Boolean Functions with Optimal Algebraic Immunity and Good Behavior Against Fast Algebraic Attacks

    Get PDF
    In this paper, we present a new combinatorial conjecture about binary strings. Based on the new conjecture, two classes of Boolean functions of 2k2k variables with optimal algebraic immunity are proposed, where k2k\ge 2. The first class contains unbalanced functions having high algebraic degree and nonlinearity. The functions in the second one are balanced and have maximal algebraic degree and high nonlinearity. It is checked that, at least for small numbers of variables, both classes of functions have a good behavior against fast algebraic attacks. Compared with the known Boolean functions resisting algebraic attacks and fast algebraic attacks, the two classes of functions possess the highest lower bounds on nonlinearity. These bounds are however not enough for ensuring a sufficient nonlinearity for allowing resistance to the fast correlation attack. Nevertheless, as for previously found functions with the same features, there is a gap between the bound that we can prove and the actual values computed for small numbers of variables. Moreover, these values are very good and much better than for the previously found functions having all the necessary features for being used in the filter model of pseudo-random generators

    1-Resilient Boolean Functions on Even Variables with Almost Perfect Algebraic Immunity

    Get PDF
    Several factors (e.g., balancedness, good correlation immunity) are considered as important properties of Boolean functions for using in cryptographic primitives. A Boolean function is perfect algebraic immune if it is with perfect immunity against algebraic and fast algebraic attacks. There is an increasing interest in construction of Boolean function that is perfect algebraic immune combined with other characteristics, like resiliency. A resilient function is a balanced correlation-immune function. This paper uses bivariate representation of Boolean function and theory of finite field to construct a generalized and new class of Boolean functions on even variables by extending the Carlet-Feng functions. We show that the functions generated by this construction support cryptographic properties of 1-resiliency and (sub)optimal algebraic immunity and further propose the sufficient condition of achieving optimal algebraic immunity. Compared experimentally with Carlet-Feng functions and the functions constructed by the method of first-order concatenation existing in the literature on even (from 6 to 16) variables, these functions have better immunity against fast algebraic attacks. Implementation results also show that they are almost perfect algebraic immune functions

    Evolving balanced Boolean functions with optimal resistance to algebraic and fast algebraic attacks, maximal algebraic degree, and very high nonlinearity.

    Get PDF
    Using simulated annealing, we derive several equivalence classes of balanced Boolean functions with optimum algebraic immunity, fast algebraic resistance, and maximum possible algebraic degree. For numbers n of input bits less than 16, these functions also possess superior nonlinearity to all Boolean functions so far obtained with said properties

    Balanced Boolean Functions with Optimum Algebraic Immunity and High Nonlinearity

    Get PDF
    In this paper, three constructions of balanced Boolean functions with optimum algebraic immunity are proposed. The cryptographical properties such as algebraic degree and nonlinearity of the constructed functions are also analyzed
    corecore