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New constructions of resilient functions with strictly almost

optimal nonlinearity via non-overlap spectra functions

Yongzhuang Wei ∗ Enes Pasalic † Fengrong Zhang ‡ Wenling Wu §

Chengxiang Wang ¶

Abstract

The design of n-variable t-resilient functions with strictly almost optimal (SAO) nonlin-
earity (> 2n−1 − 2

n
2 , n even) appears to be a rather difficult task. The known construction

methods commonly use a rather large number (exactly
∑n/2

i=t+1

(
n/2
i

)
) of affine subfunctions

in n
2 variables which can induce some algebraic weaknesses, making these functions suscepti-

ble to certain types of guess and determine cryptanalysis and dynamic cube attacks. In this
paper, the concept of non-overlap spectra functions is introduced, which essentially general-
izes the idea of disjoint spectra functions on different variable spaces. Two general methods
to obtain a large set of non-overlap spectra functions are given and a new framework for
designing infinite classes of resilient functions with SAO nonlinearity is developed based on
these. Unlike previous construction methods, our approach employs only a few n/2-variable
affine subfunctions in the design, resulting in a more favourable algebraic structure. It is
shown that these new resilient SAO functions properly include all the existing classes of
resilient SAO functions as a subclass. Moreover, it is shown that the new class provides a
better resistance against (fast) algebraic attacks than the known functions with SAO nonlin-
earity, and in addition these functions are more robust to guess and determine cryptanalysis
and dynamic cube attacks.

Keywords : Stream ciphers, disjoint spectra, non-overlap spectra, resilient functions,
nonlinearity.
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1 Introduction

During the past three decades, the construction of highly nonlinear resilient Boolean functions
has been an interesting research topic [5, 14, 15, 20, 24, 29, 37, 39, 41, 43]. These resilient
functions play an important role in the design of certain stream cipher encryption schemes such
as nonlinear combiners, for which the output sequences of several linear feedback shift registers
(LFSRs) are combined (filtered) via a nonlinear Boolean function to generate the keystream
sequence. The security of nonlinear combiners depends almost entirely on the choice of the
filtering Boolean function. It is widely accepted that a Boolean function used in nonlinear
combiners must fulfill certain cryptographic criteria such as balancedness, high order of resiliency,
high nonlinearity and high algebraic degree. These criteria reflect the ability of the cipher
to withstand various types of attacks. For instance, the nonlinearity measures the minimum
distance between a given Boolean function and the set of affine functions. It indicates the ability
of the cipher to withstand various modes of BAA (best affine approximation) and correlation
attacks, see [10, 29].

Unfortunately, all the criteria mentioned above cannot be optimized simultaneously and there
are certain trade-offs among the criteria. For an n-variable Boolean function whose resiliency
order is t, Siegenthaler [29] showed that d ≤ n − t − 1, where d is the algebraic degree of the
function. Apart from the above mentioned criteria, the algebraic properties of Boolean functions
are decisive for protecting the cipher against (fast) algebraic attacks [1, 8, 9]. The concept of
algebraic immunity (AI) was introduced in [21], indicating the ability of Boolean functions (in
relation to the corresponding encryption scheme) to withstand algebraic attacks proposed in
2003 [9]. An optimal resistance of a Boolean function f against algebraic attacks is achieved
if AI of f(x) equals to dn/2e. Moreover, the fast algebraic attacks (FAA) on stream ciphers
were introduced in [8], thus further extending the mentioned cryptographic criteria. An optimal
resistance of Boolean functions (used in certain stream cipher algorithms) against FAA implies
that for a given n-variable Boolean function f , there does not exist a pair of functions g and
h related through fg = h so that deg(g) + deg(h) is less than n. Furthermore, for balanced
functions it was shown that there always exist g and h such that deg(g) + deg(h) = n− 1, hence
in this case the degree value n− 1 is called optimal, see [19].

The most significant contributions related to the design of highly nonlinear resilient func-
tions, during the past two decades, can be found in [3, 5, 7, 15, 20, 24, 28, 39, 41, 42]. In
these works, a well-known method to obtain nonlinear resilient functions relies on the use of
Maiorana-McFarland (M-M) techniques or extensions thereof. The basic idea of this approach
is to construct nonlinear resilient functions on larger variable spaces by concatenating suitable
affine functions on smaller variable spaces. This technique was first introduced by Camion et al.
in 1992 [3], and it was further used in [7, 27, 28]. At CRYPTO2002, Carlet proposed an exten-
sion of the M-M method for obtaining nonlinear resilient functions by concatenating quadratic
functions [5]. In 2006, Pasalic presented a method to obtain degree optimized resilient functions
by using a slightly modified M-M technique [24]. Later, Maitra et al. [20] presented methods
to obtain resilient functions of order t with nonlinearity 2n−1 − 2n/2−1 − 2n/2−3 − 2n/2−4, for all
n ≥ 8t+ 6.

Recently, Zhang et al. [39, 40] proposed new methods to obtain resilient functions and
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resilient S-boxes (multiple-output Boolean functions) with strictly almost optimal nonlinearity
> 2n−1−2n/2, for any n even, by concatenating several sets of disjoint spectra functions defined
on small variable spaces (the size being ≤ n/2). However, most of the construction techniques
above generally share the same basic idea, that is, the subfunctions of these resilient functions
(defined as a restriction of a function when a subset of variables is kept fixed) are affine functions
in relatively large number of input variables. More precisely, the number of subfunctions of the

t-resilient functions in [40, 41] which are affine in n/2 variables is given by
∑n/2

i=t+1

(
n/2
i

)
. To

improve relatively bad algebraic properties, a modified construction that uses only a moderate
number of affine subfunctions in n/2-variable (the number being 2n/2−1) has been proposed in
[40]. The functions in the modified class then provide relatively good resistance against (fast)
algebraic attacks (based on simulations for (n ≤ 14)), but unfortunately the nonlinearity of
these functions in [40] is substantially decreased (the functions do not have SAO nonlinearity
any longer).

Intuitively, the use of “too many” large affine subfunctions in n/2-variable (namely either∑n/2
i=t+1

(
n/2
i

)
or 2n/2−1 as in [40]) may induce some algebraic weaknesses in the structure and

make a cipher less resistant to various cryptanalytic methods. Indeed, by fixing l variables of
an n-variable nonlinear Boolean function, its (n − l)-variable subfuntions are either linear or
nonlinear which in the former case gives rise to partial linear relations with respect to the fixed
set of l variables. In fact, there are many attacks on stream ciphers which essentially use these
partial linear relations, and the attacks become more efficient for relatively small l.

We recall a few important approaches that efficiently use partial linear relations of nonlinear
Boolean functions in the various aspects of cryptanalysis. In 2009, Khoo et al. proposed a
time-memory-data (TMD) trade-off attack on filtering generators and nonlinear combiners in
case the nonlinear filtering function belongs to the Maiorana-McFarland class [16]. These partial
linear relations of the nonlinear Boolean functions used in the Grain family of stream ciphers
were used to mount related-key chosen IV attacks and internal state recovery attacks on the
Grain family of stream ciphers [17, 23]. For the case when the filtering function is a vectorial
Boolean function in the M-M class, a guess and determine attack was introduced in [25]. The
dynamic cube attacks introduced in [11, 12] also commonly employ some partial linear relations
that relate the secret key and IV variables. Finally, at FSE 2013, a new criterion for avoiding
the existence of partial linear relations in substitution boxes was proposed in [2].

From the above survey, it appears that cryptographically significant Boolean functions should
not give rise to partial linear relations if a relatively small number of inputs is kept fixed. In
this direction, our approach efficiently revises the previous construction methods (that can be
viewed as a modified M-M class) towards a more favourable algebraic structure of the designed
resilient functions with respect to the cardinality of partial linear functions. This is accomplished
without degrading the nonlinearity which remains SAO unlike the construction method in [40].
To achieve this goal the concept of non-overlap spectra functions is introduced (and employed
in the design) and the existence of a large set of functions with this property is proved. The
so-called non-overlap spectra functions, which essentially generalizes the idea of disjoint spectra
functions, are characterized by the property that for any pair of these functions their nonzero
values in the Walsh spectra do not overlap, even though the functions are not defined on the
same variable space (which is the case for standard disjoint spectra functions).
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The proposed design of resilient functions with SAO nonlinearity is inevitably rather technical
and involved, which is also the case with other design methods whose goal is to achieve extremely
high nonlinearity values. In difference to previous approaches [39, 40, 41] that use a large set of
n/2-variable affine subfunctions, our method only uses a few n/2-variable affine subfunctions.
It is demonstrated (through both theoretical analysis and computer simulations) that these
new resilient functions have better algebraic properties, thus improving the resistance to (fast)
algebraic attacks compared to the classes in [39, 40, 41]. Furthermore, it is shown that our class
properly include the classes of Zhang et al. [40, 41] as a subclass. The use of a small number
of n/2-variable affine subfunctions also implies a better robustness to cryptanalytic methods
that employ partial linear relations than the classes in [40, 41]. Most notably, we give a semi-
deterministic method which generates algebraically optimal functions (thus providing optimal
resistance to (fast) algebraic attacks) with slightly decreased nonlinearity for moderate size of
input variables, whereas for large n the algebraic properties are quite acceptable for practical
applications though not optimal.

The rest of the paper is organized as follows. In Section 2, some basic notations and defi-
nitions related to cryptographic criteria of Boolean functions are introduced. A brief overview
of related previous work is given in Section 3. In Section 4, the notion of non-overlap spectra
functions is introduced and two methods for finding large sets of non-overlap spectra functions
are proposed. The main construction methods of resilient functions with SAO nonlinearity,
based on the use of non-overlap spectra functions, are presented in Section 5. In addition, a
semi-deterministic method for constructing resilient functions with optimal algebraic properties
(for moderate size of the input space) and high nonlinearity is also addressed. Finally, some
concluding remarks are given in Section 6.

2 Preliminaries

The binary Galois field is denoted by GF (2) and “⊕” stands for the addition operator over
GF (2). An n-dimensional vector space spanned over GF (2) is denoted by GF (2)n. A Boolean
function is a mapping f : GF (2)n −→ GF (2) and the set of all Boolean functions f(x1, . . . , xn)
over GF (2)n is denoted by Bn. The truth table of a Boolean function f(x1, . . . , xn) is a bi-
nary string of length 2n corresponding to the output values of f when the input values run
lexicographically through GF (2)n,

(f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)). (1)

Especially, if the number of ones is equal to the number of zeros in the truth table of f , then a
Boolean function f(x1, . . . , xn) is said to be balanced.

Definition 1 The algebraic normal form (ANF) of an n-variable Boolean function is the mul-
tivariate polynomial expression given by,

f(x1, . . . , xn) =
∑

c∈GF (2)n

λc(
n∏

i=1

xcii ), (2)

where c = (c1, . . . , cn) ∈ GF (2)n, λc, xi ∈ GF (2).
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The algebraic degree of f , denoted by deg(f), corresponds to the maximal value of the Hamming
weight of c in (2) satisfying the condition λc 6= 0. A Boolean function f ∈ Bn is said to be affine
if deg(f) ≤ 1. In particular, for an affine Boolean function, if its constant term is zero, then
such a function is said to be linear.

