84 research outputs found

    LunaNet: a Flexible and Extensible Lunar Exploration Communications and Navigation Infrastructure

    Get PDF
    NASA has set the ambitious goal of establishing a sustainable human presence on the Moon. Diverse commercial and international partners are engaged in this effort to catalyze scientific discovery, lunar resource utilization and economic development on both the Earth and at the Moon. Lunar development will serve as a critical proving ground for deeper exploration into the solar system. Space communications and navigation infrastructure will play an integral part in realizing this goal. This paper provides a high-level description of an extensible and scalable lunar communications and navigation architecture, known as LunaNet. LunaNet is a services network to enable lunar operations. Three LunaNet service types are defined: networking services, position, navigation and timing services, and science utilization services. The LunaNet architecture encompasses a wide variety of topology implementations, including surface and orbiting provider nodes. In this paper several systems engineering considerations within the service architecture are highlighted. Additionally, several alternative LunaNet instantiations are presented. Extensibility of the LunaNet architecture to the solar system internet is discussed

    LunaNet: A Flexible and Extensible Lunar Exploration Communications and Navigation Infrastructure and the Inclusion of SmallSat Platforms

    Get PDF
    As NASA establishes a sustained presence on the Moon and ventures further into the solar system, the need for a robust interplanetary communications and navigation architecture increases. LunaNet, an extensible and scalable lunar communications and navigation architecture, is being developed to answer this growing need. The LunaNet architecture will provide users with three services: networking services, positioning, navigation and timing services, and science utilization services. With LunaNet in place, users will experience an operational environment similar to that experienced by users on Earth. The agency’s plan for solar system exploration necessitates both government and commercial participation, and the LunaNet architecture supports this goal as well, encouraging global participation from commercial and international partners, other government agencies, academia, and federally funded research development centers. This paper provides a high-level description of the LunaNet architecture, discusses how SmallSat platforms and technologies may provide critical capabilities, and defines the role that SmallSats can play within the architecture

    NASA's Next Generation 100 Gbps Optical Communications Relay

    Get PDF
    NASAs Space Communications and Navigation (SCaN) program is creating an operational optical communications network to complement its current radio frequency (RF) networks. NASA is currently planning for a new optical communications relay node in geostationary (GEO) orbit to be commissioned in 2025, developed by NASAs Goddard Space Flight Center (GSFC), as evolved from Goddards Laser Communications Relay Demonstration (LCRD) GEO relay payload that will launch in 2019. The Next Generation optical relay node will serve as an initial element in a larger optical networking constellation that will consist of Government and commercial, and international relays. NASAs nodes will aggregate traffic at data rates of up to 10 Gigabits per second (Gbps) from users on the Earths surface and up through suborbital, LEO, MEO, GEO, cislunar and even out to Earth-Sun Lagrange (1.25 Mkm) distances. Users that require low-latency will be serviced with an onboard complementary Ka-band downlink service. The next generation network will deploy 100 Gbps space-to-ground links and also optical crosslinks between nodes to allow for user traffic backhaul to minimize ground station location constraints

    Distributed Spacecraft Mission (DSM) Plume Design Reference Mission (DRM) Inter-Satellite Link Modeling, Analysis, and Simulation

    Get PDF
    NASA Goddard Space Flight Center (GSFC) Radical Innovation Initiative (R12) plans to focus intently on DSM capability advancements in FY22-24. A DSM mission involves multiple spacecraft, arranged in a constellation, to achieve one or more common goals via the use of inter-satellite links (ISL) between the satellites. Recently, the GSFC Internal Research & Development (IRAD) program established Enceladus as a design reference mission (DRM) for the current DSM effort to foster the conceptual development of communication architecture, requirements, and solutions for future DSM ISL, as well as being able to push other research areas of interest. Enceladus is an icy moon of the planet Saturn. The DRM Enceladus mission concept involves a constellation of 24 small satellites, orbiting Enceladus around 100 km altitude in 3 planes, as observing nodes for science measurement. The mission science data will be sent back to Earth through a relay orbiting Saturn, using the constellation\u27s inter-satellite links. A QualNet/STK simulation model of the Relay and constellation ISL optical and RF links is developed for the design and optimization of the link and orbital parameters, as well as the inter-networking protocols. Delay Tolerant Networking (DTN) is utilized in the application layer modeling. This paper describes the plume DRM mission concept of an Enceladus constellation to relay science data to Earth and includes the proposed communication architecture and operation concepts. We present details of the QualNet/STK engineering model for this communication scenario to simulate the end-to-end data traffic through multiple layers (physical, data link, networking, transport and application). A link analysis for the constellation\u27s ISL, constellation to Relay and Direct to Earth (DTE) optical link is provided and discussed. The results of end-to-end traffic simulation for the data throughout/latency evaluation and assessment of the communication architecture are presented. The investigation of the concept of optical multiple access (OMA) for the Plume DRM is discussed. The modeling and simulation methodology developed in this paper is applicable to other DSMs in near Earth and deep space such as Earth-Moon L1/L2 and Lunar regions

    Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Get PDF
    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankind's understand of the universe and extending human presence into the solar system

    A Roadmap Toward a Unified Space Communication Architecture

    Get PDF
    In recent years, the number of space exploration missions has multiplied. Such an increase raises the question of effective communication between the multitude of human-made objects spread across our solar system. An efficient and scalable communication architecture presents multiple challenges, including the distance between planetary entities, their motion and potential obstruction, the limited available payload on satellites, and the high mission cost. This paper brings together recent relevant specifications, standards, mission demonstrations, and the most recent proposals to develop a unified architecture for deep-space internetworked communication. After characterizing the transmission medium and its unique challenges, we explore the available communication technologies and frameworks to establish a reliable communication architecture across the solar system. We then draw an evolutive roadmap for establishing a scalable communication architecture. This roadmap builds upon the mission-centric communication architectures in the upcoming years towards a fully interconnected network or InterPlanetary Internet (IPN). We finally discuss the tools available to develop such an architecture in the short, medium, and long terms. The resulting architecture cross-supports space agencies on the solar system-scale while significantly decreasing space communication costs. Through this analysis, we derive the critical research questions remaining for creating the IPN regarding the considerable challenges of space communication.Peer reviewe

    Space Mobile Network Concepts for Missions Beyond Low Earth Orbit

    Get PDF
    The Space Mobile Network (SMN) is an architectural framework that will allow for quicker, more efficient and more easily available space communications services, providing user spacecraft with an experience similar to that of terrestrial mobile network users. While previous papers have described SMN concept using examples of users in low-Earth orbit, the framework can also be applied beyond the near-Earth environment.This paper details how SMN concepts such as user-initiated services, which will enable users to request access to high-performance link resources in response to real-time science or operational events, would be applied in and beyond the near-Earth regime. Specifically, the paper explores the application of user-initiated services to direct-to-Earth (DTE), relay, and DTE/relay hybrid scenarios in near-Earth, lunar, martian and other space regimes

    Space Mobile Network Concepts for Missions Beyond Low Earth Orbit

    Get PDF
    The Space Mobile Network (SMN) is an architectural framework that will allow for quicker, more efficient and more easily available space communications services, providing user spacecraft with an experience similar to that of terrestrial mobile network users. While previous papers have described SMN concept using examples of users in low-Earth orbit, the framework can also be applied beyond the near-Earth environment. This paper details how SMN concepts such as user-initiated services, which will enable users to request access to high-performance link resources in response to real-time science or operational events, would be applied in and beyond the near-Earth regime. Specifically, the paper explores the application of user-initiated services to direct-to-Earth (DTE), relay, and DTE/relay hybrid scenarios in near-Earth, lunar, Martian and other space regimes

    Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges

    Get PDF
    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of these missions is to grow, through a series of launches, a system of systems infrastructure with the capability for safe and sustainable autonomous operations at minimum cost while maximizing the exploration capabilities and science return. An incremental implementation process will enable a buildup of the communication, navigation, networking, computing, and informatics architectures to support human exploration missions in the vicinities and on the surfaces of the Moon and Mars. These architectures will support all space and surface nodes, including other orbiters, lander vehicles, humans in spacesuits, robots, rovers, human habitats, and pressurized vehicles. This paper describes the integration of an innovative MAC and networking technology with an equally innovative position-dependent, data routing, network technology. The MAC technology provides the relay spacecraft with the capability to autonomously discover neighbor spacecraft and surface nodes, establish variable-rate links and communicate simultaneously with multiple in-space and surface clients at varying and rapidly changing distances while making optimum use of the available power. The networking technology uses attitude sensors, a time synchronization protocol and occasional orbit-corrections to maintain awareness of its instantaneous position and attitude in space as well as the orbital or surface location of its communication clients. A position-dependent data routing capability is used in the communication relay satellites to handle the movement of data among any of multiple clients (including Earth) that may be simultaneously in view; and if not in view, the relay will temporarily store the data from a client source and download it when the destination client comes into view. The integration of the MAC and data routing networking technologies would enable a relay satellite system to provide end-to-end communication services for robotic and human missions in the vicinity, or on the surface of the Moon with a minimum of Earth-based operational support
    • …
    corecore