394 research outputs found

    A compensatory model for simultaneously setting cutting scores for selection-placement-mastery decisions

    Get PDF
    A method is proposed for optimizing cutting scores for a selection-placement-mastery problem simultaneously. A simultaneous approach has two advantages over separate optimization. First, test scores used in previous decisions can be used as "prior data" in later decisions, increasing the efficiency of the decisions. Then, more realistic utility structures can be defined using final success criteria in utility functions for earlier decisions. An important distinction is made between weak and strong decision rules. Weak rules are allowed to be a function of prior test scores. Conditions for optimal rules to be monotone are presented, and it is shown that optimal weak monotone rules are compensatory by nature. Results from an empirical example of instructional decision making illustrate the differences between simultaneous and separate approaches. Subjects were 71 medical students receiving interactive video or computer-aided instruction

    Identifiable Cognitive Diagnosis with Encoder-decoder for Modelling Students' Performance

    Full text link
    Cognitive diagnosis aims to diagnose students' knowledge proficiencies based on their response scores on exam questions, which is the basis of many domains such as computerized adaptive testing. Existing cognitive diagnosis models (CDMs) follow a proficiency-response paradigm, which views diagnostic results as learnable embeddings that are the cause of students' responses and learns the diagnostic results through optimization. However, such a paradigm can easily lead to unidentifiable diagnostic results and the explainability overfitting problem, which is harmful to the quantification of students' learning performance. To address these problems, we propose a novel identifiable cognitive diagnosis framework. Specifically, we first propose a flexible diagnostic module which directly diagnose identifiable and explainable examinee traits and question features from response logs. Next, we leverage a general predictive module to reconstruct response logs from the diagnostic results to ensure the preciseness of the latter. We furthermore propose an implementation of the framework, i.e., ID-CDM, to demonstrate the availability of the former. Finally, we demonstrate the identifiability, explainability and preciseness of diagnostic results of ID-CDM through experiments on four public real-world datasets

    Development of a Computerized Adaptive Testing for Internet Addiction

    Get PDF
    Internet addiction disorder has become one of the most popular forms of addiction in psychological and behavioral areas, and measuring it is growing increasingly important in practice. This study aimed to develop a computerized adaptive testing to measure and assess internet addiction (CAT-IA) efficiently. Four standardized scales were used to build the original item bank. A total of 59 polytomously scored items were finally chosen after excluding 42 items for failing the psychometric evaluation. For the final 59-item bank of CAT-IA, two simulation studies were conducted to investigate the psychometric properties, efficiency, reliability, concurrent validity, and predictive validity of CAT-IA under different stopping rules. The results showed that (1) the final 59 items met IRT assumptions, had high discrimination, showed good item-model fit, and were without DIF; and (2) the CAT-IA not only had high measurement accuracy in psychometric properties but also sufficient efficiency, reliability, concurrent validity, and predictive validity. The impact and limitations of CAT-IA were discussed, and several suggestions for future research were provided

    Decision Making Under Uncertainty

    Get PDF

    Prognostic-based Life Extension Methodology with Application to Power Generation Systems

    Get PDF
    Practicable life extension of engineering systems would be a remarkable application of prognostics. This research proposes a framework for prognostic-base life extension. This research investigates the use of prognostic data to mobilize the potential residual life. The obstacles in performing life extension include: lack of knowledge, lack of tools, lack of data, and lack of time. This research primarily considers using the acoustic emission (AE) technology for quick-response diagnostic. To be specific, an important feature of AE data was statistically modeled to provide quick, robust and intuitive diagnostic capability. The proposed model was successful to detect the out of control situation when the data of faulty bearing was applied. This research also highlights the importance of self-healing materials. One main component of the proposed life extension framework is the trend analysis module. This module analyzes the pattern of the time-ordered degradation measures. The trend analysis is helpful not only for early fault detection but also to track the improvement in the degradation rate. This research considered trend analysis methods for the prognostic parameters, degradation waveform and multivariate data. In this respect, graphical methods was found appropriate for trend detection of signal features. Hilbert Huang Transform was applied to analyze the trends in waveforms. For multivariate data, it was realized that PCA is able to indicate the trends in the data if accompanied by proper data processing. In addition, two algorithms are introduced to address non-monotonic trends. It seems, both algorithms have the potential to treat the non-monotonicity in degradation data. Although considerable research has been devoted to developing prognostics algorithms, rather less attention has been paid to post-prognostic issues such as maintenance decision making. A multi-objective optimization model is presented for a power generation unit. This model proves the ability of prognostic models to balance between power generation and life extension. In this research, the confronting objective functions were defined as maximizing profit and maximizing service life. The decision variables include the shaft speed and duration of maintenance actions. The results of the optimization models showed clearly that maximizing the service life requires lower shaft speed and longer maintenance time

    Decision Making Under Uncertainty

    Get PDF
    • …
    corecore