Definition 2 For X = (x1, . . . , xn) ∈ GF (2)n and ω = (ω1, . . . , ωn) ∈ GF (2)n let ω · X =
ω1 · x1 ⊕ · · · ⊕ ωn · xn be the inner (dot) product of X and ω . For any f ∈ Bn, the Walsh
transform of f(x) at point ω is defined as

Wf (ω) =
∑

X∈GF (2)n

(−1)f(X)⊕ω·X . (3)

Definition 3 [37] A function f ∈ Bn is said to be a correlation immune (CI) function of order
t if and only if Wf (ω) = 0, for all ω ∈ GF (2)n such that 0 < wt(ω) ≤ t, where wt(ω) is the
Hamming weight of ω. Moreover, if f is also balanced, that is Wf (0) = 0, then f is called a
t-resilient function.

Definition 4 [22] The nonlinearity of f ∈ Bn is defined as

Nf = 2n−1 − 1

2
max

ω∈GF (2)n
|Wf (ω)|, (4)

where | · | denotes absolute value.

Definition 5 A function f ∈ Bn, where n is even, is called bent if Wf (ω) = ±2
n
2 , for every

ω ∈ GF (2)n.

Definition 6 A set of Boolean functions {f1, . . . , fm} ⊂ Bn is called a set of disjoint spectra
functions if for all ω ∈ GF (2)n,

Wfi(ω)Wfj (ω) = 0, 1 ≤ i < j ≤ m. (5)

To distinguish from the absolute value notation, the cardinality of any set C is denoted by
||C||. The so-called disjoint spectra functions have been extensively used in the design of highly
nonlinear resilient functions, see [13, 26, 41].

Lemma 1 Let m be a positive integer and X = (X1, X2) ∈ GF (2)n, X1 ∈ GF (2)m, X2 ∈
GF (2)n−m. Then, the set of functions

D∗ = {gc(X) = c ·X1 ⊕ hc(X2) | c ∈ GF (2)m, hc ∈ Bn−m},

is a set of disjoint spectra functions. In particular, for all α = (β, θ) ∈ GF (2)n, where β ∈
GF (2)m, θ ∈ GF (2)n−m, we have Wgc(α) ∈ {0, 2m ×Whc(θ)}.

The set of disjoint spectra functions above has been used as a basic construction primitive
for obtaining almost optimal resilient Boolean functions in [41]. Finally, an n-variable, t-resilient
Boolean function with algebraic degree d and nonlinearity Nf is denoted by (n, t, d,Nf ).
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3 An overview of recent works

In this section, we briefly recall the basic construction methods in [40, 41] for designing resilient
Boolean functions whose nonlinearity is strictly almost optimal.

The main construction methods proposed in [40, 41] are given below for self-completeness,
the reader can refer to [40] and [41] for further details.

Construction A [41]: Let n ≥ 12 be an even number, t be a positive number, and let
(a1, . . . , as) ∈ GF (2)s satisfies

n/2∑

j=t+1

(
n/2

j

)
+

s∑

i=1

(
ai

n/2−2i∑

j=t+1

(
n/2− 2i

j

))
≥ 2n/2, (6)

where s = b(n − 2t − 2)/4c. Let X1 = (x1, . . . , xn/2) ∈ GF (2)n/2, X2 = (xn/2+1, . . . , xn) ∈
GF (2)n/2, X ′m = (x1, . . . , xm) ∈ GF (2)m, and X ′′2i = (xm+1, . . . , xn/2) ∈ GF (2)2i with m+ 2i =
n/2. Denote by

U0 = {c ·X1 | c ∈ GF (2)n/2, wt(c) > t}, (7)

and for 1 ≤ i ≤ s let

Ui = {c ·X ′m ⊕ hc(X ′′2i) | hc ∈ Hi, c ∈ GF (2)m, wt(c) > t}, (8)

where Hi is a nonempty set of 2i-variable bent functions whose algebraic degree is max(2, i).
Denote by φ any injective mapping from GF (2)n/2 to

⋃s
i=0 Ui. Then, one may define a Boolean

function f ∈ Bn as follows,

f(X1, X2) =
∑

σ=(σ1,...,σn/2)∈GF (2)n/2

n∏

i=n/2+1

(xi ⊕ σi ⊕ 1) · φ(σ), (9)

where injectivity of φ follows from the inequality (6), see [41].
A more recent construction approach [40], named as Generalized Maiorana-McFarland (GMM)

method, which apart from suitable n/2-variable affine functions also utilizes small affine func-
tions in a rather involved and sophisticated manner, also generates the functions with SAO
nonlinearity.

Construction B [40]: Let 1 ≤ i ≤ n − 1, Bi ⊆ GF (2)i and B′i = Bi × GF (2)n−i such that⋃n−1
i=1 B

′
i = GF (2)n and B′i1 ∩ B′i2 = ∅, 1 ≤ i1 < i2 ≤ n − 1. Let X = (x1, . . . , xn) ∈ GF (2)n,

X ′i = (x1, . . . , xi) ∈ GF (2)i, and X ′′n−i = (xi+1, . . . , xn) ∈ GF (2)n−i. A GMM type Boolean
function f ∈ Bn is constructed as follows:

f(X ′i, X
′′
n−i) = ϕi(X

′
i) ·X ′′n−i ⊕ gi(X ′i), X ′i ∈ Bi, 1 ≤ i ≤ n− 1. (10)

where ϕi is a mapping from GF (2)i to GF (2)n−i and gi ∈ Bi.
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Theorem 1 [40] With the same notation as in Construction B, let n be even and Bi = ∅, for
1 ≤ i ≤ n/2− 1. Let 0 ≤ t ≤ n/2− 2 and (an/2, . . . , an−t−1) ∈ GF (2)n/2−t (where an/2 = 1) be

a binary vector such that
∑n−t−1

i=n/2 ai2
i is maximal satisfying at the same time the condition

n−t−1∑

i=n/2

(ai2
n−i

n−i∑

j=t+1

(
n− i
j

)
) ≥ 2n. (11)

Let r = max{i | ai 6= 0, n/2 ≤ i ≤ n − t − 1}. For n/2 ≤ i ≤ r − 1, set ||Bi|| = 0, if ai = 0,
otherwise set ||Bi|| =

∑n−i
j=t+1

(
n−i
j

)
, if ai = 1. For n/2 ≤ i ≤ r and ai = 1, let ψi be an injective

mapping from Bi to Di, where

Di = {c | wt(c) ≥ t+ 1, c ∈ GF (2)n−i}. (12)

Then, the function f ∈ Bn obtained by Construction B is a t-resilient function with SAO non-
linearity

Nf ≥ 2n−1 − 2n/2−1 −
r∑

i=n/2+1

ai2
n−i−1. (13)

An important observation is that these Boolean functions f ∈ Bn, obtained by the above
constructions, employ a large set of linear functions in n/2 variables. For instance, Construc-
tion A uses a subset of linear functions in n/2 variables U0 = {c · X1|c ∈ GF (2)n/2, X1 ∈
GF (2)n/2, wt(c) > t} ⊂ Bn/2. To overcome the potential weaknesses of these functions as men-
tioned in the introduction, we will propose a new method (based on the use of non-overlap
spectra functions introduced below) for constructing highly nonlinear resilient functions with
good algebraic properties using less n/2-variable affine functions.

4 Constructions of the set of non-overlap spectra functions

In this section, the concept of non-overlap spectra functions is introduced along with an efficient
way of generating a large set of such functions. For convenience, throughout the article, we

denote by X
(j)
(i) = (xi, xi+1, . . . , xj) ∈ GF (2)j−i+1 a subset of variables x1, . . . , xn, where 1 ≤

i < j ≤ n. In particular, when i = 1 we simply write X(j) = (x1, . . . , xj). Other letters
are used similarly to denote the constants, for instance ω(n1) = (ω1, ω2, . . . , ωn1) ∈ GF (2)n1 .
Furthermore, hc will always denote a bent function from some subset of bent functions H2k

defined on a suitable variable subspace of cardinality 2k.

4.1 A large set of non-overlap spectra functions

Definition 7 Let f ∈ Bn1 , g ∈ Bn2 , (n1 > n2), ω
(n1) ∈ GF (2)n1 and ω(n2) ∈ GF (2)n2. Let us

define a set Γf as

Γf = {ω(n2) | ω(n1) = (ω(n2), ωn2+1, ωn2+2, . . . , ωn1) ∈ sup(Wf ), ω(n2) ∈ GF (2)n2},
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where sup(Wf ) = {ω(n1) |Wf (ω(n1)) 6= 0, ω(n1) ∈ GF (2)n1}. Then, (f, g) is called a pair of non-
overlap spectra functions if for all ω(n1) ∈ sup(Wf ), ω(n2) ∈ Γf , we have Wf (ω(n1))Wg(ω

(n2)) =
0.

Notice that in difference to the standard notion of disjoint spectra functions, the condition
Wf (ω(n1))Wg(ω

(n2)) = 0 refers to functions that are not defined on the same variable space.

Example 1 Let f(x1, . . . , x7) = x1 ⊕ x2 ⊕ x3 ⊕ x4x5 ⊕ x6x7 and g(x1, . . . , x5) = x1 ⊕ x4 ⊕ x5.
It is easily verified that Wf (ω(7)) ∈ {0,±25} and Wg(ω

(5)) ∈ {0,±25}. Furthermore, we know

sup(Wf ) = {ω(7) | ω(7) = (1, 1, 1, β) ∈ GF (2)7, β ∈ GF (2)4}.
Let

Γf = {ω(5) | ω(7) = (ω(5), ω6, ω7) ∈ sup(Wf ), ω(5) = (1, 1, 1, β1, β2) ∈ GF (2)5}.
Then, for all ω(7) ∈ sup(Wf ), ω(5) ∈ Γf , we have Wg(ω

(5)) = 0 which implies Wf (ω(7)) ·
Wg(ω

(5)) = 0. Therefore, (f, g) is a pair of non-overlap spectra functions, where ω(7) ∈
sup(Wf ), ω(5) ∈ Γf ⊂ GF (2)5.

The concept of a pair of non-overlap spectra functions can be easily extended to a wider
framework which we call a large set of non-overlap spectra functions.

Definition 8 Let I0 = {ϕ1, . . . , ϕm1} ⊂ Bn1 be a set of mutually disjoint spectra functions, and
I1 = {g1, . . . , gm2} ⊂ Bn2 be another set of (mutually) disjoint spectra functions, where n1 > n2.
Let also ω(n1) ∈ GF (2)n1 and ω(n2) ∈ GF (2)n2. Moreover, for 1 ≤ i ≤ m1, let

sup(Wϕi) = {ω(n1) |Wϕi(ω
(n1)) 6= 0}

and
Γϕi = {ω(n2) | ω(n1) = (ω(n2), α) ∈ sup(Wϕi), α ∈ GF (2)n1−n2}.

I0 ∪ I1 is called a set of non-overlap spectra functions if for all ω(n1) ∈ sup(Wϕi), ω
(n2) ∈ Γϕi,

Wϕi(ω
(n1)) ·Wgj (ω

(n2)) = 0, for all 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. (14)

To obtain a large set of non-overlap spectra functions, suitable in the design of t-resilient
functions, we divide the space GF (2)m+k into two subsets S0 = {c | c ∈ GF (2)m+k, wt(c) > t}
and S1 = {c | c ∈ GF (2)m+k, wt(c) ≤ t}. Furthermore, a set of bent functions on a suitable
subspace GF (2)2k ⊂ GF (2)n is also needed.

