
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

April 2023

Learning from Sequential User Data: Models and Sample-efficient Learning from Sequential User Data: Models and Sample-efficient

Algorithms Algorithms

University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
"Learning from Sequential User Data: Models and Sample-efficient Algorithms" (2023). Doctoral
Dissertations. 2744.
https://doi.org/10.7275/31130494 https://scholarworks.umass.edu/dissertations_2/2744

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/31130494
https://scholarworks.umass.edu/dissertations_2/2744?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2744&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

LEARNING FROM SEQUENTIAL USER DATA: MODELS
AND SAMPLE-EFFICIENT ALGORITHMS

A Dissertation Presented

by

ARITRA GHOSH

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2023

Robert and Donna Manning College of
Information and Computer Sciences

© Copyright by Aritra Ghosh 2023

All Rights Reserved

LEARNING FROM SEQUENTIAL USER DATA: MODELS
AND SAMPLE-EFFICIENT ALGORITHMS

A Dissertation Presented

by

ARITRA GHOSH

Approved as to style and content by:

Andrew Lan, Chair

Shlomo Zilberstein, Member

Beverly Woolf, Member

Stephen Sireci, Member

James Allan, Chair of the Faculty
Robert and Donna Manning College of
Information and Computer Sciences

DEDICATION

to my parents.

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor

Andrew Lan for his unflagging support and for providing exceptional guidance through-

out my journey. Andrew gave me the freedom to explore and follow my research

passion, helped me grow as an independent researcher yet he was always there when I

needed him. This thesis would not have been possible without Andrew’s pragmatic

guidance.

I would like to thank the members of my thesis committee, Shlomo Zilberstein,

Beverly Woolf, and Stephen Sireci, for their guidance, collaboration, and feedback on

the work presented in this thesis. Shlomo and Beverly were a big influence behind my

work on career path modeling during my early years of Ph.D. Stephen provided me

invaluable feedback on my work on computerized adaptive testing and setting future

directions.

I would like to thank Saayan Mitra and Viswanathan Swaminathan for hosting

me at Adobe Research during my Ph.D. and providing me with the utter flexibility

to follow my research passion. I would also like to thank P.S. Sastry for introducing

me to machine learning research and providing irreplaceable wisdom during my early

career at the Indian Institute of Science, Bangalore.

Most importantly, I want to acknowledge my parents for their never-ending support

and sacrifices, without which none of this was possible. I would be remiss in not

mentioning my parents-in-law, who boarded the flight the next day when my wife and

I were perplexed with our four days old newborn child during COVID-19. Finally, I

want to thank my wife Sutapa for always being there with me and our child Oishik

for bringing immense joy to our life.

v

ABSTRACT

LEARNING FROM SEQUENTIAL USER DATA: MODELS
AND SAMPLE-EFFICIENT ALGORITHMS

FEBRUARY 2023

ARITRA GHOSH

B.Tech., WEST BENGAL UNIVERSITY OF TECHNOLOGY

M.E., INDIAN INSTITUTE OF SCIENCE BANGALORE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew Lan

Recent advances in deep learning have made learning representation from ever-

growing datasets possible in the domain of vision, natural language processing (NLP),

and robotics, among others. However, deep networks are notoriously data-hungry;

for example, training language models with attention mechanisms sometimes requires

trillions of parameters and tokens. In contrast, we can often access a limited number

of samples in many tasks. It is crucial to learn models from these ‘limited’ datasets.

Learning with limited datasets can take several forms. In this thesis, we study how to

select data samples sequentially such that downstream task performance is maximized.

Moreover, we study how to introduce prior knowledge in the deep networks to maximize

prediction performance. We focus on four sequential tasks: computerized adaptive

testing in psychometrics, sketching in recommender systems, knowledge tracing in

computer-assisted education, and career path modeling in the labor market.

vi

In the first two tasks, we devise novel sample-efficient algorithms to query a

minimal number of sequential samples to improve future predictions. We propose a

Bilevel Optimization-Based framework for computerized adaptive testing to learn a

data-driven question selection algorithm that improves existing data selection policies.

We also tackle the sketching problem in the recommender system, with the task of

recommending the next item using a stored subset of prior data samples. In this

setting, we develop a data-driven sequential selection algorithm that tackles evolving

downstream task distribution. In the last two tasks, we devise novel neural models to

introduce prior knowledge exploiting limited data samples. For knowledge tracing, we

propose a novel neural architecture, inspired by cognitive and psychometric models,

to improve the prediction of students’ future performance and utilize the labeled data

samples efficiently. For career path modeling, we propose a novel and interpretable

monotonic nonlinear state-space model to analyze online user professional profiles and

provide actionable feedback and recommendations to users on how they can reach

their career goals.

The data-driven differentiable data selection algorithms for the first two tasks open

up future directions to query (a non-differentiable operation) a minimal number of

samples optimally to maximize prediction performance. The structures, introduced

in the neural architecture for the models in the last two tasks using prior knowledge,

open up future directions to learn deep models augmented with prior knowledge using

limited data samples.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xi

LIST OF FIGURES .xiii

CHAPTER

1. INTRODUCTION . 1

1.1 Background . 4

1.1.1 Sequential Sample Selection . 5

1.1.1.1 Related Work . 6

1.1.2 Sequence Labeling . 8

1.1.2.1 Related Work . 9

1.2 Thesis Overview . 11
1.3 Summary of Publications and Open Source Contributions 13

2. BILEVEL OPTIMIZATION-BASED COMPUTERIZED
ADAPTIVE TESTING . 16

2.1 Introduction . 16
2.2 Contributions . 18
2.3 Methodology . 19

2.3.1 The BOBCAT Framework . 19
2.3.2 Learning and Inference . 22

2.4 Experimental Results . 26

viii

2.4.1 Experimental Setup . 26
2.4.2 Results and Discussion . 29

2.5 Conclusions . 34

3. DIFFERENTIABLE POLICY FOR SKETCHING IN
RECOMMENDER SYSTEMS . 35

3.1 Introduction . 35
3.2 Contributions. 37
3.3 Methodology . 38

3.3.1 Problem Setup . 38
3.3.2 DiPS Sketching Objective . 40
3.3.3 Recommender System Model . 40
3.3.4 Sketching Policy . 41
3.3.5 Learning and Inference . 43

3.3.5.1 Sketching Policy Optimization . 44

3.4 Experimental Results . 49

3.4.1 Experimental Setup . 49
3.4.2 Results and Discussion . 51

3.5 Conclusions . 56

4. CONTEXT-AWARE ATTENTIVE KNOWLEDGE TRACING57

4.1 Introduction . 57
4.2 Related Work . 58
4.3 Contributions . 60
4.4 Methodology . 61

4.4.1 Problem Setup . 61
4.4.2 The AKT Method . 62
4.4.3 Context-aware Representations . 63
4.4.4 The Monotonic Attention Mechanism . 64
4.4.5 Rasch Model-Based Embeddings . 68

4.5 Experimental Results . 70

4.5.1 Experimental Setup . 70
4.5.2 Results and Discussion . 73
4.5.3 Visualizing Learned AKT Parameters . 76

4.6 Conclusions . 79

ix

5. CAREER PATH MODELING AND RECOMMENDATION 82

5.1 Introduction . 82
5.2 Related Work . 84
5.3 Contributions . 84
5.4 Methodology . 86

5.4.1 Problem Setup . 86
5.4.2 The MNSS Model . 89
5.4.3 Monotonic Nonlinear State-space Model . 89
5.4.4 Approximate Inference . 90
5.4.5 Career Path Recommendation . 96

5.5 Experimental Results . 97

5.5.1 Experimental Setup . 98
5.5.2 Results and Discussion . 101
5.5.3 Career Path Recommendation . 107

5.6 Conclusions . 108

6. CONCLUSIONS . 109

6.1 Future Work . 109

6.1.1 Algorithms . 109
6.1.2 Models . 112
6.1.3 User Data . 114

BIBLIOGRAPHY . 115

x

LIST OF TABLES

Table Page

2.1 Statistics for the CAT datasets. 26

2.2 Average accuracy on all CAT datasets. 27

2.3 Question exposure and test overlap rates on Eedi-2. 31

3.1 Statistics for recommender system datasets. 48

3.2 Mean and std RMSE for all methods under the online (τ = 1) and
batch setting (τ = 4) on all explicit RS datasets. 50

3.3 Mean and std Recall@20 for all methods under the online (τ = 1) and
batch setting (τ = 4) on all implicit RS datasets. 51

3.4 Mean and std MRR@20 for all methods under the online (τ = 1) and
batch setting (τ = 4) on all implicit RS datasets. 52

4.1 Statistics of the KT datasets. 70

4.2 AUC performance of all KT methods on all datasets in predicting
future learner responses. 71

4.3 AKT outperforms its variants that do not use contextual-aware
question and response representations. 72

4.4 AKT significantly outperforms its variants that do not use monotonic
attention. 73

4.5 The Rasch model-based embeddings (sometimes significantly) improve
the performance of KT methods. 73

4.6 AKT still outperforms other KT methods on the ASSISTments2009
dataset under an alternative experimental setting for questions
tagged with multiple concepts. 76

xi

4.7 Question text and learned difficulty parameters (µq) for selected
questions on three concepts. 78

5.1 Statistics for the career path datasets. 97

5.2 Predictive performance on companies, job titles, and skills on career
path datasets and all three metrics for all methods. 98

5.3 Top skills that need to be improved to reach the career goal. 104

5.4 Optimal career path towards a user’s career goal. 105

5.5 Options each user faces and the log-likelihood of reaching their career
goals by taking each option. 105

xii

LIST OF FIGURES

Figure Page

1.1 A (highly) simplified visualization of recent paradigms of learning with
limited datasets. 2

2.1 Overview of the BOBCAT framework. 19

2.2 Average accuracy (dark lines) and standard deviation (light fill lines)
on all CAT datasets. First column compares IRT vs BiIRT models;
second column compares all BiNN models. 28

2.3 Ability estimation accuracy on Eedi-2. 32

2.4 Mutual information and test question frequency on Eedi-2 dataset. 33

3.1 Top/bottom: true/approximate gradient computation at time step t
for DiPS policy. The approximate gradient calculated using
intermediate sketches, obtained from past parameters Φ1:t−1, is
close to the true gradient when the learning rate is small. 44

3.2 On implicit RS datasets, (a) Recall@20 with a GRU4Rec RS model
using sketching policies learned by DiPS (with NCF as the base RS
model) and (b) Recall@20 with a session-based GRU4Rec model
augmented with K historical sketch items. 53

3.3 Visualization of the DiPS sketching policy (K = 4) on the Book
dataset for a selected user over 15 time steps. Cell (i, j) represents
whether item i is present in the sketch and used to successfully
recommend item j. 55

4.1 Overview of the AKT method. 63

4.2 Visualizations of (a) attention weights in the decoder of AKT for three
attention heads and (b) attention weights for three consecutive
practice questions for a learner. Concept similarity and recency are
key factor that control the attention weights. 80

xiii

4.3 Visualization of learned question embeddings with fraction of correct
responses among learners for selected concepts. 81

5.1 The structure of the MNSS model and an example user profile with T
experiences. 88

5.2 Visualization of the approximate inference method for MNSS
model. 94

5.3 Performance across quantiles of skill, job title, and company prediction
according to how often they occur. 102

5.4 Performance across user groups according to the number of career
experiences listed in their profiles. 103

5.5 Most latent skills are associated with only a few observed skills. 103

5.6 The reconstructed skill acquisition process with each career experience
for a user using MNSS. 104

xiv

CHAPTER 1

INTRODUCTION

Recent advances in deep learning have made learning representation from ever-

growing datasets possible in the domain of vision, natural language processing (NLP),

and robotics, among others. However, deep networks are notoriously data-hungry;

for example, training language models with attention mechanisms sometimes requires

trillions of parameters and tokens. In contrast, we can often access a limited number

of samples in many tasks. It is crucial to learn models from these ‘limited’ datasets.

Learning with limited datasets can take several forms. We focus on two paradigms

in this thesis: learning to select samples and introducing prior knowledge into deep

networks. We acknowledge there are many other paradigms to exploit limited datasets

that have been widely successful in various machine learning and deep learning

communities. In particular, we do not explore the directions of transfer learning

[189], few-shot learning [39, 146], weakly supervised learning [188], semi-supervised

learning [155], and self-supervised learning [93], in this thesis; however, these paradigms

are orthogonal to the data selection and prior knowledge augmentation paradigms,

and we can combine them in many practical cases. Moreover, this thesis focuses

on sequential user datasets where a significant potential is still unexplored, with

applications in education, the labor market, recommender systems, and health. We

study four tasks: computerized adaptive testing (CAT) in psychometrics, sketching

for representative dataset condensation in recommender systems, knowledge tracing

(KT) in computer-assisted education, and career path modeling in the labor market.

1

Limited
labeled

Single Task
Introducing prior knowledge

Data Augmention

Neuro-symbolic learning

Constrained
network

Regularization

Few labeled
per task

Many tasks

Few-shot learning

Limited labeled
Many unlabeled

Single Task

Noisy rules

Representation
learning

Weakly-supervised learning

Semi-supervised learning

Self-supervised learningAll
unlabeled

Single Task

Limited
budget to label

or observe
Many Tasks

Single Task Active learning

Learning
to select
samples

Informativeness measures

Reinforcement learning

Differentiable
learning

Labeled
from similar

 domain
Transfer learning

Knowledge
Tracing

(Chapter 4)

Career-path
modeling

(Chapter 5)

CAT
(Chapter 2)

Sketching
(Chapter 3)

Learning
with

Limited
Datasets

Figure 1.1. A (highly) simplified visualization of recent paradigms of learning with
limited datasets.

We look at two ways to improve sample efficiency. First, we propose novel

algorithms that can query a limited number of data samples to learn the model

optimally in a sample-efficient manner. Most prior works use informativeness-based

criteria or even random sampling to perform these data selection tasks. However,

these statics policies are neither optimal nor they can learn from datasets. Recently,

some work uses Reinforcement learning (RL) algorithms for the data selection task;

we will discuss some representative works in Section 1.1.1.1. Many RL algorithms

(e.g., actor-critic method) use zeroth order information of the reward function when

optimizing the data selection policy parameters using the score-function stochastic

gradient estimator [131, 169]. The score-function based estimators are universally

applicable in the absence of gradient information of the reward function. However, in

contrast to games or robotics, where we can only get the reward, for observable datasets

2

(such as the task of CAT or sketching), we can often obtain first-order information of

the reward function using a path-wise gradient estimator [68, 72] that has been shown

to have lower variance than zeroth order stochastic estimators [44, 102]. Using a

path-wise gradient estimator, we propose differentiable algorithms to learn sequential

sample selection policy for the first two tasks.

Second, we propose novel neural architectures to enforce prior knowledge for

learning with limited data samples for the last two tasks. Augmenting domain

knowledge (prior knowledge) is one of the key ways to reduce the sample requirements

for many machine learning algorithms, including deep networks. Notably, Bayesian

deep learning is one of the ways to introduce prior on deep network parameters [104].

We can encode domain knowledge through these priors in the Bayesian deep networks.

We will discuss some recent directions on Bayesian deep learning in Chapter 5 where

we introduce monotonic prior on the latent variables of the proposed sequential model.

We can also encode domain knowledge using constraints on the network weight or

even the attention mechanism [16, 167]. In Chapter 4, we will propose a novel way

to encode domain knowledge in the attention mechanism for the knowledge tracing

task. However, Bayesian deep learning or constrained deep network is not the only

way to introduce domain knowledge in the neural network. In the computer vision

communities, data augmentation that encodes prior about the images [141] has become

ubiquitous. We acknowledge there is a rich history of introducing logical reasoning

into graphical models in the statistical relational learning and artificial intelligence

(StarAI) literature. More recently, the field of Neuro-symbolic (NeSy) learning and

reasoning have gained a lot of attention for incorporating reasoning into the neural

network [10, 27, 30]. We review some StarAI and NeSy methods for introducing

domain knowledge in Section 1.1.1.1. While StarAI and NeSy are relevant for the last

two tasks in this thesis, where we introduce domain knowledge, we do not delve into

3

these directions. Incorporating StarAI and NeSy methods into KT and career path

model task remains an exciting avenue for future work.

In Figure 1.1, we visualize commonly used paradigms for learning with limited

datasets, high-level approaches, and the approaches used in this thesis. However, we

acknowledge there are wide variations even among a single paradigm; Figure 1.1 shows

only a simplification of the current research directions.

1.1 Background

We start with the supervised learning setup in the machine learning literature

and introduce sequential data selection and sequence labeling tasks studied in this

thesis. Let X be the feature space from which input samples x are drawn, and

let Y be the space of target labels (can be real-valued). We are typically given a

training set S = {(x1,y1), · · · , (xN ,yN)} containing N samples of input-target pairs

(x,y) ∈ (X × Y). We are also given a test set S ′ drawn from the same training

distribution, but usually unavailable during the training process. We want to learn

a function f : X → Y that maps from the input space to the target space. The loss

function ℓ : Y × Y → R+ takes the prediction f(x) and y as inputs, and outputs a

real-valued loss. The goal of supervised learning is to learn a function f that minimizes

the loss on the test set. Since the test set is unavailable during training, and the

training sets and testing sets are assumed to be drawn from the same independent

and identically (i.i.d) drawn distribution, we minimize the training loss. The so-called

empirical risk minimization optimizes the following objective to learn the optimal

function f ∈ F from the class of hypothesis function F (for simplicity, we omit the

dependence on its parameter θ):

min
f

N∑
i=1

ℓ(f(xi),yi).

4

1.1.1 Sequential Sample Selection

A common problem in machine learning is picking samples in sequence to perform

some end task. For example, with endless unlabeled samples on the web, a usual

goal is to sequentially pick a few samples for labeling such that the deep learning

model can perform sufficiently well on the unseen samples when it has learned on

those few labeled samples. Since the labeling task is costly, it is necessary to devise

an algorithm that picks samples efficiently. The data selection task need not be only

a labeling task for it to be costly. In recommender systems, educational domains, or

health applications, we can not check each item with the user. Thus, it is necessary

to select data points efficiently such that the end performance is optimized. We start

with a generic problem setup, connects with the widely used active learning setup in

the machine learning literature, and state two problems variation discussed in this

thesis.

Let t ∈ {1, · · · , T} denotes discrete time steps. Let’s denote the set of la-

beled/selected samples at time step t as St = {x(1), · · · ,x(t′)}; note that t′ need

not be equal to t. The prediction task at time step t is the loss on a test set Γt

consisting of non-overlapping input-target pairs (can be an empty set, or a singleton

set). The prediction task samples Γt can be fixed for all time steps or can vary over

time. At time step t, the algorithm has access to the set of labeled samples from time

step t− 1, St−1, and a set of current samples Ωt from which the algorithm needs to

pick single/multiple samples. In the active learning setting, the set of past labeled

samples St−1 are available in the future time steps, and the model needs to pick a new

query sample x(t) from Ωt; St is defined as St−1 ∪ x(t). We will relax this assumption

for the task of sketching in recommender systems, where the algorithm can remove

samples from the past labeled set also. The algorithm Π needs to decide the sampling

strategy to optimize the performance on future tasks. The objective is,

5

min
Π

T∑
t=1

ℓ(Γt|St)

such that St ∼ Π(Ωt,St−1).

A well-known example is active learning where the algorithm Π needs to query a

single sample to label from Ωt and is added to the labeled set St−1 to get the labeled

subset St. The prediction test samples ΓT can be only defined at the last step T where

the prediction model uses the T queried labeled samples ST to learn its parameter.

Many active learning methods use an uncertainty sampling-based approach, where the

sample with the highest prediction uncertainty from the Ωt is queried and added to

the labeled samples St−1. CAT methods adaptively select the next most informative

question/item x(t) for each student given their responses to previous questions St−1.

The prediction task Γt is fixed for all time steps. The CAT algorithm Π needs to query

question/sample sequentially from the available question bank Ωt (that the student

did not yet attempt) conditioned on already selected questions St−1 to predict the

answers on the question bank Γt. The task of sketching is to keep a small set of K

items in sketch St to optimize future predictions Γt+1:T . The prediction task Γt in the

sketching task is to predict the next item rating; thus, the prediction task is not fixed

and keeps evolving. Moreover, the items from the past sketch St−1 may not remain in

the future time steps; the algorithm Π can remove samples from past sketch St−1 and

select new samples x(t) to keep the sketch size fixed to K.

1.1.1.1 Related Work

Selecting good representative samples for training data with fixed labeling budget is

critical for the generalization performance of a machine learning algorithm. Moreover,

even with an unlimited labeling budget, selecting a subset of samples due to memory

requirements is critical for long-term performance. The former task is often called

active learning [135] while the latter task can take several forms, such as dataset

6

condensation, sketching, and coreset selection. Most of the earlier methods for

active learning use heuristics and informativeness-based measures to select samples

[74]. Uncertainty sampling is one of the most well-known methods for active learning.

Another popular heuristic is the query-by-committee algorithm, where the disagreement

between different trained models is used as the informativeness metric for selecting

the next sample [138]. The expected model change heuristic selects the next sample

with the most change in model parameters in an expected sense [5]. Other heuristics

include expected error reduction [128], expected variance reduction [20], diversity

sampling, among others [180]. Similarly, many heuristics have been proposed for

dataset condensation, coreset selection, and sketching tasks. For coreset selection, a

useful heuristic is to select samples based on k-center [37]. Some prior work on dataset

condensation uses informativeness based metrics, such compactness [121], diversity

[1, 132], forgetfulness [151] to select the next sample. For the sketching task where we

need to pick samples in a streaming fashion, uniform sampling or reservoir sampling

is often used [159].

One of the recent ways of learning to select samples for active learning is RL. In

[76], the authors use RL for active learning such that the policy can be transferred to

a new domain whereas in [36], the authors use RL for active learning such that the

policy can be transferred into a new language. In [12, 106], the authors use RL-based

active learning for the semantic segmentation and the object retrieval task. Some work

also looked at active learning in a meta-learning and few-shot learning framework

[6, 22, 108, 171]. A few works also looked at the geometry of the data points [133],

submodularity property [168], and proxy model for data selection task in the active

learning setting [21]. However, RL methods are empirically slow to converge when the

number of actions increases [43]. Thus, some recent work on dataset condensation

looked at differentiable algorithms without resorting to RL. In [3], the authors use

gradient-based sample selection to best approximate the task constraint, while in

7

[187], the authors use gradient matching for dataset condensation. We take the path

of a differentiable algorithm for CAT and sketching in Chapter 2 and Chapter 3,

respectively, where we propose a bilevel optimization problem to optimize the end

task. The conceptual model of bilevel optimization has been widely successful in

hyperparameter optimization [42], few shot meta-learning [39], neural architecture

search [92], to data valuation and learning with noisy labels [142, 182]. Our work on

CAT and sketching is closely related to data valuation that can be posed as a bilevel

optimization problem; in [182], the authors used RL algorithms. Another closely related

application is to find coresets that also require passing gradients through discrete

actions [11]. However, unlike, [11, 142, 182], our work requires bilevel optimization

consisting of both continuous parameters (response model and recommender system

model) and discrete actions (selection algorithm). Compared to the RL algorithms

[182], our differentiable algorithms have lower empirical time complexity.

1.1.2 Sequence Labeling

Sequence labelling is a specific form of supervised learning where we want to map

a sequence of inputs xi = (xi,1, · · · ,xi,∗) to a sequence of targets yi = (yi,1, · · · ,yi,∗)

of arbitrary length. The training set S consists of N such sequence of input-target

pairs {(x1,y1), · · · , (xN ,yN)}. The input space X ⊆ R∗×D is the set of all sequences

of arbitrary length. For a sequence classification task, we may have a set of C class

labels; thus, the target space Y ⊆ {1, · · · , C}∗. The assumption is that the sequence of

input-target pairs follows the same distribution as S ×Y , while individual input-target

pairs (xi,t,yi,t) at each time indices do not necessarily come from the same distribution.

The loss function for a single input target pair (xi,yi) is denoted as ℓ(f(xi),yi) which,

for many commonly studied problems, decomposes as,
∑

t ℓ(f(xi,t),yi,t). We want to

learn a function f : X × Y that minimizes the loss on the test set.

8

We can assume there exists a latent state hi,t at each time step such that yi,t is

drawn from an i.i.d distribution conditioned on the input xi,t and the latent state hi,t.

Thus, the sequence labeling task simplifies into learning a function that maps input at

each time indices to the label space conditioned on the latent state. The latent state

hi,t can be either a stochastic function or a deterministic function of the past input.

The former results in a state-space model, while the latter takes the form of recurrent

models, where the latent state is also known as the hidden state. Recurrent neural

networks suffer from vanishing/exploding gradient problems and can not effectively

use input from the long past. Long-term Short term Memory, Gated Recurrent Units,

and their variants partially resolve these problems. However, in recent times, attention

mechanisms have been successful in tackling long-range dependency for computing the

hidden state. The last two tasks in our thesis can be formulated as sequence labeling

problems. The KT task is to predict future learner performance (their responses to

assessment questions), given their past performance. The career path modeling task is

to develop a model for user career paths that can not only predict the career path of

each user but also provide actionable feedback and career recommendations to users

to help them make important career decisions.

1.1.2.1 Related Work

An implicit requirement for the success of deep learning is to have a large number

of samples. Augmenting domain knowledge (prior knowledge) is one of the key ways to

reduce the sample requirements for many machine learning algorithms, including deep

networks. The domain knowledge can take the form of logical constraints; however,

one of the challenges of incorporating logic into deep networks is that logic is not

differentiable. Few of the works look at frameworks for learning probabilistic first-order

logic rules in a differentiable manner [179], differentiable proving [126], or inductive

logic programming [35, 97]. Few of the works propose a system to train and query

9

neural networks with logical constraints [40], to introduce declarative knowledge into

the deep networks [87, 129], or to combine neural networks with logic programming

for solving multi-hop reasoning tasks [166]. Logic Tensor Network, a framework for

integrating learning-based reasoning, can use first-order logic with neural networks

[33, 134]. Lifted Relational Network is another effective way to introduce first-order

logic rules into constructing neural networks [147]. Few of the works also look at

the reasoning ability of statistical relational learning combined with deep networks

[32, 98]. Propositionalization [81] is another way to fuse new features from logic rules

into the input of the neural network. Semantic loss function [176] and Neuro-symbolic

Entropy regularization [161] are other ways to bridge between neural network and

logical constraints.