Proposition 1 Let n,m, k be three positive integers, t be an integer in the range [0,m+ k− 1],

and m+ 2k = n/2 (n even). Let X2 = X
(n/2+k)
(m+k+1) = (xm+k+1, . . . , xn/2+k) ∈ GF (2)2k, deg(hc) =

max{2, k} and define

I0 = {ϕc(X(m+k), X2) = c(m+k) ·X(m+k) ⊕ hc(X2) | wt(c(m+k)) > t} ⊂ Bn
2
+k. (15)

Moreover, let c(n/2) = (c(m+k), α) ∈ GF (2)n/2, for α ∈ GF (2)k, and define

I1 = {gc(n/2)(X(n/2)) = c(n/2) ·X(n/2) | wt(c(m+k)) ≤ t, wt(c(n/2)) > t} ⊂ Bn
2
. (16)

Then, I0 ∪ I1 is a set of non-overlap spectra functions.
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Proof. From Lemma 1, we know that both I0 and I1 are sets of disjoint spectra functions.
Let ω(n/2+k) = (θ, η) ∈ GF (2)n/2+k, where θ ∈ GF (2)m+k, and η ∈ GF (2)2k. Then, for all
ω(n/2+k) ∈ GF (2)n/2+k, we have

Wϕc(ω
(n/2+k)) =

∑

(X(m+k),X2)∈GF (2)n/2+k

(−1)c
(m+k)·X(m+k)⊕hc(X2)⊕ω(n/2+k)·(X(m+k),X2)

=
∑

X2∈GF (2)2k

(−1)hc(X2)⊕η·X2


 ∑

X(m+k)∈GF (2)m+k

(−1)(c
(m+k)⊕θ)·X(m+k)


 .

Moreover,

Wϕc(ω
(n/2+k)) =

{
0, (c(m+k) 6= θ)

±2m+k × 2k = ±2n/2, (c(m+k) = θ).
(17)

On the other hand, for all ω(n/2) ∈ GF (2)n/2, if Wg
c(n/2)

(ω(n/2)) 6= 0 then Wg
c(n/2)

(ω(n/2)) = 2n/2.

Let now ω(n/2+k) = (ω(n/2), α) ∈ GF (2)n/2+k, ω(n/2) = (θ, β) ∈ GF (2)n/2, where α, β ∈ GF (2)k.
From (15) and (17), if Wϕθ(ω

(n/2+k)) 6= 0, then we have wt(θ) > t. It directly means that

Wg
c(n/2)

(ω(n/2)) =
∑

X(n/2)∈GF (2)n/2

(−1)c
(n/2)·X(n/2)⊕ω(n/2)·X(n/2)

=
∑

X(n/2)∈GF (2)n/2

(−1)(c
(m+k),α)·X(n/2)⊕(θ,β)·X(n/2)

=
∑

X(m+k)∈GF (2)m+k

(−1)(c
(m+k)⊕θ)·X(m+k)

∑

(xm+k+1,...,xn/2)∈GF (2)k

(−1)(α⊕β)·(xm+k+1,...,xn/2).

Because wt(c(m+k)) ≤ t and wt(θ) > t, thus c(m+k) 6= θ, we always have Wg
c(n/2)

(ω(n/2)) =

0. That is, Wϕθ(ω
(n/2+k)) × Wg

c(n/2)
(ω(n/2)) = 0 for ω(n/2) ∈ Γϕθ = {ω(n/2) | ω(n/2+k) =

(ω(n/2), α) ∈ sup(Wϕθ), α ∈ GF (2)n1−n2}. Therefore, I0 ∪ I1 is a set of non-overlap spectra
functions.

The next lemma states that the total number of elements (used to define the support of a
function) from the set of affine functions in n/2 variables (i.e., U0) is equal to the total number
of elements from the set of non-overlap spectra functions (i.e., I0 ∪ I1). Thus, instead of using
purely linear functions we use a small portion of these functions in combination with nonlinear
functions from Bn

2
+k.

Lemma 2 With the same notations as in Proposition 1, and keeping m+ 2k = n/2, let

U0 = {c(n/2) ·X(n/2) | wt(c(n/2)) > t} ⊂ Bn
2
,

I0 = {c(m+k) ·X(m+k) ⊕ hc(X2) | hc ∈ H2k, wt(c
(m+k)) > t} ⊂ Bn

2
+k, and
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I1 = {c(n/2) ·X(n/2) | wt(c(m+k)) ≤ t, wt(c(n/2)) > t} ⊂ Bn
2
,

where c(n/2) = (c(m+k), α) ∈ GF (2)n/2, α ∈ GF (2)k. Then, the following equation is satisfied

µ× 2n/2 = δ0 × 2n/2+k + δ1 × 2n/2,

where µ = ||U0||, δ0 = ||I0||, and δ1 = ||I1||.
Proof. It is clear that µ =

∑n/2
i=t+1

(
n/2
i

)
and δ0 =

∑m+k
i=t+1

(
m+k
i

)
. To compute δ1, we let

δ∗0 = ||{c(n/2) | c(n/2) = (c(m+k), α) ∈ GF (2)n/2, wt(c(n/2)) > t}||,

so that δ∗0 = 2kδ0, since α runs over all possible values in GF (2)k. Moreover, we split {c(n/2) |
wt(c(n/2)) > t} into two disjoint sets so that S0 and S1, where

S0 = {c(n/2) | c(n/2) = (c(m+k), α), α ∈ GF (2)k, wt(c(m+k)) > t},
S1 = {c(n/2) | c(n/2) = (c(m+k), α), α ∈ GF (2)k, wt(c(m+k)) ≤ t, wt(c(n/2)) > t}.

Then, we have µ = 2kδ0 + δ1 and consequently µ× 2n/2 = δ0 × 2n/2+k + δ1 × 2n/2.

Corollary 1 Using the same notations as in Proposition 1 and Lemma 2 the following relation-
ship is valid:

δ1 = µ− 2kδ0 =

n/2∑

i=t+1

(
n/2

i

)
− 2k ×

m+k∑

i=t+1

(
m+ k

i

)
. (18)

Example 2 Let n = 16,m = 2, k = 3, t = 1. Let X2 = (x6, . . . , x11) ∈ GF (2)6 and

I0 = {ϕc(X(5), X2) = c(5) ·X(5) ⊕ hc(X2) | hc ∈ H6, wt(c) > 1} ⊂ B11,

where H6 is a nonempty set of 6-variable bent functions with algebraic degree 3. Moreover, let
c(8) = (c(5), α) ∈ GF (2)8, where α ∈ GF (2)3, and define

I1 = {gc(8)(X(8)) = c(8) ·X(8) | wt(c(5)) ≤ 1, wt(c(8)) > 1} ⊂ B8.

Then, I0 ∪ I1 is a set of non-overlap spectra functions, where

||I0|| = δ0 = 26, ||I1|| = δ1 = 39.

Moreover, let U0 = {c(8) ·X(8) | wt(c(8)) > 1}, thus ||U0|| = µ = 247. From Lemma 2, we have
µ × 28 = 247 × 28, and δ0 × 211 + δ1 × 28 = 26 × 211 + 39 × 28 = 247 × 28. This means that
µ× 28 = δ0 × 211 + δ1 × 28. In particular, U0 contains 247 linear 8-variable Boolean functions,
whereas I0 ∪ I1 only contains 39 linear functions in 8 variables and 26 cubic Boolean functions
in 11 variables.

10
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4.2 Further construction of a large set of non-overlap spectra functions with
less affine subfunctions

In this section, a construction of the set of non-overlap spectra functions with less affine sub-
functions is investigated. In particular, this large set of non-overlap spectra functions includes
some nonlinear subfunctions that are defined on different variable spaces which could be helpful
for resisting certain kind of attacks such as those discussed in Section 5.5.

Lemma 3 Let n,mi, ki be some positive integers, (1 ≤ i ≤ 2,m1+k1 < m2+k2), t be an integer
in the range [0, (m1 + k1− 1)], and mi + 2ki = n/2 (n even). Let m1 + k1 = d1 and with respect
to it define

I
(1)
0 = {ϕc(d1) = c(d1) ·X(d1) ⊕ hc(d1)(X

(n/2+k1)
(d1+1) ) | hc(d1) ∈ H2k1 , wt(c

(d1)) > t} ⊂ Bn
2
+k1 . (19)

Similarly, for m2 + k2 = d2, denote by c(d2) = (c(d1), α) ∈ GF (2)d2 and define

I
(2)
0 = {ϕc(d2) = c(d2)·X(d2)⊕hc(d2)(X

(n/2+k2)
(d2+1) ) | hc(d2) ∈ H2k2 , wt(c

(d1)) ≤ t, wt(c(d2)) > t} ⊂ Bn
2
+k2 .

Moreover, let c(n/2) = (c(m2+k2), α(k2)) ∈ GF (2)n/2, and define

I1 = {gc(n/2)(X(n/2)) = c(n/2) ·X(n/2) | wt(c(m2+k2)) ≤ t, wt(c(n/2)) > t} ⊂ Bn
2
.

Then I
(1)
0 ∪ I

(2)
0 ∪ I1 is a set of non-overlap spectra functions.

Proof. From Lemma 1, we know that I
(1)
0 , I

(2)
0 and I1 are all sets of disjoint spectra functions.

Let ω(n/2+ki) = (θ, η) ∈ GF (2)n/2+ki , where θ ∈ GF (2)mi+ki , and η ∈ GF (2)2ki , (i = 1, 2).

Then, denoting by Xi
1 = X(mi+ki) and Xi

2 = X
(n/2+ki)
(mi+ki+1) for all ω(n/2+ki), we have

Wϕ
c(mi+ki)

(ω(n/2+ki)) =
∑

(Xi
1,X

i
2)∈GF (2)n/2+ki

(−1)
c(mi+ki)·Xi

1⊕hc(mi+ki) (X
i
2)⊕ω(n/2+ki)·(Xi

1,X
i
2)

=
∑

Xi
1∈GF (2)mi+ki

(−1)(c
(mi+ki)⊕θ)·Xi

1

∑

Xi
2∈GF (2)2ki

(−1)
h
c(mi+ki)

(Xi
2)⊕η·Xi

2 .

Moreover,

Wϕ
c(mi+ki)

(ω(n/2+ki)) =

{
0, (c(mi+ki) 6= θ)

±2mi+ki × 2ki = ±2n/2, (c(mi+ki) = θ).
(20)

On the other hand, for the functions in I1, for all ω(n/2) ∈ GF (2)n/2, if Wg
c(n/2)

(ω(n/2)) 6= 0 then

Wg
cn/2

(ω(n/2)) = 2n/2.

Let now ω(n/2+ki) = (ω(n/2), α) ∈ GF (2)n/2+ki , ω(n/2) = (θ, β) ∈ GF (2)n/2, α ∈ GF (2)ki ,
and β ∈ GF (2)ki . From (15) and (17), if Wϕθ(ω

(n/2+ki)) 6= 0, then we have wt(θ) > t. It directly

11
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means that

Wg
c(n/2)

(ω(n/2)) =
∑

X(n/2)∈GF (2)n/2

(−1)c
(n/2)·X(n/2)⊕ω(n/2)·X(n/2)

=
∑

X(n/2)∈GF (2)n/2

(−1)(c
(mi+ki),α)·X(n/2)⊕(θ,β)·X(n/2)

=
∑

X(mi+ki)∈GF (2)mi+ki

(−1)(c
(mi+ki)⊕θ)·X(mi+ki)

∑

X
(n/2)
(mi+ki+1)

∈GF (2)k

(−1)
(α⊕β)·X(n/2)

(mi+ki+1) .

Because wt(c(mi+ki)) ≤ t and wt(θ) > t, thus c(mi+ki) 6= θ, we always have Wg
c(n/2)

(ω(n/2)) = 0,

i.e., Wϕθ(ω
(n/2+ki)) × Wg

c(n/2)
(ω(n/2)) = 0. Therefore, I

(1)
0 ∪ I(2)0 ∪ I1 is a set of non-overlap

spectra functions.