Another line of work introduces constraints on the attention mechanism, introduces

an additional constrained module, or introduces constraints on the model parameters to

guide deep networks with domain knowledge. Structured attention network augments

conditional random field with attention mechanism for the task of subsequence selection

[71]. The memory network augments the neural network with an external memory

module to reduce forgetting behavior [149]. One of the most common prior constraints

is the monotonicity constraint. There has been some research on how to introduce

monotonic constraints on neural weights, activation functions, and the output score

of the neural network. One of the earlier works on monotonic neural networks is the

Min-Max network [143] that allows monotonic constraint on the neural network output

without losing the universal approximation guarantee. Recently, the Min-max network

has been extended to handle partially monotonic networks [26]. Some work augments

monotonic constraints on the neural network output score to allow invertible transforms

[167]. Some work extends the monotonic property with respect to user-specified input

variables [183]. However, many of these methods provide monotonic property at the

expense of reduced hypothesis class. Counterexample-guided monotonicity enforced

10

training is an alternative approach based on automated theorem prover techniques

[145]. We take the path of monotonic constraints for KT and career path modeling in

Chapter 4 and Chapter 5, where we introduce the monotonic attention mechanism

and monotonic latent knowledge state space model, respectively.

1.2 Thesis Overview

Here we outline the remainder of the thesis proposal. In Chapter 2, we consider

the problem of CAT. CAT methods adaptively select the next most informative

question for each student given their past responses. Existing CAT methods use

item response theory models and static question selection algorithms; static selection

algorithms cannot improve by learning from large-scale student response data. We

propose BOBCAT, a Bilevel Optimization-Based framework for CAT to directly learn

a data-driven question selection algorithm from training data. Through extensive

experiments on five real-world student response datasets, we show that BOBCAT

outperforms existing CAT methods at reducing test length.

In Chapter 3, we consider the problem of sketching in recommender systems.

Storing a small sketch of past items can improve sequential recommendation tasks.

However, prior works all rely on static sketching policies, i.e., heuristics to select items

to keep in the sketch, which are not necessarily optimal and cannot improve over time

with more training data. We propose a differentiable policy for sketching (DiPS), a

framework that learns a data-driven sketching policy in an end-to-end manner together

with the recommender system model to explicitly maximize recommendation quality

in the future. We verify the effectiveness of DiPS on real-world datasets under various

practical settings and show that it requires up to 50% fewer sketch items to reach the

same predictive quality than existing sketching policies.

In Chapter 4, we consider the problem of KT. KT refers to the problem of predicting

future learner performance given their past performance in educational applications.

11

Recent developments in KT using flexible deep neural network-based models excel

at this task. However, these models often offer limited interpretability, thus making

them insufficient for personalized learning, which requires using interpretable feedback

and actionable recommendations to help learners achieve better learning outcomes.

We propose attentive knowledge tracing (AKT), which couples flexible attention-

based neural network models with a series of novel, interpretable model components

inspired by cognitive and psychometric models. We conduct experiments on several

real-world benchmark datasets and show that AKT outperforms existing KT methods

in predicting future learner responses.

In Chapter 5, we consider the problem of career path modeling. We propose a novel

and interpretable monotonic nonlinear state-space model to analyze user professional

profiles and provide actionable feedback and recommendations to users on how they

can reach their career goals. Using a series of experiments on two large real-world

datasets, we show that our model outperforms existing methods on the tasks of

company, job title, and skill prediction. More importantly, our model is interpretable

and can be used for other important tasks, including skill gap identification and career

path planning.

12

1.3 Summary of Publications and Open Source Contributions

The code and experiments developed for this thesis proposal are free and open-

source. The content of Chapter 2, Chapter 3, Chapter 4, Chapter 5 are published

where I was the primary author.

The content of Chapter 2 appears in:

[46] Ghosh, Aritra, and Lan, Andrew. Bobcat: Bilevel optimization-
based computerized adaptive testing. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21 (8
2021), Zhi-Hua Zhou, Ed., International Joint Conferences on Artificial
Intelligence Organization, pp. 2410–2417. Main Track

Implementation is available at https://github.com/arghosh/BOBCAT.

The content of Chapter 3 appears in:

[49] Ghosh, Aritra, Mitra, Saayan, and Lan, Andrew. Dips: Differen-
tiable policy for sketching in recommender systems. In Proceedings of
the AAAI Conference on Artificial Intelligence (2022)

Implementation is available at https://github.com/arghosh/DiPS.

The content of Chapter 4 appears in:

[45] Ghosh, Aritra, Heffernan, Neil, and Lan, Andrew S. Context-
aware attentive knowledge tracing. In ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (2020), pp. 2330–
2339

Implementation is available at https://github.com/arghosh/AKT.

The content of Chapter 5 appears in:

13

https://github.com/arghosh/BOBCAT
https://github.com/arghosh/DiPS
https://github.com/arghosh/AKT

[53] Ghosh, Aritra, Woolf, Beverly, Zilberstein, Shlomo, and Lan,
Andrew. Skill-based career path modeling and recommendation. In
2020 IEEE International Conference on Big Data (Big Data) (2020),
IEEE, pp. 1156–1165

Implementation is available at https://github.com/arghosh/MNSS.

Non Thesis Research as Primary Author: I have also pursued additional

research during my PhD where I was the primary author.

[47] Ghosh, Aritra, and Lan, Andrew. Contrastive learning improves
model robustness under label noise. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops (June 2021), pp. 2703–2708

[48] Ghosh, Aritra, and Lan, Andrew. Do we really need gold
samples for sample weighting under label noise? In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision
(2021), pp. 3922–3931

[52] Ghosh, Aritra, Raspat, Jay, and Lan, Andrew. Option tracing:
Beyond correctness analysis in knowledge tracing. In International
Conference on Artificial Intelligence in Education (2021), Springer,
pp. 137–149

[50] Ghosh, Aritra, Mitra, Saayan, Sarkhel, Somdeb, and Swami-
nathan, Viswanathan. Optimal bidding strategy without exploration
in real-time bidding. In Proceedings of the 2020 SIAM International
Conference on Data Mining (2020), SIAM, pp. 298–306

[51] Ghosh, Aritra, Mitra, Saayan, Sarkhel, Somdeb, Xie, Jason,
Wu, Gang, and Swaminathan, Viswanathan. Scalable bid landscape
forecasting in real-time bidding. In Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases (2019), Springer,
pp. 451–466

Non Thesis Research as Secondary Author: I have also pursued additional

research during my PhD where I was a secondary author.

14

https://github.com/arghosh/MNSS

[38] Fernandez, Nigel, Ghosh, Aritra, Liu, Naiming, Wang, Zichao,
Choffin, Benoît, Baraniuk, Richard, and Lan, Andrew. Automated
scoring for reading comprehension via in-context bert tuning. In Interna-
tional Conference on Artificial Intelligence in Education (2022), Springer

[101] Mitra, Saayan, Ghosh, Aritra, Sarkhel, Somdeb, and Xie,
Jiatong. Utilizing machine learning to generate parametric distributions
for digital bids in a real-time digital bidding environment, July 16 2020.
US Patent App. 16/248,287

[139] Sharma, Abhishek, Ghosh, Aritra, and Fiterau, Madalina. Gen-
erative sequential stochastic model for marked point processes. In
Proceedings of ICML Time Series Workshop (2019)

15

CHAPTER 2

BILEVEL OPTIMIZATION-BASED COMPUTERIZED
ADAPTIVE TESTING

2.1 Introduction

One important feature of computerized/online learning platforms is computerized

adaptive testing (CAT), which refers to tests that can accurately measure the abil-

ity/knowledge of a student/test taker using few questions/items, by using an algorithm

to adaptively select the next question for each student given their response to previous

questions [95, 152]. An accurate and efficient estimate of a student’s knowledge levels

helps computerized learning platforms to deliver personalized learning experiences for

every learner.

A CAT system generally consists of the following components: an underlying

psychometric model that links the question’s features and the student’s features to

their response to the question, a bank of questions with features learned from prior

data, and an algorithm that selects the next question for each student from the

question bank and decides when to stop the test; see [59] for an overview. The most

commonly used response models in CAT systems are item response theory (IRT)

models, with their simplest form (1PL) given by

p(Yi,j = 1) = σ(θi − bj), (2.1)

where Yi,j is student i’s binary-valued response to question j, where 1 denotes a

correct answer, σ(·) is the sigmoid/logistic function, and θi ∈ R and bj ∈ R are

16

scalars corresponding to the student’s ability and the question’s difficulty, respectively

[94, 120]. More complex IRT models use additional question features such as the

scale and guessing parameters or use multidimensional student features, i.e., their

knowledge levels on multiple skills [122].

Most commonly used question selection algorithms in CAT systems select the most

informative question that minimizes the student feature measurement error; see [153]

for an overview. Specifically, in each step of the adaptive testing process (indexed by

t) for student i, they select the next question as

j
(t)
i = argmax

j∈Ω(t)
i
Ij(θ̂

(t−1)
i), (2.2)

where Ω
(t)
i is the set of available questions to select for this student at time step t (the

selected question at each time step is removed afterwards), θ̂(t−1)
i is the current estimate

of their ability parameter given previous responses Y
i,j

(1)
i
, . . . ,Y

i,j
(t−1)
i

, and Ij(·) is the

informativeness of question j. In the context of 1PL IRT models, most informativeness

metrics will select the question with difficulty closest to the current estimate of the

student’s ability, i.e., selecting the question that the student’s probability of answering

correctly is closest to 50%. This criterion coincides with uncertainty sampling [84] for

binary classification, a commonly used method in active learning [136] that is deployed

in real-world CAT systems [137].

Despite the effectiveness of existing CAT methods, two limitations hinder their

further improvement. First, most question selection algorithms are specifically designed

for IRT models (2.1). The highly structured nature of IRT models enables theoretical

characterization of question informativeness but limits their ability to capture complex

student-question interactions compared to more flexible, deep neural network-based

models [15, 162]. This limitation is evident on large-scale student response datasets

(often with millions of responses) that have been made available [18, 165]. Second,

most existing question selection algorithms are static since they require a predefined

17

informativeness metric (2.2); they can only use large-scale student response data to

improve the underlying IRT model (e.g., calibrating question difficulty parameters)

but not the question selection algorithm. Therefore, they will not significantly improve

over time as more students take tests. Recently, there are ideas on using reinforcement

learning to learn question selection algorithms [88, 105]; however, these methods have

not been validated on real data.

2.2 Contributions

We propose BOBCAT, a Bilevel Optimization-Based framework for Computerized

Adaptive Testing. BOBCAT is based on the key observation that the ultimate goal of

CAT is to reduce test length. Therefore, estimating student ability parameters is a

proxy of the real objective: predicting a student’s responses to all questions on a long

test that cannot be feasibly administered. We make three key contributions:

First, we recast CAT as a bilevel optimization problem [42] in the meta learning

[39] setup: in the outer-level optimization problem, we learn both the response model

parameters and a data-driven question selection algorithm by explicitly maximizing

the predictive likelihood of student responses in a held-out meta question set. In

the inner-level optimization problem, we adapt the outer-level response model to

each student by maximizing the predicted likelihood of their responses in an observed

training question set. This bilevel optimization framework directly learns an effective

and efficient question selection algorithm through the training-meta setup. Moreover,

BOBCAT is agnostic to the underlying response model, compatible with both IRT

models and deep neural network-based models; Once learned, the question selection

algorithm selects the next question from past question responses directly, without

requiring the student parameters to be repeatedly estimated in real time during the

CAT process.

18

Select question
using (5) Adapt global response model

to student seci�c model using (4)

Inner-level

Loss on meta set

Update global models
using (3)

Outer-level

Training Questions

St
ud

en
t

In
de

x

Meta Question Set

Q1 Q7 Q5 Q3

Q2Q1Q6Q9

Q9 Q2

Q9

Q3 Q8

Q5Q1

· · ·
· · ·
· · ·

Time Step (t)

(Q4)Q8Q3

Question Selection
Algorithm

(i)

Figure 2.1. Overview of the BOBCAT framework.

Second, we employ a biased approximate estimator of the gradient w.r.t. the

question selection algorithm parameters in the bilevel optimization problem. This

approximation leverages the influence of each question on the algorithm parameters

[75] to reduce the variance in the gradient estimate and leads to better question

selection algorithms than an unbiased gradient estimator.

Third, we verify the effectiveness of BOBCAT through extensive quantitative and

qualitative experiments on five large-scale, real-world student response datasets. We

observe that the learned data-driven question selection algorithms outperform existing

CAT algorithms at reducing test length, requiring 50% less questions to reach the

same predictive accuracy on meta question set in some cases; this improvement is

generally more significant on larger datasets.