Lemma 4 With the same notations as in Lemma 3, let

U0 = {c(n/2) ·X(n/2) | c(n/2) ∈ GF (2)n/2, wt(c(n/2)) > t} ⊂ Bn
2
.

Then, the following equation is satisfied

µ× 2n/2 = δ
(1)
0 × 2n/2+k1 + δ

(2)
0 × 2n/2+k2 + δ1 × 2n/2, (21)

where µ = ||U0||, δ(i)0 = ||I(i)0 ||, i = (1, 2), and δ1 = ||I1||.

Proof. Using a similar method as in Lemma 2 the result easily follows.

Example 3 Let n = 16,m1 = 2, k1 = 3,m2 = 4, k2 = 2, t = 1. Denoting X1
2 = (x6, . . . , x11) ∈

GF (2)6 and X2
2 = (x7, . . . , x10) ∈ GF (2)4 we define

I
(1)
0 = {ϕc(5)(X(5), X1

2 ) = c(5) ·X(5) ⊕ hc(5)(X1
2 ) | hc(5) ∈ H6, wt(c

(5)) > 1} ⊂ B11,

where H6 is a nonempty set of 6-variable bent functions with algebraic degree 3.
Moreover, let c(6) = (c(5), α1) ∈ GF (2)6, α1 ∈ GF (2), and define

I
(2)
0 = {ϕc(6)(X(6), X2

2 ) = c(6) ·X(6) ⊕ hc(6)(X2
2 ) | hc(6) ∈ H4, wt(c

(5)) ≤ 1, wt(c(6)) > 1} ⊂ B10.

Let c(8) = (c(6), α(2)) ∈ GF (2)8, α(2) ∈ GF (2)2, and define

I1 = {gc(8)(X(8)) = c(8) ·X(8) | wt(c(6)) ≤ 1, wt(c(8)) > 1} ⊂ B8.

Then, I
(1)
0 ∪ I

(2)
0 ∪ I1 is a set of non-overlap spectra functions, where

||I(1)0 || = δ
(1)
0 = 26, ||I(2)0 || = δ

(2)
0 = 5, ||I1|| = δ1 = 19.

12
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Moreover, consider U0 = {c(8) ·X(8) | c(8) ∈ GF (2)8, wt(c(8)) > 1} for which ||U0|| = µ = 247.

From Lemma 4, we have µ×28 = 247×28, and δ
(1)
0 ×211+δ

(2)
0 ×210+δ1×28 = 26×211+5×210+

19×28 = 247×28. This means that µ×28 = δ
(1)
0 ×211+δ

(2)
0 ×210+δ1×28. Note that the set I0∪I1

in Example 2 contains 39 linear 8-variable Boolean functions, whereas I
(1)
0 ∪I

(2)
0 ∪I1 only contains

19 linear functions in 8 variables. In particular, I
(1)
0 ∪ I(2)0 ∪ I1 includes two types of nonlinear

functions, i.e., 26 nonlinear 11-variable functions and 5 nonlinear 10-variable functions.

Remark 1 Using a similar design of the set of non-overlap spectra functions I
(1)
0 ∪ I(2)0 ∪ I1,

we may further obtain a general set of non-overlap spectra functions
⋃`
i=0 I

(i)
0 ∪ I1 if there are

some integers mi, ki, (i = 1, . . . , `) satisfying the conditions below.
(1) mi + 2ki = n/2, (i = 1, . . . , `).
(2) m1 + k1 < m2 + k2 < · · · < m` + k`.

5 Design methods based on non-overlap spectra functions

In this section, we propose new construction methods for obtaining resilient functions with
strictly almost optimal nonlinearity based on the set of non-overlap spectra functions.

The first construction method uses a similar strategy as Construction A, where the main
distinction between the two classes is in terms of quite a different structure of the subfunctions.
More precisely, in this new construction, the set of functions U0 used in Construction A is
replaced by the set I0∪I1 of non-overlap spectra functions whereas the other subfunctions remain
the same. Due to the limited space, we only provide the following example which illustrates the
differences between the structure of their subfunctions.

Example 4 Let us construct an (n = 16, t = 1, d = 10, Nf = 215 − 27 − 25) function f , which
is not equivalent (in terms of its constituent subfunctions) to any function obtained by means of
Construction A.

With the same notation as in Example 2, let n = 16,m = 2, k = 3, t = 1. Let s = b(n− 2t−
2)/4c = 3, X2 = (x6, . . . , x11) ∈ GF (2)6, and define

I0 = {ϕc(X(5), X2) = c(5) ·X(5) ⊕ hc(X2) | hc ∈ H6, wt(c
(5)) > 1} ⊂ B11.

Let c(8) = (c(5), α(3)) ∈ GF (2)8, α(3) ∈ GF (2)3, and define

I1 = {gc(8)(X(8)) = c(8) ·X(8) | wt(c(5)) ≤ 1, wt(c(8)) > 1} ⊂ B8.

Finally, we define a set of quadratic functions which are partially bent as

U2 = {c(4) ·X(4) ⊕ hc(x5, . . . , x8) | hc ∈ H4, wt(c
(4)) > 1}.

One can easily verify that ||I0|| = δ0 = 26, ||I1|| = δ1 = 39, ||U2|| = 11. These functions
suffice to specify the truth table of f since 26 × 23 + 39 + 11 = 258 > 216/2, where we treat the
functions from I0 as concatenation of 23 functions in n/2 = 8 variables which explains the factor
23. The design procedure is quite similar to Construction A and for self-completeness we briefly
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Table 1: The subfunctions of h1 obtained by fixing the variables (x9, x10, x11)
(x9, x10, x11) Subfunctions

(0,0,0) x6x7x8 ⊕ x6x8
(1,0,0) x6x7x8 ⊕ x6x8 ⊕ x6
(0,1,0) x6x7x8 ⊕ x6x8 ⊕ x7
(0,0,1) x6x7x8 ⊕ x6x8 ⊕ x8
(1,1,0) x6x7x8 ⊕ x6x8 ⊕ x6 ⊕ x7
(1,0,1) x6x7x8 ⊕ x6x8 ⊕ x6 ⊕ x8
(0,1,1) x6x7x8 ⊕ x6x8 ⊕ x7 ⊕ x8
(1,1,1) x6x7x8 ⊕ x6x8 ⊕ x6 ⊕ x7 ⊕ x8

discuss the structure of f . Since the variables x1, . . . , x11 are used to define functions in I0, the
remaining (addressing) variables x12, . . . , x16 are used to specify 26 functions in x1, . . . , x11 from
I0. Formally, we can take D0 = {d1, . . . , d26} to be any subset of GF (2)5 and some one-to-one
mapping φ : D0 → I0, meaning that to each of 26 fixed values of x12, . . . , x16 we assign a single
function from I0. However, there are 6 entries that remain to be specified, i.e., we need to specify
6 functions in 11 variables to fully specify the truth table of f . This is equivalent to specifying
48 functions in 8 variables and since ||I1||+ ||U2|| = 50, we can assign some arbitrary subset of
cardinality 48. Therefore, there exists an injective mapping ψ from D1 to I∗ ⊂ I1 ∪ U2, where
D1 = {ζ1, . . . , ζ48} is any subset of D0×GF (2)3, and D0 = GF (2)5\{D0}, ||I∗|| = 48. Similarly
to Construction A, we obtain an (n = 16, t = 1, d = 10, Nf = 215 − 27 − 25) resilient function
f ∈ B16 whose ANF is given as,

f(X) =
∑

σ∈D0

16∏

i=12

(xi ⊕ σi ⊕ 1) · φ(σ)(x1, . . . , x11)⊕
∑

τ∈D1

16∏

i=9

(xi ⊕ τi ⊕ 1) · ψ(τ)(x1, . . . , x8).

In particular, let the bent function h1 in I0 be given as h1 = x6x9⊕x7x10⊕x8x11⊕x6x7x8⊕x6x8
and let the bent function in U2 be h2 = x5x6⊕x7x8. Then, we can easily verify that this resilient
function differs substantially from any function obtained by Construction A. More precisely,
if variables (x9, x10, x11) are fixed, then h1 gives rise to different non-affine subfunctions , as
described in Table 1. It implies that we necessarily have that U0 6= I0∪I1 once we fix the variables
(x9, x10, x11), where U0 = {c(8) · X(8) | wt(c(8)) > 1}. Therefore, this resilient function cannot
be obtained by Construction A and in addition it has a more favorable algebraic structure.

Remark 2 Using a similar idea as in [24, 41], the functions above can be turned into degree
optimized resilient functions (providing a more favorable algebraic structure) with SAO nonlin-
earity by adding suitable monomials to some subfunctions in I0. In addition, our method can

be extended to employ I
(1)
0 ∪ I

(2)
0 ∪ I1 in Lemma 3 instead of I0 ∪ I1, thus further extending this

class of SAO resilient functions.

5.1 Towards better algebraic properties - using less n/2-variable affine func-
tions

In [40], it was noticed that the GMM design method described by means of Construction B
suffers from rather poor resistance against (fast) algebraic attacks. The main reason is the use
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of “too many” affine functions in n/2 variables for the purpose of attaining the best nonlinearity
currently known. Consequently, Construction B was slightly modified in [40] not to include
“too many” affine functions in n/2 variables and it could be demonstrated that the modified
class was more resistant to (fast) algebraic attacks at the price of slightly decreased nonlinearity.
To increase the resistance to (fast) algebraic attacks we replace a subset of n/2-variable affine
subfunctions in Theorem 1 by a set of non-overlap spectra functions in less variables, thus
again achieving a more desirable nonlinear structure of the corresponding subfunctions. For
convenience of the reader, the details of this approach are illustrated in the example below. The
enumerated list of design steps is also used in Theorem 2, though in a more general context.

Example 5 We illustrate the design of an (n = 14, t = 1, d = 12, Nf = 213 − 26 − 24 − 23 − 22)
degree optimized resilient function f , which is completely different from the class in [40], [41].

(1) Let m = 1, k = 3, X(4) ∈ GF (2)m+k = GF (2)4, X2 = (x5, . . . , x10) ∈ GF (2)2k = GF (2)6

and define

I0 = {ϕc(X(4), X2) = c(4) ·X(4) ⊕ hc(X2) | hc ∈ H6, wt(c
(4)) > 1} ⊂ B10.

Clearly, ||I0|| = δ0 = 11 and these functions cover 11 × 210 entries of the truth table of f of
length 214. We now select available 1-resilient linear functions from B7 of the following form.
Namely, for c(7) = (c(4), α(3)) ∈ GF (2)7 we define

I1 = {c(7) ·X(7) | wt(c(4)) ≤ 1, wt(c(7)) > 1} ⊂ B7,

which is of cardinality 32.
(2) The two sets I0 and I1 cover 11× 210 + 32× 27 = 15× 210 positions of the truth table. Thus,
the remaining 210 positions need to be specified through a selection of suitable linear functions in
smaller number of variables. The use of 1-resilient linear functions from smaller variable spaces
is governed formally by equation (24) in Theorem 2. The remaining 210 positions in the truth
table of f can be (optimally) specified using the following sets of functions:

D∗9 = {c(5) ·X(5) | wt(c(5)) > 1} ⊂ B5, ||D∗9|| = 26.

D∗10 = {c(4) ·X(4) | wt(c(4)) > 1} ⊂ B4, ||D∗10|| = 11.

D∗11 = {c(3) ·X(3) | wt(c(3)) > 1} ⊂ B3, ||D∗11|| = 2.