2.3 Methodology

2.3.1 The BOBCAT Framework

We now detail the BOBCAT framework, visualized in Figure 2.1. Let N and

Q denote the number of students and questions in the student response dataset we

use to train BOBCAT, respectively. For a single student i, we sequentially select a

total of n (≪ |Ω(1)
i |) questions, {j(1)i , · · · , j(n)i }, observe their responses, and predict

their response on a held-out set of meta questions, Γi; Ω
(1)
i denotes the initial set

19

of available questions and Ω
(1)
i ∩ Γi = ∅. The training and meta question sets are

randomly selected and not the same for each student in the dataset. We solve the

following bilevel optimization problem [42, 119]:

minimize
γ,ϕ

1

N

N∑
i=1

∑
j∈Γi

ℓ
(
Yi,j, g(j; θ

∗
i)
)
:=

1

N

N∑
i=1

L(θ∗i ,Γi) (2.3)

s.t. θ∗i = argmin
θi

n∑
t=1

ℓ
(
Y

i,j
(t)
i
, g(j

(t)
i ; θi)

)
+R(γ, θi) := L′(θi) (2.4)

where j
(t)
i ∼ Π(Y

i,j
(1)
i
, . . . , Y

i,j
(t−1)
i

;ϕ) ∈ Ω
(t)
i . (2.5)

Here, γ and ϕ are the global response model and question selection algorithm parame-

ters, respectively. g(·) is the response model, which takes as input the index of the

question of interest, j, and uses the local parameter specific to student i, θ∗i , to output

the prediction of the student’s likelihood of responding to the question correctly. Π(·)

is the question selection algorithm (red box in Figure 2.1), which takes as input the

student’s responses to previously selected questions and outputs the index of the next

selected question.

The outer-level optimization problem (blue box in Figure 2.1) minimizes the binary

cross-entropy loss, ℓ(·), on the meta question sets across all students to learn both

the global response model and the question selection algorithm; L(·) corresponds to

the sum of this loss over questions each student responded to in the meta question

set. The inner-level optimization problem (green box in Figure 2.1) minimizes L′(·),

the cross-entropy loss on a small number of questions selected for each student on

the training question set to adapt the global response model to each local student,

resulting in a student-specific parameter θ∗i ; R(γ, θi) is a regularization term that

penalizes large deviations of the local parameters from their global values. Note

that θ∗i is a function of the global parameters γ and ϕ, reflected through both the

20

regularization term in (2.4) and the question selection algorithm through questions it

selects for this student in (2.5).

Response model. The response model g(·) can be taken as either IRT models or

neural network-based models. In the case of IRT models, the global parameters γ

corresponds to the combination of the question difficulties and the student ability prior.

We adapt these parameters to each local student through their responses to selected

questions in the inner-level optimization problem. In our experiments, we only use the

global student ability as the prior mean of each local student’s ability estimate and

keep the question difficulties fixed in the inner-level optimization problem, following

the typical setup in real-world CAT systems. In the case of neural network-based

models, the parameters are usually not associated with any specific meaning; following

standard practices in meta-learning [82], we fix part of the network (e.g., all weights

and biases, which one can regard as a nonlinear version of question difficulties) and

optimize the rest of the network (e.g., the input vector, which one can regard as

student abilities) in the inner-level optimization problem.

Question selection algorithm. The question selection algorithm Π(·) can be either

deterministic or probabilistic, i.e., it either outputs a single selected question or a

probability distribution over available questions. We define the input state vector

to the question selection algorithm at step t as x
(t)
i ∈ {−1, 0, 1}Q, where an entry

of −1 denotes an incorrect response to a past selected question, 1 denotes a correct

response, while 0 denotes questions that have not been selected. We do not include

the time step at which a question is selected in the state vector since in CAT settings,

the student’s true ability is assumed to be static during the testing process while an

estimate is being updated. Although any differentiable model architecture can be

used for the question selection algorithm, we use the multi-layer perceptron model

21

that is invariant to question ordering. For probabilistic question selection algorithms,

we select a question by sampling from the output distribution j
(t)
i ∼ Π(x

(t)
i ,Ω

(t)
i ;ϕ).

2.3.2 Learning and Inference

We use gradient descent (GD) to solve the inner-level optimization problem for the

local response model parameters θ∗i , following model-agnostic meta learning [39]. In

particular, we let the local student-specific parameter deviate from the global response

model parameters by taking K GD steps from γ, where each step is given as

θi ← θi − α∇θ

n∑
t=1

ℓ
(
Y

i,j
(t)
i
, g(j

(t)
i ; θ)

)∣∣∣
θi
, (2.6)

where α is the learning rate. We do not explicitly use regularization for GD steps since

early stopping (with only a few GD steps) is equivalent to a form of regularization

[119]. Computing the gradient w.r.t. the global parameters γ requires us to compute

the gradient w.r.t. the gradient in the inner-level optimization problem in (2.6) (also

referred to as the meta-gradient), which can be computed using automatic differen-

tiation [111]. Computing the exact meta-gradient requires second-order derivatives;

however, we found that first-order approximation works well in practice and leads to

low computational complexity. Similarly, to learn the selection algorithm parameters

ϕ, we need to compute the gradient of the outer-level objective in (2.3) w.r.t. ϕ

through the student-specific parameters θ∗i (γ, ϕ), i.e., the solution to the inner-level

optimization problem. The gradient for a single student i (the full gradient sums

across all students) is given by

∇ϕL
(
θ∗i
(
γ, ϕ

)
,Γi

)
= ∇ϕEj

(1:n)
i ∼Π(·;ϕ)

[
L
(
θ∗i
(
γ, {j(1:n)i }

)
,Γi

)]
, (2.7)

where we replace the dependence of θ∗i on the parameters of the question selection

algorithm, ϕ, with the indices of the selected questions, j
(1:n)
i , which we need to

22

backpropagate through. The discrete nature of these variables makes them non-

differentiable so that we cannot compute the exact gradient. Next, we will detail two

ways to estimate this gradient.

Unbiased gradient estimate. We can use the score function-based identity

(∂ log f(X;ϕ)
∂ϕ

= ∂f(X;ϕ)/∂ϕ
f(X;ϕ)

for any probability distribution f(X;ϕ)) to estimate the

unbiased gradient in (2.7) [169] as

∇ϕEj
(1:n)
i ∼Π(·;ϕ)

[
L
(
θ∗i
(
γ, {j(1:n)i }

)
,Γi

)]
(2.8)

=E
j
(1:n)
i ∼Π(·;ϕ)

[(
L(θ∗i ,Γi)− bi

)
∇ϕ log

n∏
t=1

Π(j
(t)
i |x(t)

i ;ϕ)
]

=E
j
(1:n)
i ∼Π(·;ϕ)

[(
L(θ∗i ,Γi)− bi

) n∑
t=1

∇ϕ log Π(j
(t)
i |x(t)

i ;ϕ)
]
,

where bi is a control variable to the reduce the variance of the gradient estimate. This

unbiased gradient resembles reinforcement learning-type algorithms for CAT, an idea

discussed in [105]. We use proximal policy optimization for its training stability with

an actor network and a critic network [131].

We observe that this unbiased gradient estimate updates the question selection algo-

rithm parameters through the selected questions only, without including observations

on the available but not selected questions, resulting in slow empirical convergence in

practice. However, incorporating information on unselected questions into the gradient

computation may lead to lower variance in the gradient and stabilize the training

process. Next, we detail a biased approximation to the gradient using all the available

training questions.

Approximate gradient estimate. We can rewrite the gradient in (2.7) as

∇ϕL
(
θ∗i
(
γ, ϕ

)
,Γi

)
= ∇θ∗i

L
(
θ∗i ,Γi

)
∇ϕθ

∗
i

(
γ, ϕ

)
. (2.9)

23

The gradient w.r.t. θ∗i can be computed exactly; next, we discuss the computation of

∇ϕθ
∗
i

(
γ, ϕ

)
in detail for a single time step t. We can rewrite the inner-level optimization

in (2.4) by splitting the current question index j
(t)
i from previously selected question

indices j
(1)
i , · · · , j(t−1)

i as

θ∗i = argmin
θi

t−1∑
τ=1

ℓ
(
Y

i,j
(τ)
i
, g(j

(τ)
i ; θi)

)
+R(γ, θi)

+
∑
j∈Ω(t)

i

wj(ϕ)ℓ
(
Yi,j, g(j; θi)

)
, (2.10)

where wj(ϕ) = 1 if j = j
(t)
i and wj(ϕ) = 0 for all other available questions. In (2.10),

we can compute the derivative dθ∗i
dwj(ϕ)

for all available question indices in Ω
(t)
i regardless

of whether they are selected at time step t, using the implicit function theorem [23] as

dθ∗i
dwj(ϕ)

= −
(
∇2

θi
L′

i

)−1

∇θiℓ
(
Yi,j, g(j; θi)

)∣∣∣
θ∗i

.

This gradient can be computed without explicitly computing the inverse Hessian

matrix using automatic differentiation in a way similar to that for the global response

model parameters γ. However, we still need to compute ∂wj(ϕ)

∂Π(j|x(t)
i ;ϕ)

, which is not

differentiable; since wj(ϕ) = Π(j|x(t)
i ;ϕ) holds when the selection algorithm network

puts all the probability mass on a single question, we can use the approximation

wj(ϕ) ≈ Π(j|x(t)
i ;ϕ). From (2.9) and (2.10), it turns out that under this approximation,

the full gradient with respect to a single question, ∂L(θ∗i ,Γi)

∂Π(j|x(t)
i ;ϕ)

, is the widely used influence

function score [75]:

−∇θiL(θi,Γi)
(
∇2

θi
L′

i

)−1

∇θiℓ
(
Yi,j, g(j; θi)

)∣∣∣
θ∗i

:= Ii(j), (2.11)

where Ii(j), the influence function score of question j, computes the change in

the loss on the meta question set under small perturbations in the weight of this

24

Algorithm 1 BOBCAT training process
1: Initialize global parameters γ, ϕ, learning rates η1, η2, α, and number of GD steps

at the inner-level, K.
2: while not converged do
3: Randomly sample a mini-batch of students B with training and meta question

sets {Ω(1)
i ,Γi}i∈B.

4: for t ∈ 1 . . . n do
5: Encode the student’s current state x

(t)
i based on their responses to previously

selected questions.
6: Select question j

(t)
i ∼ Π(x

(t)
i ;ϕ) for each student.

7: Optimize θ∗i in Eq. 2.6 using learning rate α and K GD steps on observed
responses {Y

i,j
(1:t)
i
}.

8: Estimate the unbiased (or the approximate) gradient∇ϕL(θ∗i ,Γi) using Eq. 2.8
(or Eq. 2.11).

9: Update ϕ: ϕ← ϕ− η2
|B|

∑
i∈B∇ϕL(θ∗i ,Γi).

10: end for
11: Update γ: γ ← γ − η1

|B|
∑

i∈B∇γL
(
θ∗i (γ, ϕ),Γi

)
.

12: end while

question, wj(ϕ), in (2.10). Intuitively, we would want to select available training

questions with gradients that are similar to the gradient on the meta question set,

i.e., those with the most information on meta questions; the approximation enables

us to learn such a question selection algorithm by backpropagating the influence

score as gradients through all available questions in the training question set. In

contrast, for the unbiased gradient in (2.8), ∂L(θ∗i ,Γi)

∂Π(j|x(t)
i ;ϕ)

equals zero for all unselected

questions and equals −(L(θ∗i ,Γi)− bi) log Π(j
(t)
i |x(t)

i ;ϕ) for the selected question j
(t)
i .

This biased approximation (often known as the straight-through estimator) has been

successfully applied in previous research for neural network quantization and leads to

lower empirical variance [9]. Algorithm 1 summarizes BOBCAT’s training process.

Computational complexity. At training time, we need to solve the full BOBCAT

bilevel optimization problem, which is computationally intensive on large datasets.

However, at test time, when we need to select the next question for each student,

we only need to use their past responses as input to the learned question selection

algorithm Π(·;ϕ) to get the selected question as output; this operation is more

25

Dataset EdNet Junyi Eedi-1 Eedi-2 ASSISTments
Students 312K 52K 119K 5K 2.3K
Questions 13K 25.8K 27.6K 1K 26.7K
Interactions 76M 13M 15M 1.4M 325K

Table 2.1. Statistics for the CAT datasets.

computationally efficient than existing CAT methods that require updates to the

student’s ability estimate after every question.

2.4 Experimental Results

2.4.1 Experimental Setup

We now detail both quantitative and qualitative experiments we conducted on five

real-world student response datasets to validate BOBCAT’s effectiveness.

Datasets, training, testing and evaluation metric. We use five publicly available

benchmark datasets: EdNet1, Junyi2, Eedi-1, Eedi-23, and ASSISTments4. In Table 2.1,

we list the number of students, the number of questions, and the number of interactions.