It is readily verified that 26× 25 + 11× 24 + 2× 23 = 210.
(3) Let Bi ⊆ GF (2)i and B′i = Bi × GF (2)14−i, for i ∈ {4, 7, 9, 10, 11}, such that

⋃n−1
i=1 B

′
i =

GF (2)n and B′i1 ∩B′i2 = ∅, i1, i2 ∈ {4, 7, 9, 10, 11}, with i1 6= i2. Thus,

||Bi|| =





11, i = 4,
32, i = 7,
26, i = 9,
11, i = 10,
2, i = 11.

(22)
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(4) Let ψi be injective mappings from Bi to Ti, where

Ti =





I0, i = 4,
I1, i = 7.
D∗9, i = 9,
D∗10, i = 10,
D∗∗11, i = 11.

(23)

These mappings simply specify which functions from Ti are used when a suitable subset of input
variables is fixed. By Theorem 2, the Boolean functions

f(X(14−i), X(14)
(14−i+1)) = ψi(X

(14)
(14−i+1))⊕ gi(X

(14)
(14−i+1)) = ψ∗i (X

(14−i))⊕ gi(X(14)
(14−i+1)),

are (n = 14, t = 1, d = 12, Nf = 213 − 26 − 24 − 23 − 22 = 8100) that are all degree opti-

mized resilient functions, where ψi(X
(14)
(14−i+1)) = ψ∗i (X

(14−i)) ∈ Ti, X(14)
(14−i+1) ∈ Bi, X

(14)
(14−i+1) =

(x14−i+1, . . . , x14) ∈ GF (2)i, gi ∈ Bi, i ∈ {4, 7, 9, 10, 11}. In particular, if the bent function in
I0 is h0 = (x6 ⊕ x5x7)x8 ⊕ (x7 ⊕ x5x6 ⊕ x5x7)x9 ⊕ (x5 ⊕ x5x6 ⊕ x6x7)x10, then (as previously
discussed) we easily find that such a resilient function is substantially different compared to the
class in [40], [41] since the subfunctions of I0 are different from the subfunctions of U0, where
U0 = {c(7) ·X(7) | wt(c(7)) > 1}.

Remark 3 Notice that the use of t-resilient linear functions in n/2 variables and those found
on smaller variable spaces are in accordance with the non-overlap spectra property. The use of
6-variable linear functions is avoided due to their negative impact on the nonlinearity of f .

Theorem 2 With the same notation as in Construction B and Proposition 1, let n be even and
Bi 6= ∅, (1 ≤ i ≤ n/2− k − 1). The design consists of the following steps:

(1) Let X(m+k) ∈ GF (2)m+k, X2 = (xm+k+1, . . . , xn/2+k)) ∈ GF (2)2k, where m+ 2k = n/2, and
define

I0 = {ϕc(X(m+k), X2) = c(m+k) ·X(m+k) ⊕ hc(X2) | hc ∈ H2k, wt(c
(m+k)) > t} ⊂ Bn

2
+k.

Moreover, let c(n/2) = (c(m+k), α(k)) ∈ GF (2)n/2, α ∈ GF (2)k, and define

I1 = {gc(n/2)(X(n/2)) = c(n/2) ·X(n/2) | wt(c(m+k)) ≤ t, wt(c(n/2)) > t} ⊂ Bn
2
.

(2) Let 0 ≤ t ≤ n/2 − 2 and (an/2, . . . , an−t−1) ∈ GF (2)n/2−t (where an/2 = 1) be the binary

vector such that
∑n−t−1

i=n/2 ai2
i is maximal, and

δ0 × 2n/2+k + δ1 × 2n/2 +
n−t−1∑

i=n/2+1

(
ai2

n−i
n−i∑

j=t+1

(
n− i
j

))
≥ 2n, (24)

where δi = ||Ii||, i = 0, 1.
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(3) Let r = max{i | ai 6= 0, n/2− k ≤ i ≤ n− t− 1}. For n/2− k ≤ i < r − 1, set

||Bi|| =





0 (ai = 0, n/2 < i < r − 1),∑n−i
j=t+1

(
n−i
j

)
(ai = 1, n/2 < i < r − 1).

δ0 (ai = 1, i = n/2− k),
δ1 (ai = 1, i = n/2).

(25)

(4) For n/2− k ≤ i ≤ r and ai = 1, let ψi be an injective mapping from Bi to Ti,

Ti =





0 (ai = 0, n/2 < i < r − 1),
D∗i (ai = 1, n/2 < i < r − 1),
I0 (ai = 1, i = n/2− k),
I1 (ai = 1, i = n/2),

(26)

where

D∗i = {c(n−i) ·X(n−i) | wt(c) > t}. (27)

Then the Boolean function

f(X(n−i), X(n)
(n−i+1)) = ψi(X

(n)
(n−i+1))⊕ gi(X

(n)
(n−i+1)) = ψ∗i (X

(n−i))⊕ gi(X(n)
(n−i+1)),

where ψi(X
(n)
(n−i+1)) = ψ∗i (X

(n−i)) ∈ Ti, X
(n)
(n−i+1) ∈ Bi, gi ∈ Bi, X(n−i) = (x1, . . . xn−i) ∈

GF (2)n−i, X(n)
(n−i+1) = (xn−i+1, . . . xn) ∈ GF (2)i, for n/2 − k ≤ i ≤ r, is a SAO t-resilient

function with nonlinearity

Nf ≥ 2n−1 − 2n/2−1 −
r∑

i=n/2+1

ai2
n−i−1. (28)

Proof. For any n/2−k ≤ i ≤ r, if (24) is satisfied, then ||Bi|| ≤ ||Ti||. It means that there is a
set of injective mappings ψi from Bi to Ti, with n/2− k ≤ i ≤ r and ai = 1. W.l.o.g, we assume

gi = 0. For any w = (w1, . . . , wn) = (w(n−i), w(n)
(n−i+1)) ∈ GF (2)n, w

(n)
(n−i+1) = (wn−i+1, . . . wn) ∈

GF (2)i, we have

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Wf (w) =
∑

X(n)∈⋃ri=n/2−k B′i

(−1)f(X
(n))⊕w·X(n)

=
∑

X(n)∈B′
n/2−k

(−1)f(X
(n))⊕w·X(n) ⊕

∑

X(n)∈B′
n/2

(−1)f(X
(n))⊕w·X(n) ⊕ · · · ⊕

∑

X(n)∈B′r

(−1)f(X
(n))⊕w·X(n)

=
∑

X
(n)
(n/2+k+1)

∈Bn/2−k

(−1)
w

(n)
(n/2+k+1)

·X(n)
(n/2+k+1)

∑

X(n/2+k)∈GF (2)n/2+k

(−1)
ψ∗
n/2−k(X

(n/2+k))⊕w(n/2+k)·X(n/2+k)

⊕
∑

X
(n)
(n/2+1)

∈Bn/2

(−1)
w

(n)
(n/2+1)

·X(n)
(n/2+1)

∑

X(n/2)∈GF (2)n/2

(−1)
ψ∗
n/2

(X(n/2))⊕w(n/2)·X(n/2)

⊕ · · ·

⊕
∑

X
(n)
(n−r+1)

∈Br

(−1)
w

(n)
(n−r+1)

·X(n)
(n−r+1)

∑

X(n−r)∈GF (2)n−r

(−1)ψ
∗
r (X

(n−r))⊕w(n−r)·X(n−r)

= Wfn/2−k(w) +
r∑

i=n/2

ai ·Wfi(w),

where

Wfn/2−k(w) =
∑

X
(n)
(n/2+k+1)

∈Bn/2−k

(−1)
w

(n)
(n/2+k+1)

·X(n)
(n/2+k+1)

×
∑

X(n/2+k)∈GF (2)n/2+k

(−1)
ψ∗
n/2−k(X

(n/2+k))⊕w(n/2+k)·X(n/2+k)

,

and for n/2− k ≤ i < r − 1, we have

Wfi(w) =
∑

X
(n)
(n−i+1)

∈Bi

(−1)
w

(n)
(n−i+1)

·X(n)
(n−i+1)

∑

X(n−i)∈GF (2)n−i

(−1)ψ
∗
i (X

(n−i))⊕w(n−i)·X(n−i)

=

{
(−1)

w
(n)
(n−i+1)

·ψ∗−1
i (w(n−i)) · 2n−i if ∃ψ∗−1i (w(n−i)),

0 otherwise.

=

{
±2n−i if ∃ψ∗−1i (w(n−i)),
0 otherwise.

From Proposition 1, we have Wfn/2−k(w) +Wfn/2(w) ∈ {0,±2n/2}. Therefore, we have

Wf (w) ≤ 2n/2 +
r∑

i=n/2+1

ai2
n−i,

and consequently Nf ≥ 2n−1 − 2n/2−1 −∑r
i=n/2+1 ai2

n−i−1. Note that any constituent function

in I0 ∪ I1 ∪
⋃r
l=n/2+1D

∗
i is always a t-resilient function, thus f is t-resilient as well.
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Corollary 2 The functions f ∈ Bn obtained by Theorem 2 share the same nonlinearity as the
functions obtained by Theorem 1.

Proof. Let U0 = {c(n/2) ·X(n/2) | wt(c(n/2)) > 1}. From Lemma 2, we know that the number
of elements contained in U0 (cf. Theorem 1) is equal to the number of elements in I0 ∪ I1 in
Theorem 2. Moreover, the number of elements contained inD∗i is equal to the number of elements
contained in Ui = {c(n−i) · X(n−i) | c(n−i) ∈ Di}, for n/2 < i < r − 1. Therefore, the resilient
functions in both Theorem 1 and 2 share the same parameter (an/2, . . . , an−t−1) ∈ GF (2)n/2−t.

Remark 4 One can easily verify that the functions obtained by Theorem 2 include the functions
obtained by Theorem 1 as a subclass and the methods coincide only if hc in I0 is a Maiorana-
McFarland type bent function. In addition, instead of using I0 ∪ I1 we can alternatively use the

set I
(1)
0 ∪ I

(2)
0 ∪ I1 in Theorem 2, given in Lemma 3.

5.2 Comparisons regarding the resistance against (fast) algebraic attacks

In Appendix A, the resistance of our functions against (fast) algebraic attacks is discussed. In
general, it is shown that the new functions have a better resistance against (fast) algebraic
attacks than the class of functions in [40, 41], see Appendix A for further details.

In Table 2, we compare the resistance against (fast) algebraic attacks between our class and
the functions in [40, 41] for 12-variable and 14-variable functions. Once again, we emphasize
that our class of functions uses a large set of non-overlap spectra functions I0 ∪ I1 rather than
a large set of n

2 -variable affine subfunctions U0 = {c(n/2) ·X(n/2) | wt(c(n/2)) > 1} as in [40, 41].
Notice also that except for the subfunctions derived from the set I0∪ I1, our functions share the
same subfunctions and injective methods as the functions in [40, 41]. Due to space constraints,
the truth tables of these functions in Table 2 are omitted. Table 2 shows that the new functions
provide a better resistance against algebraic attacks than the functions in [40, 41], whereas the
nonlinearity and the other parameters of interest remain the same.