We perform 5-fold cross validation for all datasets; for each fold, we use 60%-20%-20%

students for training, validation, and testing, respectively. For each fold, we use

the validation students to perform early stopping and tune the parameters for every

method. For BOBCAT, we partition the questions responded to by each student into

the training (Ω(1)
i , 80%) and meta (Γi, 20%) question sets. To prevent overfitting, we

randomly generate these partitions in each training epoch. We use accuracy as the

metric to evaluate the performance of all methods on predicting binary-valued student

1https://github.com/riiid/ednet

2https://www.kaggle.com/junyiacademy/learning-activity-public-dataset-by-junyi-academy

3https://eedi.com/projects/neurips-education-challenge

4https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data

26

https://github.com/riiid/ednet
https://www.kaggle.com/junyiacademy/learning-activity-public-dataset-by-junyi-academy
https://eedi.com/projects/neurips-education-challenge
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data

Dataset n IRT-Active BiIRT-Active BiIRT-Unbiased BiIRT-Approx BiNN-Approx

EdNet

1 70.08 70.92 71.12 71.22 71.22
3 70.63 71.16 71.3 71.72 71.82
5 71.03 71.37 71.45 71.95 72.17
10 71.62 71.75 71.79 72.33 72.55

Junyi

1 74.52 74.93 74.97 75.11 75.1
3 75.19 75.48 75.53 75.76 75.83
5 75.64 75.79 75.75 76.11 76.19
10 76.27 76.28 76.19 76.49 76.62

Eedi-1

1 66.92 68.22 68.61 68.82 68.78
3 68.79 69.45 69.81 70.3 70.45
5 70.15 70.28 70.47 70.93 71.37
10 71.72 71.45 71.57 72.0 72.33

Eedi-2

1 63.75 64.83 65.22 65.3 65.65
3 65.25 66.42 67.09 67.23 67.79
5 66.41 67.35 67.91 68.23 68.82
10 68.04 68.99 68.84 69.47 70.04

ASSISTments

1 66.19 68.69 69.03 69.17 68.0
3 68.75 69.54 69.78 70.21 68.73
5 69.87 69.79 70.3 70.41 69.03
10 71.04 70.66 71.17 71.14 69.75

Table 2.2. Average accuracy on all CAT datasets.

responses on the meta set Γi. We implement all methods in PyTorch and run our

experiments in a NVIDIA TitanX/1080Ti GPU.

Methods and baselines. For existing CAT methods, we use IRT-Active, the

uncertainty sampling-based [84] active learning question selection algorithm, which

selects the next question with difficulty closest to a student’s current ability estimate,

as a baseline [137]. This method coincides with the question information-based CAT

methods under the 1PL IRT model. We also use an additional baseline that selects the

next question randomly, which we dub IRT-Random. For BOBCAT, we consider the

cases of using IRT models (which we dub as BiIRT) and neural networks (which we

dub as BiNN) as the response model. For both BiIRT and BiNN, we use four question

selection algorithms: in addition to the -Active and -Random algorithms above, we

27

0.700

0.705

0.710

0.715

0.720

0.725

Ac
cu
ra
cy

EdNet
IRT-Random
IRT-Active
BiIRT-Random
BiIRT-Active

EdNet

BiNN-Random
BiNN-Active
BiNN-Unbiased
BiNN-Approx

0.745

0.750

0.755

0.760

0.765
Ac

cu
ra
cy

Junyi Junyi

0.68

0.70

0.72

Ac
cu
ra
cy

Eedi-1 Eedi-1

0.64

0.66

0.68

0.70

Ac
cu
ra
cy

Eedi-2 Eedi-2

1 3 5 10
Number of Questions (n)

0.66

0.68

0.70

Ac
cu

ra
cy

ASSISTments

1 3 5 10
Number of Questions (n)

ASSISTments

Figure 2.2. Average accuracy (dark lines) and standard deviation (light fill lines)
on all CAT datasets. First column compares IRT vs BiIRT models; second column
compares all BiNN models.

also use learned algorithms with the -Unbiased gradient (2.8) and the approximate

(-Approx) gradient (2.11) on the question selection algorithm parameters ϕ.

28

Networks and hyper-parameters. We train IRT models using logistic regression

with l2-norm regularization. For IRT-Active, we compute the student’s current ability

estimate with l2-norm regularization to penalize deviation from the mean student

ability parameter. For BiNN, we use a two-layer, fully-connected network (with

256 hidden nodes, ReLU nonlinearity, 20% dropout rate, and a final sigmoid output

layer) [55] as the response model, with a student-specific, 256-dimensional ability

vector as input. We use another fully-connected network (with two hidden layers, 256

hidden nodes, Tanh nonlinearity, and a final softmax output layer) [55] as the question

selection algorithm. For BiNN/IRT-Unbiased, we use another fully-connected critic

network (two hidden layers, 256 hidden nodes, Tanh nonlinearity) in addition to the

question selection actor network. For BiIRT and BiNN, we learn the global response

model parameters γ and question selection algorithm parameters ϕ using the Adam

optimizer [73] and learn the response parameters adapted to each student (in the

inner-level optimization problem) using the SGD optimizer [55]. For all methods, we

select n ∈ {1, 3, 5, 10} questions for each student.

2.4.2 Results and Discussion

In Table 2.2, we list the mean accuracy numbers across all folds for selected

BOBCAT variants and IRT-Active on all datasets. Using a neural network-based

response model, BiNN-Approx outperforms other methods in most cases. Using an IRT

response model, BiIRT-Approx performs similarly to BiNN-Approx and outperforms

other methods. All BOBCAT variants significantly outperform IRT-Active, which uses

a static question selection algorithm. On the ASSISTments dataset, the smallest of

the five, BiIRT-Approx outperforms BiNN-Approx, which overfits. These results show

that i) BOBCAT improves existing CAT methods by explicitly learning a question

selection algorithm from data, where the improvement is more obvious on larger

datasets, and ii) since BOBCAT is agnostic to the underlying response model, one can

29

freely choose either IRT models when training data is limited or neural network-based

models when there is plenty of training data.

In Figure 2.2, we use a series of plots as ablation studies to present a more detailed

comparison between different methods; here, we include random question selection

as a bottom line. In the first column, we plot the mean and the standard deviation

of accuracy for IRT-Random, IRT-Active, BiIRT-Random, and BiIRT-Active versus

the number of questions selected. On the Eedi-1 dataset, BiIRT-Active performs

better than IRT-Active on smaller n but performs slightly worse for n = 10. On the

ASSISTments dataset, we observe a high standard deviation for larger n; nevertheless,

BiIRT variants outperform IRT counterparts. On all other datasets, the BiIRT

methods outperform their IRT counterparts significantly. To reach the same accuracy,

on the EdNet, Eedi-2, and Junyi datasets, BiIRT-Active requires∼30% fewer questions

compared to IRT-Active. This head-to-head comparison using IRT as the underlying

response model demonstrates the power of bilevel optimization; even using static

question selection algorithms, explicitly maximizing the predictive accuracy on a meta

question set results in better performance, although the performance gain may not be

significant.

In the second column, we compare different BOBCAT variants using the same

underlying neural network-based response model. We observe that on all datasets,

BiNN-Approx significantly outperforms other methods, reaching the same accuracy as

BiNN-Active with 50%-75% less questions. This performance gain is more significant

on larger datasets. It also significantly outperforms the unbiased gradient estimate,

reaching the same accuracy with 10%-70% less questions. BiNN-Unbiased significantly

outperforms BiNN-Active for smaller n but not for large n; we believe the large

variance of the unbiased gradient might be the reason for this behavior. This head-to-

head comparison shows that our approximate gradient estimate stabilizes the model

training process and leads to better model fit. Moreover, data-driven question selection

30

Method Exposure (median) Exposure (>20%) Overlap (mean)

IRT-Active 0.51% 0.25% 6.03%
BiNN-Approx 0% 1.54% 28.64%

Table 2.3. Question exposure and test overlap rates on Eedi-2.

algorithms learned through bilevel optimization are much better than standard static

CAT question selection algorithms and get better with more training data.

Study: Ability estimation. The goal of existing real-world CAT systems is to

accurately estimate the student ability parameter under IRT models, which is then

used for scoring. Therefore, we conduct an additional experiment on the Eedi-2 dataset

using the squared error between the current ability parameter estimate θ̂
(n)
i and the

true ability θi as the evaluation metric. Since the true student ability is unknown in

real student response datasets, we use the ability value estimated from all questions

each student responded to as a substitute. We compare two methods: IRT-Active,

with the underlying 1PL IRT model trained on the data and BiIRT-Approx, where

we only use the learned model-agnostic question selection algorithm for evaluation in

the setting of existing CAT methods. Figure 2.3(left) shows the ability estimation

error (averaged over five folds) for different numbers of questions selected, n. We see

that even though the goal of BiIRT-Approx is not ability parameter estimation, it

is more effective than IRT-Active and can reach the same accuracy using up to 30%

fewer questions, significantly reducing test length. Figure 2.3(right) shows the same

comparison for models trained on 25% and 50% of the training data set. We see that

BOBCAT can improve significantly as more training data becomes available while

existing CAT methods cannot.

Study: Question exposure and content overlap. In Table 2.3, we provide

summary statistics on the question exposure rate (proportion of times a question was

31

2 4 6 8 10
Number of Questions (n)

0.3

0.4

0.5

0.6

0.7

0.8

||θ

i−
θ̂(n

)
i

||2

BiIRT-Approx
IRT-Active

2 4 6 8 10
Number of Questions (n)

BiIRT-Approx 50%
BiIRT-Approx 25%
IRT-Active 50%
IRT-Active 25%

Figure 2.3. Ability estimation accuracy on Eedi-2.

selected) and the test overlap rate (overlap among questions selected for two students)

on the Eedi-2 dataset. We see that BOBCAT results in a slightly higher question

exposure rate than existing CAT methods, but still leads to an acceptable portion of

overexposed questions (more than the recommended limit of 20% [157]).

Study: Question selection and overlap rate. The gradient update in (2.11)

uplifts weights for questions that have higher similarity with the meta question set.

Thus, we observed a higher overlap rate in Sec 2.4.2 since the BiIRT/NN-Approx

method favors questions that are highly predictive of the student’s ability. We

further investigate the selected questions on the Eedi-2 dataset using the IRT-Active,

BiIRT-Approx, BiNN-Approx methods. To do that, we compute the weighted mutual

information (MI) metric for each question with all other questions on the Eedi-2

dataset. We use the score to assign a MI Bin (from 1 to 10) for each question, such

that each bin has an equal number of questions (higher bin for higher scored questions).

In particular, suppose i1, · · · , im are the set of m students who participated in both

question j and k. Thus, we have responses for question j and k as Yi1,j, · · · , Yim,j and

Yi1,k, · · · , Yim,k. The mutual information of question j and k is defined as,

32

2 4 6 8 10
Weighted MI Bin

0

10

20

30

40

Te
st

 Q
ue

st
io

n
Fr

eq
ue

nc
y

(%
)

IRT-Active
BiIRT-Approx
BiNN-Approx

Figure 2.4. Mutual information and test question frequency on Eedi-2 dataset.

MI(j, k) =
∑

x∈{0,1}

∑
y∈{0,1}

|Yi·,j = x, Yi·,k = y|
m

log
m|Yi·,j = x, Yi·,k = y|
|Yi·,j = x||Yi·,k = y| .

We also compute the empirical frequency, pj, of each question j in the dataset. The

weighted MI of a single question j is
∑

k,k ̸=k pkMI(j, k). Intuitively, if a question

has higher MI with other questions (higher MI bin), we would expect that selected

question to provide higher information regarding student’s responses on the meta-set.

In Figure 2.4, we plot the fraction of questions selected by the IRT-Active, BiIRT-

Approx, and BiNN-Approx method from each bin on the testing student partition.

The plot confirms that the question that provides more information on all other

questions are selected more by the BiIRT-Approx and the BiNN-Approx methods. For

IRT-Active, we do not see any such trends, and the selected questions come from each

bin more or less uniformly. Thus, we observe a lower overlap rate for the IRT-Active

method compared to the BiNN-approx method in Table 2.3. However, note that when

we want to compute student ability or the performance of a student on a long test, it

is more important to test on questions that provide the maximum information which

is captured by our methods.

33

2.5 Conclusions

We proposed BOBCAT, a bilevel optimization framework for CAT, which is agnostic

of the underlying student response model and learns a question selection algorithm

from training data. Through extensive experiments on five real-world student response

datasets, we demonstrated that BOBCAT can significantly outperform existing CAT

methods at reducing test length.

34

CHAPTER 3

DIFFERENTIABLE POLICY FOR SKETCHING IN
RECOMMENDER SYSTEMS

3.1 Introduction

Recommender Systems (RSs) have seen great success in matching users with items

they are interested in when large-scale user-item interaction datasets are available.

Early approaches in RS assume that a user’s interest is static over time and uses a RS

model to compute their latent interest state from historical interactions and predict

their ratings on future items [63, 177]. Sequential RS (SRS) is an emerging research

topic on how to effectively capture user preference changes over time. The general idea

is to keep track of a user’s latent interest state over time, e.g., using a recurrent neural

network [7, 19, 173]. Since recurrent neural networks are prone to forget interactions

in the distant past, in many practical scenarios, sequential RS approaches prioritize on

making decisions according to a user’s recent interactions in the current session [65, 66].

However, these approaches are not adept at capturing a user’s static interests from

their history, which can also be critical to future recommendations.Recently, [57, 164]

found that storing a small set of historical items is highly beneficial in session-based

SRS. Therefore, the sketching policy, i.e., how to select which items to keep in the

sketch, is key to the effectiveness of SRS approaches.