Table 2: Comparisons (simulation) regarding the resistance against (fast) algebraic attacks.
n Resiliency deg(f) Nf AI deg g + deg h Constructions
12 1 8 2000 4 ≥ 6 [40],[41]
12 1 8 2000 5 ≥ 7 new
14 1 12 8100 4 ≥ 6 [40]
14 1 12 8100 6 ≥ 8 new

For instance, an 14-variable function f from [40] only have AI = 4 whereas our function
attains AI = 6. Moreover, when the fast algebraic cryptanalysis is considered, there exist
Boolean functions g and h such that fg = h with deg(g) + deg(h) = e + d ≥ 6, for a function
f constructed using the method of [40]. However, our method generates a function f ′ in 14
variables which has AI = 6 and there exist Boolean functions g′ and h′ such that f ′g′ = h′ with
deg(g′) + deg(h′) = e+ d ≥ 8, implying that our functions have better resistance against (fast)
algebraic attacks even though no modification towards better algebraic properties has been
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done. Also, the resistance to various cryptanalytic methods that take advantage of linearity
of subfunctions is increased by avoiding the usage of n

2 -variable affine functions due to the
availability of a large set of non-overlap spectra functions, see Section 5.5.

5.3 Balanced (or 1-resilient) functions with good algebraic properties

In this section we demonstrate the possibility of constructing highly nonlinear balanced (or
1-resilient) Boolean functions with good algebraic properties by using nonlinear subfunctions
whose number of variables is ≤ n

2 . We firstly provide some existence examples of functions with
overall good properties, which are found using computer search for optimal choice of nonlinear
subfunctions (≤ n

2 -variable), affine subfunctions (≤ n
2 -variable), and their number for different

dimensions. Moreover, we later discuss a semi-deterministic method for designing balanced (or
1-resilient) Boolean functions satisfying all relevant cryptographic criteria.

A. Some new 8-variable and 10-variable 1-resilient functions with overall good properties

In Table 3 we give an example of a balanced 8-variable function (using Theorem 2 thus
without the marked terms ∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸), which consists of three 6-variable nonlinear subfunctions

that strictly belong to the set of non-overlap spectra functions, two 4-variable linear subfunctions,
and four 3-variable linear subfunctions, i.e., the space decomposition satisfies 3×26+2×24+4×
23 = 28. This function has AI = 4, deg(f) = 6, its nonlinearity is Nf = 112. Moreover, for any
given nonzero Boolean functions h and g such that f(x)g(x) = h(x) we have deg(g)+deg(h) ≥ 6,
which implies that f has almost optimal resistance to fast algebraic cryptanalysis.

Table 3: A balanced 8-variable function with overall good properties.
(x1, · · · , x6) (x7, x8)

x1 ⊕ x3x4 ⊕ x3x5 ⊕ x5x6⊕x2x3x4 ⊕ x3x4x5︸ ︷︷ ︸ (0, 0)

x2 ⊕ x4 ⊕ x6 ⊕ x3x4 ⊕ x5x6⊕x1x4x5 ⊕ x1x3x5x6︸ ︷︷ ︸ (1, 0)

x1 ⊕ x2 ⊕ x3x4 ⊕ x5x6 ⊕ x4x6⊕x4x5x6 ⊕ x3x4x5x6︸ ︷︷ ︸ (0, 1)

(x1, · · · , x4) (x5, x6, x7, x8)
x3 ⊕ x4 (0, 1, 1, 1)

x1 ⊕ x2 ⊕ x3 ⊕ x4 (1, 1, 1, 1)
(x1, x2, x3) (x4, x5, x6, x7, x8)
x1 ⊕ x2 (0, 0, 0, 1, 1)
x1 ⊕ x3 (1, 0, 0, 1, 1)
x2 ⊕ x3 (0, 1, 0, 1, 1)
x1 ⊕ x3 (1, 1, 0, 1, 1)

To further improve the resistance of this function against fast algebraic attacks, we add the
marked terms ∗ ∗ ∗ ∗ ∗︸ ︷︷ ︸, see Table 3, and denote this new function by f∗. It can be verified that f∗

has AI = 4, deg(f∗) = 6, its nonlinearity is Nf∗ = 108 and deg(g) + deg(h) = e+ d ≥ n− 1 = 7
for any given nonconstant Boolean functions g and h such that f(x)g(x) = h(x). Moreover,
this function f∗ can be linearly transformed into a 1-resilient function f∗∗ (since there are eight
linearly independent vectors ω such that Wf (ω) = 0) that preserves all the properties above.
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Table 4: A new 1-resilient 8-variable function with overall good cryptographic properties.

(x1, x2, x3, x4) (x5, x6, x7, x8)

1⊕ x1 ⊕ x2 ⊕ x4 ⊕ x1x3⊕ (0, 0 , 0 ,0)
x2x3 ⊕ x1x4 ⊕ x1x2x4 ⊕ x3x4 ⊕ x2x3x4

1⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4⊕ (0, 0 , 0 , 1)
x3x4 ⊕ x2x3x4

1⊕ x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3 ⊕ x1x4⊕ (0, 0 , 1 , 0)
x2x4 ⊕ x3x4 ⊕ x1x3x4

x1 ⊕ x2 ⊕ x3 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3⊕ (0, 0 , 1 , 1)
x1x3x4 ⊕ x2x3x4

x1 ⊕ x3 ⊕ x1x2x3 ⊕ x1x4 ⊕ x1x2x4⊕ ( 0, 1 , 0 , 0)
x1x3x4 ⊕ x2x3x4 ⊕ x1x2x3x4
x1 ⊕ x1x2 ⊕ x4 ⊕ x1x4⊕ (0, 1 , 0 , 1)

x1x2x4 ⊕ x3x4
1⊕ x1 ⊕ x1x2 ⊕ x3 ⊕ x1x3 ⊕ x1x2x3⊕ (0, 1 , 1 , 0)
x1x4 ⊕ x2x4 ⊕ x2x3x4 ⊕ x1x2x3x4

1⊕ x1 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x1x2x3⊕ (0, 1 , 1 , 1)
x1x2x4 ⊕ x1x3x4 ⊕ x2x3x4

1⊕ x1 ⊕ x2 ⊕ x1x2 ⊕ x2x3 ⊕ x1x4⊕ (1, 0 , 0 , 0)
x1x2x4 ⊕ x3x4 ⊕ x1x3x4 ⊕ x2x3x4
x1 ⊕ x1x2 ⊕ x1x3 ⊕ x1x2x3 ⊕ x1x4⊕ (1, 0 , 0 , 1)
x2x4 ⊕ x3x4 ⊕ x1x3x4 ⊕ x2x3x4

1⊕ x2 ⊕ x3 ⊕ x1x3 ⊕ x4 ⊕ x3x4⊕ (1, 0 , 1 , 0)
x1x3x4 ⊕ x2x3x4 ⊕ x1x2x3x4

x1 ⊕ x2 ⊕ x1x2 ⊕ x3 ⊕ x1x3 ⊕ x1x2x3 ⊕ x2x4⊕ (1, 0 , 1 , 1)
x1x2x4 ⊕ x3x4 ⊕ x1x3x4 ⊕ x2x3x4 ⊕ x1x2x3x4
x1 ⊕ x2 ⊕ x3 ⊕ x2x3 ⊕ x1x2x3 ⊕ x4 ⊕ x1x4⊕ (1, 1 , 0 , 0)

x2x4 ⊕ x1x2x4 ⊕ x3x4 ⊕ x1x2x3x4
1⊕ x2 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x4 ⊕ x1x4⊕ (1, 1 , 0 , 1)

x2x4 ⊕ x1x2x4 ⊕ x1x3x4 ⊕ x2x3x4
x2 ⊕ x1x2 ⊕ x1x2x4 (1, 1 , 1 , 0)

x1x3 ⊕ x1x4 ⊕ x2x4 ⊕ x1x2x4 ⊕ x3x4⊕ (1, 1 , 1 , 1)
x1x3x4 ⊕ x2x3x4 ⊕ x1x2x3x4

The truth table of f∗∗ is given below:
0011 1001 1100 0011 0110 1001 1001 0011 0011 1001 1100 0011 1001 0110 0110 1100 0101 0000
1010 1111 0101 1100 1010 1100 1010 1111 0101 0000 0100 1000 1110 1101 0110 0011 0110 0011
0110 0011 0110 0011 0110 1100 0110 1100 1001 1001 1001 1001 0110 0110 1001 0110 0110 1111
1001 0000 0101 1010 0101 1010 0011 1100 0011 1100

Nevertheless, further improvements are possible as indicated in Table 4, where another ex-
ample of a 1-resilient 8-variable function is given. This function has AI = 4, deg(f) = 6, its
nonlinearity is Nf = 116, and deg(g)+deg(h) = e+d ≥ n−1 = 7 for any given nonzero Boolean
functions h and g such that f(x)g(x) = h(x). The truth table of this 1-resilient function f∗ is
given below:
1001 1111 0010 1000 1001 0110 0110 0101 1100 1011 1010 0111 0110 1110 0110 1000 0101 1011
0001 1000 0100 0100 1111 0000 1011 0000 1101 0100 1011 1100 1010 1011 1000 1011 1100 0110
0100 0000 0010 1111 1100 0110 0011 0001 0111 1100 0101 0110 0110 1011 1110 1101 1101 1011
0101 0101 0010 0010 0011 0011 0000 0101 0111 1010
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We also provide an example of a 1-resilient 10-variable function with excellent algebraic
properties (whose truth table is given in the hexadecimal format):
0cc3 c0f6 2354 dced 0565 307c 1d4d f792 fbab 67c4 257c 3213 4640 d49a b604 953d 5dfd a5c6
9ad4 cbbb 887f 2751 bc21 2876 4819 dcfe db14 920c 992a 2c8a e37f a6f8 1524 e757 eb0f a0d8
96ae 8308 f34b 5a5f 3148 99e8 1f12 0f84 f69b f31f 3eae c77a b851 d671 57c9 ae89 98cf 1c1a 670b
003a 217d 7ad9 70c9 7a08 f0a7 daa9 a276 6138.

This 1-resilient function has AI = 5, deg(f) = 8, its nonlinearity is Nf = 484, and deg(g) +
deg(h) = e+ d ≥ n− 1 = 9 for any given nonconstant h and g such that f(x)g(x) = h(x).

Table 5: A comparison related to 1-resilient functions with overall good properties.
n Resiliency deg(f) Nf AI deg g + deg h n

2 -variable subfunctions Resource
8 1 6 112 4 ≥ n− 1 = 7 linear [40]
8 1 6 112 4 − − [32]
8 1 6 116 4 ≥ n− 1 = 7 − [38]
8 1 6 116 4 ≥ n− 1 = 7 nonlinear new
10 1 8 472 5 ≥ n− 1 = 9 linear [40]
10 1 8 484 5 − − [32]
10 1 8 484 5 ≥ n− 1 = 9 − [38]
10 1 8 484 5 ≥ n− 1 = 9 nonlinear new

Remark 5 In difference to the class of 8-variable and 10-variable functions in [40], these new
functions use many nonlinear subfunctions in n/2 variables rather than affine n/2-variable sub-
functions, see Table 5. It is worthy of noticing that, based on our simulations, the placement
order of these subfunctions does not impact the algebraic properties of designed functions. The
resistance to fast algebraic attacks for the method in [32, 33] is most likely quite bad given by
deg(g) + deg(h) = n/2 + 1, as remarked in [4] for a similar class of functions derived from bent
functions in the partial spread class.