The sketching policy plays an important role in real-world SRS applications to

reduce memory consumption and has been extensively studied in the context of

problems such as moment finding, k-minimum value, and distinct element counting

with probabilistic guarantees [25]. Various data structures can be used for sketching

35

[25]; in this thesis, we will focus on sample-based sketching as used in previous RS

literature [57, 164] where each sketch item is a past user-item interaction. This setting

is related to problems such as data summarization and coreset construction where

influence score and item hardness are often used to select representative samples

[2, 75]. Another related problem is active learning where the label uncertainty of

future items is often used to select the next item to query [135]. A common theme for

all these methods is that they define a measure of informativeness to select the most

informative item(s).

The signature of RS applications is that items come in a streaming fashion [14];

thus, at each time step, we observe a single item, decide whether to store it in the

sketch, and decide which item to remove from the sketch if the current item is stored.

This streaming nature is in stark contrast to the aforementioned problems where one

often have access to the full set of items available to select from. This “one-pass”

sketching setup is more challenging than the sketching setup in other problems. In

practice, simple sketching strategies such as uniform reservoir sampling are often

adopted in RS applications [57, 164]. These approaches usually keep a reservoir of

random historical items to compute the gradient required for model updates.

Although static sketching policies often work well, two major limitations hinder their

further development. First, these methods define a heuristic informativeness measure

to select items to add or remove from the sketch that is not optimized on the real

objective of RS: predictive quality of the user’s interaction with future items. Second,

these informativeness metrics are static and cannot exploit abundant information that

can be extracted from larger and larger training datasets that are made available in

recent years. Recently, there have been approaches for differentiable sample selection

policy learning in data streams in other application domains [46]; however, these

approaches are only applicable when the prediction objective is computed on a static

36

set of known items. In contrast, in streaming RS sketching, items included in the

prediction task are constantly changing.

3.2 Contributions.

We propose DiPS, a Differentiable Policy for Sketching framework to learn a

sketching policy that optimizes the performance on the final recommendation tasks in

SRS. The sketching policy is learned in an end-to-end manner together with the base

RS model; at each time step, the policy takes the past sketch (of K items) and the

recent item (or items) and produces a new sketch (of K items) for use in subsequent

time steps. We make three key contributions:

First, we formulate the sketch update and recommendation tasks as a bi-level

optimization problem [42] with a learnable sketching policy. In the outer-level op-

timization problem, we learn both the base RS model and the sketching policy by

explicitly maximizing predictive quality on future recommendations. In the inner-level

optimization problem, we adapt the base RS model for the user using the items in the

current sketch. The sketching policy is learned in a fully differentiable manner with

the sole objective of maximizing performance on future time steps.

Second, we propose an approximate estimator of the true gradient of the sketching

policy parameters using a separate queue module that is computationally efficient.

Since at any time step, the sketch is dependent on all the prior decisions made by

the sketching policy, we need to back-propagate gradient to all the previous time

steps. This gradient computation requires a re-computation of the entire sketching

process from the start until the current step using the current policy parameters, which

is computationally intensive. Instead, we show that our approximation effectively

alleviates these cumbersome computations.

Third, we verify the effectiveness of DiPS through extensive experiments on five

real-world datasets. We observe that the learned sketching policy outperforms existing

37

sketching policies using static informativeness metrics on future recommendation and

prediction tasks, requiring up to 50% fewer sketch items to reach the same predictive

quality.

3.3 Methodology

We now detail the DiPS method. We will start with notations and the generic

sketching problem setup, followed by details on base RS models, the sketching policy,

and how to efficiently learn the sketching policy.

3.3.1 Problem Setup

We use the notation [N] to denote the set {1, · · · , N} and use shorthand notation

x1:t for the set {x1, · · · , xt}. There are a total of N users, indexed by i ∈ [N] and M

items, indexed by j ∈ [M]. For notation simplicity, we will only discuss the sketching

process for a single user, with a total of T discrete time steps, i.e., interactions, indexed

by t.

We consider two commonly studied RS settings. In the explicit RS setting, for a

user, the sequence of interactions is denoted as ((x1, rx1), · · · , (xT , rxT
)); each element

in the sequence is an item-rating pair denoted as a tuple, where xt ∈ [M] is the

tth item they interacted with and rxt is the rating they gave to the item xt. The

sketching policy keeps a sketch of K pairs. Therefore, the sketch at time t is denoted

as St = {(x(1), rx(1)
), · · · (x(K), rx(K)

)} where x(k) ∈ x1:t and k ∈ [K]; for the first K

time steps, the sketch St contains all the past history. Our goal is to predict their

(real/binary/categorical-valued) rating on the item they interact with at the next time

step, rxt+1 , using the sketch St, given that we know which item they interact with

next. In the implicit RS setting, for a user, the sequence of interactions is denoted as

(x1, · · · , xT) where xt ∈ [M] is the item they interacted with at time t. There are no

explicit ratings; items the user interacts with are considered positively rated while

38

items that the user does not interact with are considered to be negatively rated. The

sketching policy keeps a sketch of K items. Therefore, the sketch at time t is denoted

as St = {x(1), · · ·x(K)} where x(k) ∈ x1:t and k ∈ [K]. Our goal is to predict the item

that they interact with next, xt+1, out of the entire set of items [M], using the sketch

St.

We consider two sketching policy updating settings depending on how frequently

the sketch St is updated. In the online setting, we update the sketch at each time step.

Specifically, given the sketch at the last time step, St−1 and the current interaction/item

(xt, rxt) (or xt) for the explicit (or implicit) case at time t, the sketching policy decides

whether to include the current item in the sketch; if so, it also decides which item

to remove from St−1 to keep the size of the sketch fixed, arriving at the sketch for

the current time step, St. We use Ŝt = St−1 ∪ {(xt, rxt)} (or {xt}) to denote the

intermediate sketch of K + 1 items and the sketching policy decides which single item

to remove from Ŝt to get the new sketch St. In the batch setting, we update the sketch

once every τ time steps; setting τ = 1 results in the online setting. Our method is

equally applicable to the case of varying update time periods τ1, τ2, · · · ; for notation

simplicity, we will only detail the case of a fixed time period τ in this thesis. Specifically,

given the sketch at the last time step, St, and a batch of current interactions/items(
(xt+1, rxt+1), · · · , (xt+τ , rxt+τ)

)
(or (xt+1, · · · , xt+τ)) for the explicit (or implicit) case

at time t+ τ , the sketching policy decides whether to include the current items in the

sketch and in that case which items to remove, arriving at the sketch for the current

time step St+τ . Similarly, we use Ŝt+τ = St ∪ {(xt+1, rxt+1), · · · , (xt+τ , rxt+τ)} (or

{xt+1, · · · , xt+τ}) to denote the intermediate sketch of K + τ items and the sketching

policy decides which τ items to remove from Ŝt+τ to get the new sketch St+τ .

39

3.3.2 DiPS Sketching Objective

We solve the following bilevel optimization problem (for one user only for notation

simplicity) [42]:

minimize
Θ,Φ

T−1∑
t=0

ℓ(rxt+1 , g(xt+1; θ
∗
t (Θ,Φ))) ≜

T−1∑
t=0

ℓt+1(θ
∗
t) (3.1)

s.t. θ∗t = argmin
θt

K∑
k=1

ℓ(rx(k)
, g(x(k); θt)) +R(θt; Θ) ≜ L(St; θt) (3.2)

whereSt+1:t+τ = Π(St, (xt+1:t+τ , rt+1:t+τ); Φ). (3.3)

Here, Θ and Φ are the global RS model and sketching policy parameters, respectively.

g(·) is the RS model that takes an item xt as input and predict its explicit or implicit

rating (which we denote as rxt = 1). Π(·) is the sketching policy that takes as input

the sketch at the last time step, St, the current items xt+1:t+τ , and outputs the updated

sketch St+τ .

The outer-level optimization problem minimizes the loss, ℓ(rxt+1 , g(xt+1; θ
∗
t)) across

all users and all time steps to learn both the global RS model and the sketching policy.

The inner-level optimization problem minimizes L(St; θt), the loss on the sketch for

each user at each time step, to adapt the global RS model locally, resulting in a user,

time step-specific parameter θ∗t . R(θt; Θ) is a regularization term that penalizes large

deviations of the local parameters from global values. Note that θ∗t is a function of the

global parameters Θ and Φ, reflected through both the regularization term in (3.2)

and the items the sketching policy selects for the user in (3.3).

3.3.3 Recommender System Model

Since our focus is differentiable sketching policy learning, which is agnostic to

the underlying base RS model, we adopt a standard neural collaborative filtering

(NCF) model as the base RS model [63] since NCF works well with gradient-based

optimization; we use NCF to compute the loss ℓ(rxt , g(xt; θt)) in both the inner and

40

outer optimization problems. We emphasize that our approach is model agnostic and

equally applicable to any differentiable RS model; in the experiments, we also use

case studies to show that a learned sketching policy under one RS model is still highly

effective for another RS model.

The prediction model parameter Θ contains the embedding of a user Θ(u) and a

neural network with parameter Θ(p) corresponding to the parameters of the items.

For simplicity, we will use Θ to denote {Θ(u),Θ(p)}. For the explicit RS setting,

given the local parameter θt and the next item xt, we predict the rating rt as g(xt; θt).

For real-valued ratings, we define a Gaussian likelihood function and use the mean-

squared error loss ℓmse; for binary (or categorical) ratings, we define a logistic (softmax)

likelihood function resulting in the binary (or categorical) cross-entropy loss ℓbce (or

ℓcce). For the implicit RS setting, we predict the next item xt as g(xt; θ) among all the

items [M]. We define a softmax function over all M items, resulting in a categorical

cross-entropy loss. The number of items is often large; therefore, several alternative

loss functions such as the bayesian personalized ranking loss or the Top1 loss, together

with negative sampling, are often used instead [66, 124]. We emphasize that our

method is agnostic to the loss function; for simplicity, we use the standard categorical

cross-entropy ℓcce loss in our experiments.

3.3.4 Sketching Policy

We use a sparse vector zt ∈ {0, 1}M to represent the indices of each item in the

sketch St at time t, with zt,j = 1 if and only if item index j is present in the current

sketch. This vector has a one-to-one correspondence with the sketch St. We also

use the vector y = [r1, · · · , rM] ∈ RM to represent the user’s ratings of all items.

These ratings are real-valued under the explicit RS setting and binary-valued under

41

the implicit RS setting.1 The ratings on the non-interacted items do not need to be

defined; the DiPS algorithm masks ratings on these items. In the online (τ = 1) and

batch update settings, using the intermediate sketch we defined above, at time t+ τ ,

we have

ẑt+τ = zt +
t+τ∑

j=t+1

exj
,

where exj
∈ {0, 1}M represents the unit vector with a 1 only at index xj and 0 at all

other indices.

The sketching policy Π only has access to items in the intermediate sketch. There-

fore, we can represent this rating information using the vector ẑt+τ ⊙y ∈ RM where ⊙

denotes element-wise multiplication. The policy Π(ẑt+τ ,y; Φ) updates the intermediate

sketch Ŝt+τ to St+τ . In particular, it outputs a sparse vector wt+τ ∈ {0, 1}M that

indicates whether each item in the sketch should be kept or removed. In the online

setting, the policy outputs the item index to remove, wt+1 ∈ {0, 1}M ∩∆M−1, where

∆M−1 is the probability simplex. In the batch setting, the policy outputs the K item

indices to keep, wt+τ ∈ {0, 1}M ∩ {w : 1Tw = K}.

The sketching policy Π computes a score for each item that is in the intermediate

sketch ẑt+τ using a neural network f(·) with the observed ratings as f(ẑt+1,y; Φ) =

f(ẑt+1⊙y; Φ). In the online setting, we use the softmax distribution σ(f(ẑt+1⊙y; Φ))

to select the item to remove, wt+1(σ(f(ẑt+1 ⊙ y; Φ))). We can do this either in a

deterministic way by selecting the item with the highest score or in a stochastic way

by sampling from the softmax probability distribution. The item indices included in

the updated sketch St+1 are then computed as

zt+1 = zt + ext+1 −wt+1(σ(f(ẑt+1 ⊙ y; Φ))). (3.4)

1Our framework allows multiple interactions with the same item; for notation simplicity, we detail
our method in the case where a user interacts with each item at most once.

42

In the batch setting, we need to select K items from K + τ items. We employ the

Top-K projection layer [4] defined as

µ(f(ẑt+τ ⊙ y; Φ)) = argmin
0<u<1

−f(ẑt+τ ⊙ y; Φ)Tu−H(u)

s.t. 1Tu = K, (3.5)

where H(u) is the binary cross entropy function and f(ẑt+τ ⊙ y; Φ) is the score for

the M items. Similarly, we can sample the K points to keep, wt+τ (µ(f(ẑt+τ , y; Φ))),

in either a deterministic way or a stochastic way. The sketch at time t+ τ is given by

zt+τ = wt+τ (µ(f(ẑt+τ ⊙ y; Φ))). (3.6)

In both cases, the sketching policy output is only defined over items in the intermediate

sketch. This constraint can be satisfied by adding log ẑt+τ as input to the final softmax

or Top-K projection layer of the sketching policy network.