B. A semi-deterministic method for designing balanced (or 1-resilient) Boolean func-
tions with good algebraic properties

The construction of balanced highly nonlinear Boolean functions with good algebraic prop-
erties has been addressed in many works [6, 18, 30, 31, 34, 35, 44]). To achieve relatively good
resistance against (fast) algebraic attacks, Zhang et al. [40] proposed a modified construction
of the original approach which uses 2

n
2
−1 affine subfunctions in n/2 variables from U0. More

precisely, the space decomposition satisfies 2
n
2
−1 × 2

n
2 + 2

n
2
−1 × 2

n
2
−1 + 2

n
2 × 2

n
2
−2 = 2n which

implies that “only” 2
n
2
−1 many affine functions in n/2 variables are used in the design. However,

using the algorithm for testing the algebraic properties proposed in [36], we can demonstrate
that this class of functions does not have an optimal resistance against fast algebraic attacks. For
instance, if n = 20 and f is constructed by means of the method in [40], using this algorithm we
find that there exist nonzero Boolean functions g and h satisfying deg(g) + deg(h) = e+ d = 15
(where fg = h). This discrepancy (between the optimal value n−1 and the actual value e+d) is
even larger for the increased input space n and therefore the resistance of the class of functions
in [40] against fast algebraic attacks is far from being optimal.
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Similarly, a trade-off between the nonlinearity and the resistance against (fast) algebraic
attacks of our initial SAO functions has been confirmed by simulations, as in the case of the
GMM construction [40]. To achieve good algebraic properties, we need to slightly decrease the
nonlinearity of our initial constructions. The main idea is to look for a suitable/optimal space
decomposition whose choice usually affects both the algebraic properties and nonlinearity of the
designed functions. In fact, the Condition 0, Condition 1, and Condition 2 in [36] essentially
provide an approach to estimate the algebraic properties of designed functions. Therefore, to
achieve an optimal resistance against (fast) algebraic attacks and high nonlinearity, our design
strategy includes two phases. In the first phase, we need to search for a suitable space decom-
position that ensures optimal algebraic properties by using the Condition 0, Condition 1, and
Condition 2 given in [36]. In the second phase, we employ the ideas of Construction 2 to specify
the corresponding functions. The details of this approach are given below.

Construction C: (With the same notation as in Construction B and Theorem 2).

The first phase:
Step 1 For a given integer n, n ≥ 12 even, solve the equation

∑n−1
i=n

2
+1 ||Bi|| × 2n−i = 2n to

obtain all solutions B(j) = {B(j)
n
2
+1, . . . , B

(j)
n−1}.

Step 2 For each solution B(j), calculate r + d and r + s+ e (related to AA and FAA) by using
the Condition 0, Condition 1, and Condition 2 in [36]. If r + d = dn/2e and r + s+ e ≥ n− 1,

then record the solution B(j) = {B(j)
n
2
+1, . . . , B

(j)
n−1}.

Step 3 Call these solutions B(1), B(2), . . . , B(u).

Remark that the relations r + d = dn/2e and r + s + e ≥ n − 1 in Step 2 ensure the opti-
mal resistance against (fast) algebraic attacks.

The second phase:
(1) Select an optimal solution w.r.t. the highest nonlinearity given by (30), say B(λ), 1 ≤ λ ≤ u.

Let ai = 1, if B
(λ)
i 6= 0, or else ai = 0, for i = n

2 + 1, . . . , n− 1.
(2) For n

2 < i ≤ n− 1 and ai = 1, let ψi be a mapping from Bi to Ti, where

Ti = {c(n−i) ·X(n−i) | wt(c(n−i)) > 0}. (29)

Then the Boolean function

f(X(n−i), X(n)
(n−i+1)) = ψi(X

(n)
(n−i+1))⊕ gi(X

(n)
(n−i+1)) = ψ∗i (X

(n−i))⊕ gi(X(n)
(n−i+1)),

where X
(n)
(n−i+1) ∈ Bi, X

(n)
(n−i+1) = (xn−i+1, . . . xn) ∈ GF (2)i, gi ∈ Bi are arbitrary for n

2 < i ≤
n− 1, is a balanced function with nonlinearity

Nf ≥ 2n−1 −
n−1∑

l=n/2+1

al × µl × 2n−l−1, (30)
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where µl = maxy∈Tl ||{ψ−1l (y)}||, (l = n
2 + 1, . . . , n− 1).

The result on nonlinearity can be easily derived using a similar method as in Theorem 2.

Remark 6 To achieve high nonlinearity, we need to select an optimal solution B(λ) so that the
value

∑n−1
l=n/2+1 al × µl × 2n−l−1 is as small as possible. On the other hand, it is impossible to

provide the exact nonlinearity bound in advance since it depends on suitable decompositions for
which the algebraic properties are simultaneously optimized (due to the selection in Step 2 in the
first phase).

The method given in Construction C allows us to design balanced Boolean functions having
optimal algebraic properties and very high nonlinearity. To demonstrate the efficiency and
quality of our approach we provide two examples (among many others) of one 12-variable and
one 14-variable 1-resilient functions with overall good cryptographic properties, see Table 6. We
only provide the truth table of this 12-variable function in Appendix. Notice that the space
decomposition of this 12-variable 1-resilient function satisfies 31× 23 + 466× 22 + 992× 2 = 212,
that is, ||B9|| = 31, ||B10|| = 466, ||B11|| = 992, and ||Bi|| = 0 for i 6= 9, 10, 11. The space
decomposition of the 14-variable 1-resilient function satisfies 1 × 24 + 140 × 23 + 1784 × 22 +
4056 × 2 = 214, that is, ||B10|| = 1, ||B11|| = 140, ||B12|| = 1784, ||B13|| = 4056, and ||Bi|| = 0
for i 6= 10, 11, 12, 13.

Table 6: A comparison of 1-resilient functions satisfying all relevant cryptographic criteria.
n Resiliency deg(f) Nf AI deg g + deg h n

2 -variable subfunctions Resource
12 1 10 1960 6 ≥ n− 2 = 10 linear [40]
12 1 10 1996 6 − − [32]
12 1 10 1988 6 ≥ n− 1 = 11 − [38]
12 1 10 1988 6 ≥ n− 1 = 11 nonlinear new
14 1 11 8040 7 ≥ n− 3 = 11 linear [40]
14 1 12 8100 7 − − [32]
14 1 12 8072 7 ≥ n− 1 = 13 − [38]
14 1 12 8072 7 ≥ n− 1 = 13 nonlinear new

Remark 7 In difference to the class of 12-variable and 14-variable functions in [40], these new
functions use many nonlinear n/2-variable subfunctions. This also implies that these new func-
tions have better resistance against (fast) algebraic attacks than the functions in [40]. On the
other hand, the functions in [38] are obtained by using a search algorithm based on simulated
annealing which quite likely becomes inefficient for larger n. The space decomposition of these
functions and the type of subfunctions used there was not discussed in [38]. Nevertheless, the de-
sign of resilient functions with SAO nonlinearity and optimal (or suboptimal) resistance against
(fast) algebraic attacks still remains an open problem.

5.4 A comparison regarding the number of n/2-variable affine subfunctions

Table 7 below gives the exact value of the number of n/2-variable affine subfunctions used in
our constructions and their number used in [40, 41], for k ≥ 2. Notice that by letting k = 1

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(recall that k is related to the set Hk of 2k-variable bent functions, cf. Theorem 2), the number
of n/2-variable affine subfunctions is minimal for both our methods since the effect of increasing
k is that m decreases due to the relation m+ 2k = n

2 . In particular, when k = 1, the employed
bent functions only have two variables (which are then essentially linear functions) so that our
method coincides with the approach taken in [40]. Thus, we necessarily have that k ≥ 2 in order
to distinguish the two approaches.

Table 7: The cardinality of affine subfunctions in n/2 variables
Number of affine n/2-variable subfunctions Construction∑n

2
i=t+1

(n
2
i

)
or 2

n
2
−1 [40]

∑n
2
i=t+1

(n
2
i

)
[41]

∑n
2
i=t+1

(n
2
i

)
− 2k ×∑m+k

i=t+1

(
m+k
i

)
new

Note that the constructions in [40, 41], for the case n = 28, t = 1, require 16369 affine sub-
functions in 14 variables, whereas our new construction requires at most 561 affine subfunctions
in 14 variables if we consider m = 2 (and consequently k = 6). Moreover, taking k = 2, this
number is further reduced and only 37 affine 14-variable subfunctions are needed. In other
words, the number of n

2 -dimensional subspaces/flats on which our functions are weakly normal
(being affine on such a subspace/flat) is substantially reduced which potentially gives a better
resistance to various cryptanalytic methods.

5.5 Comparisons regarding the resistance against both guess and determine
cryptanalysis and (dynamic) cube attacks

Note that the attack complexity of both guess and determine cryptanalysis and (dynamic) cube
attacks largely depends on the number of input variables that are kept fixed, say l, and the
cardinality of induced partial linear relations (n − l variables) which we denote by ∆. If l is
relatively small and the cardinality of these partial linear relations is large enough, then these
attacks generally become more efficient. To estimate the resistance against both guess and
determine cryptanalysis and (dynamic) cube attacks, we introduce the concept of probability
distribution of partial linear relations, which takes into account the above mentioned parameters
l and ∆.

Definition 9 For f ∈ Bn, let the set of fixed input variables be (xi1 , . . . , xil), {i1, . . . , il} ⊂
{1, . . . , n}, and let the total cardinality of induced partial linear relations be ∆, when (xi1 , . . . , xil)
runs through GF (2)l. The probability distribution of partial linear relations of f(x) with respect
to (xi1 , . . . , xil) is defined as

P (l) =
∆

2l
. (31)

In fact, the quantity P (l) measures the probability of getting a partial linear relation of
f(x) by randomly fixing the value of (xi1 , . . . , xil). In general, the smaller P (l) is the better
is the resistance of a Boolean function against both guess and determine cryptanalysis and
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(dynamic) cube attacks. In Table 8, we list the exact values of P (l = n
2 ) for our constructions

and the methods in [40, 41], for 12 ≤ n ≤ 40, 0 ≤ t ≤ 2, and m + 2k = n
2 , where m = 1

or m = 2. For instance, when n = 36 then 1-resilient functions (thus t = 1) in [40, 41] have
P (l = 18) = 0.999928 ≈ 1, whereas our new functions only have P (l = 18) = 0.010670 if we
consider m = 2, see Table 8.

Table 8: The value of P (l = n
2 ) for 12 ≤ n ≤ 40, 0 ≤ t ≤ 2.

t n [40] [41] New (maximum) New (minimum)
12 0.984375 0.984375 0.046875, (m = 2) 0.046875, (k = 2)
14 0.992188 0.992188 0.054688, (m = 1) 0.023438, (k = 2)
16 0.996094 0.996094 0.027344, (m = 2) 0.011719, (k = 2)
18 0.998047 0.998047 0.029297, (m = 1) 0.005859, (k = 2)

0 20 0.999023 0.999023 0.014648, (m = 2) 0.002930, (k = 2)
22 0.999512 0.999512 0.015137, (m = 1) 0.001465, (k = 2)
24 0.999756 0.999756 0.007568, (m = 2) 7.324× 10−4, (k = 2)
26 0.999878 0.999878 0.007690, (m = 1) 3.662× 10−4, (k = 2)
28 0.999939 0.999939 0.003845, (m = 2) 1.831× 10−4, (k = 2)
30 0.999969 0.999969 0.003876, (m = 1) 9.155× 10−5, (k = 2)
12 0.890625 0.890625 0.203125, (m = 2) 0.203125, (k = 2)
14 0.937500 0.937500 0.250000, (m = 1) 0.125000, (k = 2)
16 0.964844 0.964844 0.152344, (m = 2) 0.074219, (k = 2)
18 0.980469 0.980469 0.167969, (m = 1) 0.042969, (k = 2)

1 20 0.989258 0.989258 0.098633, (m = 2) 0.024414, (k = 2)
22 0.994141 0.994141 0.103516, (m = 1) 0.013672, (k = 2)
24 0.996826 0.996826 0.059326, (m = 2) 0.007568, (k = 2)
26 0.998291 0.998291 0.060791, (m = 1) 0.004150, (k = 2)
28 0.999084 0.999084 0.034241, (m = 2) 0.002258, (k = 2)
30 0.999512 0.999512 0.034668, (m = 1) 0.001221, (k = 2)
12 0.656250 0.656250 0.343750, (m = 2) 0.343750, (k = 2)
14 0.773438 0.773438 0.460938, (m = 1) 0.273438, (k = 2)
16 0.855469 0.855469 0.355469, (m = 2) 0.199219, (k = 2)
18 0.910156 0.910156 0.410156, (m = 1) 0.136719, (k = 2)

2 20 0.945313 0.945313 0.289063, (m = 2) 0.089844, (k = 2)
22 0.967285 0.967285 0.311035, (m = 1) 0.057129, (k = 2)
24 0.980713 0.980713 0.207275, (m = 2) 0.035400, (k = 2)
26 0.988770 0.988770 0.215332, (m = 1) 0.021484, (k = 2)
28 0.993530 0.993530 0.138062, (m = 2) 0.012817, (k = 2)
30 0.996307 0.996307 0.140839, (m = 1) 0.007538, (k = 2)

Moreover, taking k = 2, we find that P (l = 18) for our functions is extremely low, i.e.,
P (l = 18) = 1.869 × 10−4. In other words, for the former methods [40, 41] the adversary finds
a partial linear relation by fixing almost any value of (xi1 , . . . , xi18), whereas the probability of
getting such relations for our method is negligibly small. Therefore, our new functions potentially
provide much better resistance to both guess and determine cryptanalysis and (dynamic) cube
attacks than the functions in [40, 41].

Remark 8 For the modified construction proposed in [40], which uses 2
n
2
−1 many n/2-variable

affine subfunctions, one obtains P (l = n
2 ) = 2

n
2−1

2
n
2

= 1
2 . This implies the existence of a large set

of partial linear relations and in average fixing two values of (xi1 , . . . , xil) would result in one

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

partial linear relation.

6 Conclusions

In this paper, the concept of non-overlap spectra functions, referring to a set of mutually disjoint
spectra functions on different variable subspaces, has been introduced. Two general methods
for designing a large set of non-overlap spectra functions have been proposed and their use in
the construction of resilient functions with SAO nonlinearity has been addressed. In difference
to the best known construction methods proposed by Zhang et al. (2009, 2014) that employ
“too many” n

2 -variable affine subfunctions, our construction methods only use a few n
2 -variable

affine subfunctions which results in a more favourable algebraic structure. Moreover, these new
functions have better resistance against guess and determine cryptanalysis (or dynamic cube
attacks that use partial linear relations) than the functions provided by Zhang et al. (2009,
2014). The trade-off between optimal algebraic properties and the so-called SAO nonlinearity
is still unsettled. The question whether there exist functions with SAO nonlinearity that have
an optimal resistance to (fast) algebraic cryptanalysis remains to be answered.
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Appendix A - Evaluating the resistance against (fast) algebraic attacks

In this section, the resistance of our functions against (fast) algebraic attacks is discussed.
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Theorem 3 Let 1 ≤ i ≤ n − 1, Bi ⊆ GF (2)i and B′i = Bi × GF (2)n−i such that
⋃n−1
i=1 B

′
i =

GF (2)n and B′i1 ∩ B′i2 = ∅, 1 ≤ i1 < i2 ≤ n − 1. Let X = (x1, . . . xn) ∈ GF (2)n, X ′i =
(xj1 , . . . xji) ∈ GF (2)i, X ′′n−i = (xji+1 , . . . xjn) ∈ GF (2)n−i, where {j1, · · · , ji} ⊂ {1, · · · , n},
{ji+1, · · · , jn} ⊂ {1, · · · , n} and {j1, · · · , ji} ∩ {ji+1, · · · , jn} = ∅. Then any t-resilient function
in Theorem 2 can be represented as given below,

f(X) = f(X ′i, X
′′
n−i) =

n−1∑

i=1

{
∑

σ=(σj1 ,...σji )∈Bi

ji∏

l=j1

(xl ⊕ σl ⊕ 1) · (ϕi,[σ](X ′i)⊕ gi(X ′i))}, (32)

where ϕi,[σ](X
′
i) is an injective mapping from Bi to Ti, (the elements of Ti are defined on variable

space GF (2)n−i, i.e., X ′′n−i ∈ GF (2)n−i), gi ∈ Bi, and ||Bi|| 6= 0.

Proof. For any t-resilient function f in Theorem 2, we assume

X ′n/2−k = (xj1 , . . . , xj(n/2−k)) = X
(n)
(n/2−k+1) = (xn/2−k+1, . . . , xn) ∈ GF (2)n/2−k,

X ′n/2 = (xj1 , . . . xjn/2) = X
(n)
(n/2+1) = (xn/2+1, . . . , xn) ∈ GF (2)n/2,

and let ψi be an injective mapping from Bi to Ti (see Theorem 2). Then, f defined by means
of Theorem 2 always has the algebraic representation as in (32).

From Theorem 3, we know that the problem of evaluating the resistance of functions in
Theorem 2 against (fast) algebraic attacks is equivalent to the estimation related to the form in
(32).

Note that the existence of low degree multipliers (or annihilators) of the Maiorana-McFarland
class was originally considered by Pasalic in [24]. Nevertheless, a general technique to estimate
the resistance of a random Boolean function (having relatively large input of input variables
n, say n ≥ 30) against (fast) algebraic attacks has been proposed recently in [36]. Based on
the evaluation methods in [36], the algebraic properties of our functions are estimated and the
results are given in Table 9 and Table 10, for 12 ≤ n ≤ 36.

In Table 9, we compare the theoretical upper bounds on AI of our 1-resilient functions to
those in [40, 41] and deduce that the upper bound is always larger for our class (the difference
between the actual values has also been confirmed by simulations). In Table 10, based on the
possibility of computing both the upper and lower bound on the degree relation deg(g) + deg(h)
using the method in [36], it is shown that our functions have a very good resistance against
FAA. In particular, their resistance to FAA is much better than the resistance of functions in
[40, 41]. For instance, if n = 36 then the resilient functions obtained by Construction A (or
Construction B) in [40, 41] only satisfy the relation r + s+ e = 17 < 36, whereas our functions
achieve 21 ≤ r + s+ e ≤ 33.
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Table 9: Theoretical upper bound on AI of 1-resilient functions, (12 ≤ n ≤ 36).

n n/2 deg(g) = r + d Resource

12 6 r + d = 5 [40, 41]
r + d = 6 new

14 7 r + d = 5 [40, 41]
r + d = 7 new

16 8 r + d = 6 [40, 41]
r + d = 7 new

18 9 r + d = 7 [40, 41]
r + d = 8 new

20 10 r + d = 7 [40, 41]
r + d = 9 new

22 11 r + d = 8 [40, 41]
r + d = 10 new

24 12 r + d = 9 [40, 41]
r + d = 10 new

26 13 r + d = 9 [40, 41]
r + d = 11 new

28 14 r + d = 10 [40, 41]
r + d = 12 new

30 15 r + d = 11 [40, 41]
r + d = 13 new

32 16 r + d = 11 [40, 41]
r + d = 14 new

34 17 r + d = 12 [40, 41]
r + d = 15 new

36 18 r + d = 13 [40, 41]
r + d = 16 new

Appendix

The truth table of an (n = 12, t = 1,deg(f) = 10, Nf = 1988) function (whose AI = 6 and
the resistance to FAA (e+ d ≥ 11) is given in the hexadecimal format below using the conven-
tion that the most significant bit is the leftmost bit, e.g. (0001) = 1.

83ce 72cb 00cc 75e0 9f11 6883 93f8 422f b691 a895 bd5b db89 4ad2 85fc 4799 6e0f 906d a7e3
ac40 d6f6 bef9 70b6 1006 bcea 2420 7145 6ee5 c2cf 1779 a0a6 9454 fde8 d846 3f94 de6a 4e81
4770 d135 fda8 3ba8 3ac5 63f5 fe33 b9be 7fd9 cb51 44a6 ad9d 5e7e 03ad ef82 7116 d3e9 4847
a4cf 84e4 edc3 688e 5180 c3a3 7d57 9009 61f4 251d 8e95 265e 8c7a cb88 7b34 26f2 bb15 1073
abee 00f4 7712 8a41 51ec f7f3 5203 e12e f8f1 32c7 29ad e529 6a24 12c6 0e76 a203 6947 f496 ac50
3679 db3e e1d2 c567 914a 6b42 17c7 3f4a 7751 a2e6 fc14 3a92 2940 a295 228f 6ec9 1fcd cf7c
0972 19ca 4ad5 dd0e 27f4 03fc 8766 71d4 52b9 8fd1 639a 1edd 5702 074d 4512 2636 5ef1 94c9
8acf dd11 889e 5644 b613 0903 a867 fb83 021e d4f1 7773 e047 873d 3da8 7b54 b18f 6690 2753
39e7 6ccc f5da 6d54 30f4 268b e3b9 8f4f 8bcc 475a e6d7 c552 27dc ecdd 1ee7 a6d3 e434 b11b
a5be 6c11 85e4 582c 4b3c 94ab 5a18 3415 638a 8e9e 3966 2058 e135 107b d0c1 4a39 2831 4d6a
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Table 10: Upper and lower bound related to FAA for 1-resilient functions with deg(f) ≥ n− 2.

n deg(g′) + deg(h) = r + s + e Resource

12 r + s + e = 9 [40, 41]
10 ≤ r + s + e ≤ 11 new

14 r + s + e = 9 [40, 41]
11 ≤ r + s + e ≤ 13 new

16 r + s + e = 10 [40, 41]
12 ≤ r + s + e ≤ 14 new

18 r + s + e = 11 [40, 41]
13 ≤ r + s + e ≤ 17 new

20 r + s + e = 11 [40, 41]
13 ≤ r + s + e ≤ 19 new

22 r + s + e = 12 [40, 41]
14 ≤ r + s + e ≤ 21 new

24 r + s + e = 13 [40, 41]
15 ≤ r + s + e ≤ 22 new

26 r + s + e = 13 [40, 41]
16 ≤ r + s + e ≤ 25 new

28 r + s + e = 14 [40, 41]
17 ≤ r + s + e ≤ 26 new

30 r + s + e = 15 [40, 41]
18 ≤ r + s + e ≤ 28 new

32 r + s + e = 15 [40, 41]
19 ≤ r + s + e ≤ 29 new

34 r + s + e = 16 [40, 41]
20 ≤ r + s + e ≤ 31 new

36 r + s + e = 17 [40, 41]
21 ≤ r + s + e ≤ 33 new

229e 8b35 d2f7 0c06 388d dcbe bd4a 7d80 5da9 01ba b2ec 22f9 f268 957a 40d7 3ada d423 1f77
ce0e 12e9 3084 681a 829b 921a fcac e3a8 bb81 2989 5f1f ba0f b237 2c3a 28de 7b40 e1da 95d1
5313 4560 5ba1 abe1 37ea dd05 eca1 86ea 2006 b7dd 9fb8 affd 8ef2 d4bf e762 ed4a 5b7e 62f1
c12c 1d0d f1ac 7c08 9bb1 8d05 e358 913f fa0d 6bcd 6b83 a473 8d93 4b9b 830d e072 ed6f d205
6468 0397 4e6c
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