3.3.5 Learning and Inference

At the inner-level, we adapt the user parameter θ∗t from the global parameter Θ

using the sketched items St at each time step. In practice, we keep item-specific neural

network parameters Θ(p) fixed and adapt only the user embedding Θ(u) to minimize

the loss on the K items in the sketch. Following the model agnostic meta learning

approach [39], we set θt(u), θt(p)← Θ(u),Θ(p) and take a fixed number of gradient

descent (GD) steps as

θt(u)← θt(u)− α∇θ(u)L(St; θ)|θ=θt . (3.7)

A fixed number GD steps in Eq. 3.7 is equivalent to implicit regularization [56]; thus,

we do not impose any explicit regularization in the inner optimization problem. Since

43

Recreating
sketch using

current policy

Using
sketch from

Figure 3.1. Top/bottom: true/approximate gradient computation at time step t
for DiPS policy. The approximate gradient calculated using intermediate sketches,
obtained from past parameters Φ1:t−1, is close to the true gradient when the learning
rate is small.

θ∗t is a function of Θ, computing the gradient w.r.t. Θ in the outer optimization

objective (3.1) requires us to compute the gradient w.r.t. the gradient in (3.7), i.e., the

meta gradient, which can be computed using automatic differentiation [111]. Similarly,

to learn the sketching policy parameters Φ, we need to compute the gradient of

the outer optimization objective w.r.t. Φ through the user parameters θ∗t (Θ,Φ) in

(3.2). However, the discrete item indices to remove from the intermediate sketch

are non-differentiable. Therefore, we need to develop a method to approximate this

gradient, which we detail next.

3.3.5.1 Sketching Policy Optimization

The inner-level optimization in (3.2) uses zt, the vector version of the sketch St, to

compute the inner-level loss, which is used to adapt the user specific parameter θ∗t .

This loss is computed on all items, regardless of whether they are part of the sketch,

and multiplied with the weight vector zt before taking gradient steps. Therefore, we

can still compute the gradient w.r.t. to the weight of all the items dℓt+1

dzt
even if their

corresponding weight is zero. We start with the online setting and denote the outer

optimization objective at time t+1 as ℓt+1(θ
∗
t). Thus, we need to compute dℓt+1

dΦ
. Note

44

that ℓt+1 is a function of θ∗t , which is a function of Φ (from (3.2) and (3.3)) as

θ∗t = argmin
θt

M∑
j=1

zt,j(Φ)ℓ(rj, g(j, θt)) +R(θt; Θ). (3.8)

We can re-write the gradient using the chain rule as

dℓt+1

dΦ
=

dℓt+1

dθ∗t

dθ∗t
dΦ

=
dℓt+1

dθ∗t

dθ∗t
dzt

dzt
dΦ

.

We also note that the sketch item indices zt at time t is a function of {zt−1, · · · , z1}

which are themselves a function of Φ. We can write the total derivative of zt w.r.t. Φ

in terms of the partial derivative as

dzt
dΦ

=
∂zt(ẑt ⊙ y; Φ)

∂Φ
+

t−1∑
j=1

∂zj(ẑj ⊙ y; Φ)

∂Φ
(
t−1∏
l=j

dzl+1

dzl
), (3.9)

where the partial derivatives ∂zj(ẑj ;Φ)

∂Φ
w.r.t. Φ are computed by keeping the input ẑj

constant. The main challenge here is that in order to compute the gradient for the

loss on item xt+1, we need to re-generate the computation graph from z1 to zt, i.e.,

the entire sketching history, using the current policy parameter Φ (at time step t),

which cannot be computed in previous time steps with past policy parameters (with

multiple SGD steps in between). This regeneration is often infeasible due to its high

computational cost. An alternative is to run the sketching with the current policy

parameter and solve the inner optimization for each time step at once; however, that

leads to enormous memory requirements for the backward gradient propagation even

for a few time steps.

We propose to approximate the total derivative in (3.9) without recomputing the

entire sketching process at every time step. For each iteration, we take a mini-batch

of users (with multiple time steps for multiple interactions) for stochastic gradient

45

descent (SGD) optimization. We represent the policy parameter Φ at time t as Φt

in the training iteration. Note that in (3.9), every past zj (and ẑj) correspond to

the sketch indices obtained using the current parameter Φt. However, we can use a

queueM storing the intermediate sketch indicesM = [ẑ1, · · · , ẑt] computed from old

policy parameters, Φ0,Φ1, · · · ,Φt−1 respectively. If the learning rate is small enough

in the SGD steps, we can assume that the past sketches stored in queue, which were

computed from the old sketching policy parameters, to be close to that computed from

the new parameters Φt. At time step t, we can then run the sketching policy with the

current parameter Φt on the stored intermediate sketch indicesM in parallel to obtain

z1:t−1 and compute ∂zj(ẑj⊙y;Φ)

∂Φ
|Φ=Φt efficiently. We can approximate the Jacobian dzl+1

dzl

with the identity matrix since they are additive in (3.4), which does not need to be

explicitly generated in (3.9). We can compute the gradient v = dℓt+1

dzt
and obtain the

vector-Jacobian product dℓt+1

dzt
dzt
dΦ

efficiently as

dℓt+1

dΦ
≈ ∂ℓt+1(ẑt; Φ)

∂Φ
+

∂

∂Φ

(
vT

t−1∑
j=1

(zj(ẑj; Φ)
)
, (3.10)

where v is fixed and only zj ’s are a function of Φ for computing the partial derivatives.

We note that in (3.10), there is no sequential dependency; all the terms can be

computed in parallel. We use a fixed-size queueM (with size Q ∼ 50− 100) where

we remove the oldest sketch indices when the queue gets full. We update the queue

after every τ time steps. This approximate gradient computation process is visualized

in Figure 3.1.

Since the sketch item indices zt(ẑt,y,Φ) are sampled from the Softmax or Top-K

projection layer, they are not differentiable w.r.t the policy parameters Φ. Thus, we

need to approximate the partial derivative ∂zt(ẑt,y,Φ)
∂Φ

, which we can re-write in the

online setting as

∂zt(ẑt,y; Φ)

∂Φ
=

dzt
dwt

dwt

dσ(f(·))
∂σ(f(ẑt ⊙ y; Φ))

∂Φ
,

46

where σ is the softmax layer and wt contains the sketch indices after sampling in (3.4).

We need to approximate dwt

σ(f(·)) since they are non-differentable; we can leverage the

approximation wt ≈ σ(f(·)) since it holds if the item to be removed has almost all the

probability mass. This approximation is known as the straight-through (ST) estimator

and it is often found to have lower empirical variance than the REINFORCE gradient

estimator [9, 169]. In general, one can test other differentiable approximations, such

as ST-Gumbel softmax estimator [68], for the sampling operation in (3.4) and (3.6),

which we leave for future work. The final term ∂σ(f(ẑt⊙y;Φ))
dΦ

can be easily computed as

the gradient of the softmax layer w.r.t. the policy parameters. In the batch setting,

the softmax layer (σ) is replaced by the Top-K projection layer (µ) that scores top K

items close to 1 and other items close to 0. We can approximate the second term as

wt ≈ µ(f(·)) when the top K items that are selected have the highest scores among

all items. We can further use the KKT conditions and the implicit function theorem

to compute the gradient ∂µ(f(ẑt⊙y;Φ))
dΦ

; for details, refer to [4, 82].

Connection to influence function. In (3.8), we can compute the gradient of θ∗t

w.r.t. zt,j, ∀j ∈ x1:t using the implicit function theorem [23] as

dθ∗t
dzt,j

= −(∇2
θtL(St; θt))−1∇θtℓ(rj, g(j, θt))|θt=θ∗t

. (3.11)

The gradient for loss on the next rating prediction is given by

dℓt+1

dzt,j(Φ)
= −(∇θtℓ(rxt+1 ; g(xt+1; θt)))(∇2

θtL(St; θt))−1∇θtℓ(rj, g(j, θt))|θt=θ∗t
:= It+1(j),

where It+1(j), the influence function [75] score of item j, computes the change in

the loss on the next time step under small perturbations in the weight of this item,

zt,j in (3.8). Intuitively, we would want to keep items that have gradients similar to

that for the future items in sketch, i.e., those that are the most informative of future

47

Algorithm 2 Training of DiPS
1: Initialize global parameters Θ,Φ, learning rates η (outer level), α (inner level)

sketch size K, queue size Q.
2: while not converged do
3: Randomly sample a mini-batch of n users.
4: For each user, initialize empty queue of past sketch indicesM← ϕ, sketch S0

and sketch indices z0 ∈ {0, 1}M , encode ratings into vector y ∈ RM .
5: for t ∈ 1 · · · (T − 1) do
6: For each user, optimize θ∗t on the sketch St−1.
7: Compute loss ℓt+1 on item (xt+1, rxt+1) using θ∗t .
8: Compute ∇Θℓt+1 update Θ: Θ← Θ− η∇Θℓt+1.
9: Computed intermediate indices ẑt ← zt−1 + Bernxt .

10: if t > K then
11: Compute zj for j ∈ {1, · · · , t− 1} in parallel from stored ẑj in queueM

using Π(·; Φ).
12: Compute ∇Φℓt+1 using Eq.3.10 and update Φ: Φ← Φ− η∇Φℓt+1.
13: Append ẑt into queueM, remove oldest if full.
14: end if
15: Compute St and zt using policy Π or set zt ← ẑt.
16: end for
17: end while

Dataset Movielens 1M Movielens 10M Netflix Book Forusquare

Users 6K 70K 430K 22K 52K
Items 3.7K 11K 18K 24K 37K
Interactions 1M 10M 100M 1.1M 2.3M

Table 3.1. Statistics for recommender system datasets.

recommendations. Therefore, in the online setting, the sketching policy will tend to

select items that are the least informative (to replace from the sketch) and in the

batch setting, it will tend to select items that are most informative (to keep in the

sketch).

48

3.4 Experimental Results

3.4.1 Experimental Setup

Datasets and evaluation metric. We use five publicly available benchmark

datasets: the Movielens 1M2 and 10M 3 datasets [64] and the Netflix Prize dataset 4

for explicit RSs and the Amazon Book5 and Foursquare6 datasets for implicit RSs.

The Movielens datasets contain at least 20 ratings for each user; for the Netflix

dataset, we filter out users with less than 20 ratings. We use 20-core settings for the

Foursquare and the Amazon book dataset; thus, all users (items) interact with at

least 20 items (users). For Amazon Book dataset, we keep reviews with ratings more

than 3.5 (from 1-5 scale) as the implicit positively rated items [62]. The foursquare

dataset contains global user check-in datasets on the Foursquare platform from Apr.

2012 to Jan. 2014 [178]. See Table 3.1 for detailed statistics. For explicit RSs, we

use root-mean-square error (RMSE) as the evaluation metric. For implicit RSs, we

use Recall@20 (= E1rank≤K) as the evaluation metric where rank is computed among

all possible items; we also provide additional results with Mean Reciprocal Rank

(MRR)@20 as the evaluation metric where MRR@K = E
1rank≤K

rank . We randomly split

60-20-20% of the users in the datasets into training-validation-testing sets. We run

all experiments five times with different splits and report the average and standard

deviation (std) numbers across all five runs.

Methods and baselines. We compare our method, DiPS, against various baselines

including reservoir sampling [160] that has been primarily used in RS applications,

2https://grouplens.org/datasets/movielens/1m/

3https://grouplens.org/datasets/movielens/10m/

4https://www.kaggle.com/netflix-inc/netflix-prize-data, https://www.netflixprize.
com/

5https://jmcauley.ucsd.edu/data/amazon/

6https://sites.google.com/site/yangdingqi/home/foursquare-dataset

49

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/10m/
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://www.netflixprize.com/
https://www.netflixprize.com/
https://jmcauley.ucsd.edu/data/amazon/
https://sites.google.com/site/yangdingqi/home/foursquare-dataset

Settings (τ) Dataset K Random Hardest Influence DiPS@1 DiPS

Online (1)

Movielens 1M
2 0.9701 0.9747 0.9747 0.9615 0.9543
4 0.955 0.9606 0.9718 0.949 0.9418
8 0.9387 0.9435 0.9662 0.9354 0.93

Movielens 10M
2 0.9232 0.9221 0.9147 0.9174 0.9008
4 0.9065 0.903 0.9054 0.9009 0.8874
8 0.8853 0.8808 0.8948 0.8812 0.8726

Netflix
2 0.9898 0.9946 0.9826 0.9807 0.9646
4 0.9708 0.9786 0.9726 0.9631 0.9532
8 0.9474 0.9564 0.9598 0.9411 0.9351

Batch (4)

Movielens 1M
2 0.9741 0.9965 0.997 0.9658 0.9651
4 0.9611 0.9848 0.9867 0.9537 0.9592
8 0.9455 0.9678 0.9753 0.9418 0.9476

Movielens 10M
2 0.9221 0.9271 0.9127 0.9145 0.9086
4 0.9055 0.9098 0.9016 0.9001 0.8788
8 0.8839 0.888 0.8907 0.8801 0.8647

Netflix
2 0.9825 0.9925 0.9715 0.9732 0.9632
4 0.9625 0.9766 0.9618 0.955 0.919
8 0.9387 0.9543 0.9497 0.9327 0.909

Table 3.2. Mean and std RMSE for all methods under the online (τ = 1) and batch
setting (τ = 4) on all explicit RS datasets.

which keeps items with uniform probability [57, 164]. We dub this heuristic sketching

policy as Random. There are several other heuristic sketching policies in streaming

settings used in various applications. The Hardest sample heuristic keeps the hardest

data point to classify in the sketch and has been highly successful in continual learning

and active learning tasks [2]. For binary classification, it is equivalent to uncertainty

sampling. Another closely related method is to construct a coreset in online and

batch RS settings. We use an Influence function-based score to construct the sketch

by selecting the most representative K data points from the K + τ intermediate

sketch items [11]. In contrast, our bi-level optimization framework explicitly minimizes

the loss incurred on predicting future items. We also experiment with a simpler

version of our method, dubbed as DiPS@1, where we do not keep the queue of past

intermediate sketches and flow gradient only for the current items, i.e., the first term

on the right-hand side of (3.10). We test different sketch sizes as K ∈ {2, 4, 8}. For

50

Settings (τ) Dataset K Random Hardest Influence DiPS@1 DiPS

Online (1)

Book
2 0.0672 0.0682 0.074 0.1244 0.1163
4 0.0769 0.0787 0.0828 0.1349 0.1262
8 0.0845 0.0876 0.0877 0.1325 0.1275

Foursquare
2 0.1329 0.1294 0.1316 0.1396 0.1406
4 0.1416 0.1368 0.141 0.1512 0.1513
8 0.1508 0.1456 0.1489 0.1591 0.1601

Batch (4)

Book
2 0.0564 0.0404 0.068 0.0859 0.0751
4 0.0647 0.0514 0.0787 0.1048 0.0987
8 0.0714 0.0631 0.0844 0.1046 0.1011

Foursquare
2 0.1203 0.1059 0.1188 0.1204 0.121
4 0.1283 0.1147 0.1277 0.1344 0.1339
8 0.1362 0.1254 0.1355 0.1406 0.1421

Table 3.3. Mean and std Recall@20 for all methods under the online (τ = 1) and
batch setting (τ = 4) on all implicit RS datasets.

the batch setting, we set the sketch update period as τ = 4 to cover three cases: the

update period is less than, equal to, or larger than the sketch size.

3.4.2 Results and Discussion

In Table 3.2, we list the mean RMSE and std numbers across all runs for all

methods on all explicit RS datasets under the online setting (τ = 1). On all datasets,

for all values of the sketch size K, DiPS significantly outperforms other methods,

followed by DiPS@1. On all datasets, DiPS reaches similar predictive quality to that of

static informativeness-based policies using up to 50% fewer sketch items. DiPS@1 does

not perform as well as DiPS, which suggests that storing past sketch steps in queue

M for more than one time step is beneficial to obtaining a more accurate gradient

approximation and better predictive quality. We also observe that reservoir sampling

slightly outperforms the Hardest and Influence heuristics on the Movielens1M and

Netflix datasets while the Hardest heuristic slightly outperforms the other two on the

Movielens10M dataset. Somewhat surprisingly, reservoir sampling performs well in

many cases, without using any informativeness measures. We postulate that the reason

51

Settings (τ) Dataset K Random Hardest Influence DiPS@1 DiPS

Online (1)

Book
2 0.0165 0.0171 0.0201 0.0377 0.0331
4 0.0186 0.0196 0.0214 0.0388 0.0344
8 0.0209 0.022 0.0227 0.0363 0.0337

Foursquare
2 0.0342 0.0332 0.0333 0.0365 0.0373
4 0.0367 0.0352 0.0363 0.0403 0.0407
8 0.0397 0.0376 0.0392 0.0435 0.0439

Batch (4)

Book
2 0.0128 0.0094 0.017 0.0217 0.0185
4 0.0148 0.012 0.0194 0.0263 0.0244
8 0.0164 0.0149 0.0206 0.0263 0.0247

Foursquare
2 0.0309 0.027 0.0304 0.0315 0.0317
4 0.0333 0.0295 0.0327 0.0362 0.0362
8 0.0358 0.0324 0.0351 0.0383 0.0388

Table 3.4. Mean and std MRR@20 for all methods under the online (τ = 1) and
batch setting (τ = 4) on all implicit RS datasets.

behind this observation is that the Hardest and Influence heuristics operate locally

since they make decisions only in the context of the local sketch; this restriction means

that they favor items that are more informative to the most recent user interactions

over those that are representative of longer-term history. Re-weighting these heuristics

based on time difference can be beneficial and is left for future work.

In Table 3.2, we list the mean RMSE across all runs for all methods on all

explicit RS datasets under the batch setting (τ = 4). On all datasets, DiPS and

DiPS@1 significantly outperform other informativeness-based policies. On the smaller

datasets (Movielens 1M), DiPS@1 slightly outperforms DiPS for larger sketch sizes

K ∈ {4, 8}. We postulate that the reason behind this observation is that the policy is

not frequently updated (only once every τ=4 time steps), which reduces the benefit

of more accurate gradient approximation by keeping the past sketches. Moreover, the

fact that Movielens 1M is significantly smaller than the other two datasets might also

contribute to this observation.

In Table 3.3, we list the mean Recall@20 metric across all runs for all the methods

on all implicit RS datasets under the online setting (τ=1). On all datasets, DiPS and

52

2 4 8 ∞
Number of Sketch Items (K)

0.025

0.050

0.075

0.100

0.125

0.150

Re
ca

ll@
20

(a) Policy Transfer
Foursquare-Random
Foursquare-DiPS
Book-Random
Book-DiPS

0 2 4 8
Number of Sketch Items (K)

0.06

0.08

0.10

0.12

(b) Policy Augmentation

Figure 3.2. On implicit RS datasets, (a) Recall@20 with a GRU4Rec RS model
using sketching policies learned by DiPS (with NCF as the base RS model) and (b)
Recall@20 with a session-based GRU4Rec model augmented with K historical sketch
items.

DiPS@1 significantly outperform other informativeness-based policies. On the Book

dataset, DiPS with the smallest sketch size of K=2 outperforms static informativeness-

based policies with the largest sketch size K=8 by at least 30%. On the foursquare

dataset, DiPS reaches similar predictive quality to that of static policies using up

to 50% fewer sketch items. We observe that DiPS@1 slightly outperforms DiPS on

the smaller Book dataset. Combined with a similar observation in the explicit RS

case, this observation suggests that storing past sketches is more beneficial on the

larger datasets. We also observe that the Influence policy works better than other

static policies on implicit RS datasets. This observation suggests that recent context

might be more important under the implicit RS setting. In Table 3.3, we list the

mean Recall@20 metric across all runs for all the methods on all implicit datasets

under the batch setting (τ = 4). On all datasets, DiPS significantly outperforms other

informativeness-based policies while DiPS@1 slightly outperforms DiPS on the smaller

Book dataset. These observations fall in line with those in the online setting. In Table

3.4, we list the mean and standard deviation of MRR@20 scores for all methods on

53

all implicit datasets under the online setting (τ = 1) and batch setting (τ = 4). We

observe similar trends for the MRR@20 metric as the Recall@20 metric.

Policy transfer. We perform additional experiments to show that the sketching

policy learned using one base RS model, NCF in our case, can be effective even if used

in conjunction with a different base RS model. In particular, we train a sequential

GRU4Rec model [66] on the Book and foursquare datasets, where at each time step

t, all history x1:t−1 is used to recommend the next item xt. We also train three

DiPS models (K ∈ {2, 4, 8}) with a base NCF RS model (on the same training set of

users) and only retain the learned sketching policies π. We test how this GRU4Rec

model would perform when we keep a sketch of only K items x(1):(K) on the test users

to recommend the next item xt. In Figure 3.2(a), we plot the performance of the

GRU4Rec model under different values of K for both the DiPS policy and the reservoir

sampling policy. These policies are identical at K = ∞ when the entire history is

available. We see that the DiPS policy requires up to 50% less sketch items to reach

the same recommendation quality than reservoir sampling. This observation suggests

that sketching policies learned with a particular base RS model can potentially be

transferred to other base RS models effectively. We note that the DiPS sketching

policy exploits items that are highly predictive of future items, making them amenable

to other base RS models.

Augmented session-based SRS. We perform additional experiments to show

that a few historical sketch items can effectively augment base RS models to improve

session-based SRS. In particular, we split the user’s history into non-overlapping

sessions of four items. At each step, the model has access to items from the current

session (0-3 items) and a sketch of K ∈ {2, 4, 8} items from the full history. We

train a modified GRU4Rec model that computes hidden states using items from the

current session plus the sketch, and concatenate the two hidden states for the final

54

O
D

S
A

U
V

M
D

B
S

F
B

O
M

G
D

T
T

H
G

P
F

G
H

N
S

M
M

C
H

G
S

IH
H

O
T

M
D

U
D

Next Item

One Deadly Sister (ODS)
Are You There, Vodka? (AUV)

Moon Dance (MD)
Bloodsucking Fiends (BSF)

Back on Murder (BOM)
The Girl � Dragon Tattoo (GDT)

The Help (TH)
The Girl � Fire (GPF)

The Girl � Hornet's Nest (GHN)
Samantha Moon (SM)

Moon Child (MC)
The Hunger Games (HG)

Spying in High Heels (SIHH)
One for the Money (OTM)

Dead Until Dark (DUD)

S
k
e
tc

h
e
d
 I
te

m
s

−0.8

−0.4

0.0

0.4

0.8

Figure 3.3. Visualization of the DiPS sketching policy (K = 4) on the Book dataset
for a selected user over 15 time steps. Cell (i, j) represents whether item i is present
in the sketch and used to successfully recommend item j.

prediction layer. We use uniform reservoir sampling and the DiPS sketching policy

(trained with NCF) to build the sketch; we train a modified GRU4Rec model on the

session items and the sketched items to recommend the next item. In Figure 3.2(b),

we plot the performance of the modified GRU4Rec model. Note that K = 0 represents

the standard GRU4Rec model using only the session data. We see that augmenting

historical sketch items improve the performance of the session-based GRU4Rec model

by more than 20% on both datasets. Moreover, the DiPS sketching policy achieves the

same predictive quality as uniform reservoir sampling with 50% fewer sketch items.

Policy visualization. In Figure 3.3, we plot the sketching process (K = 4) following

the policy learned by DiPS for a selected user in the Book dataset for 15 time steps.

We color-coded the columns (time steps) based on successful (blue)/unsuccessful

(red) recommendations (from a total of 23, 774 distinct books), i.e., whether the

actual item is included in the top-20 recommendations. This user is interested in the

“Mystery/Suspense” and “Fiction” genres. The third book, “Moon Dance”, is kept

in the sketch between time steps 4 and 12 and used to successfully predict similar

55

items, such as “Moon Child”. The book “The Girl with the Dragon Tattoo” is kept in

the sketching memory and used to successfully predict similar items “The Girl Who

Played with Fire’‘ and “The Girl Who Kicked the Hornet’s Nest”. The book “The Girl

Who Kicked the Hornet’s Nest” is not kept in the sketch, possibly since it is the last

book in the original “Millennium” series; its information is already well-captured in the

sketch by the first book. Although we cannot successfully predict the book “Samantha

Moon: The First Four Vampire”, it is kept in the sketch to capture the user’s interest

on fiction, which is later used to successfully predict “Dead Until Dark” with the same

theme. We note that although the model is not able to always successfully recommend

items, the sketching policy captures item properties and adds/removes incoming items

to improve future recommendations.

3.5 Conclusions

We developed a framework for differentiable sketching policy learning for recom-

mender systems applications. The policy decides which past items to keep in a small

sketch to explicitly maximize future predictive quality using items in the sketch. We

use a bi-level optimization setup to directly learn such a sketching policy in a data-

driven manner. Extensive experimental results on real-world datasets under various

recommender systems settings show that our framework can sometimes significantly

outperform existing static, informativeness-based sketching policies. Although side

information (or metadata) often plays an important role in recommender systems, we

did not use any side information in this thesis.

56

CHAPTER 4

CONTEXT-AWARE ATTENTIVE KNOWLEDGE TRACING

4.1 Introduction

Recent advances in data analytics and intelligent tutoring systems [172] have

enabled the collection and analysis of large-scale learner data; these advances hint

at the potential of personalized learning at large scale, by automatically providing

personalized feedback [118] and learning activity recommendations [78] to each learner

by analyzing data from their learning history.

A key problem in learner data analysis is to predict future learner performance

(their responses to assessment questions), given their past performance, which is

referred to as the knowledge tracing (KT) problem [24]. Over the last 30 years,

numerous methods for solving the KT problem were developed based on two common

assumptions: i) a learner’s past performance can be summarized by a set of variables

representing their current latent knowledge level on a set of concepts/skills/knowledge

components, and ii) a learner’s future performance can be predicted using their current

latent concept knowledge levels. Concretely, let t denote a set of discrete time indices,

we have the following generic model for a learner’s knowledge and performance

rt ∼ f(ht), ht ∼ g(ht−1),

where rt ∈ {0, 1} denotes the learner’s graded response to an assessment question at

time step t, which is usually binary-valued (1 corresponds to a correct response and 0

corresponds to an incorrect one) and is observed. The latent variable ht denotes the

57

learner’s current knowledge level and is not observed. f(·) and g(·) are functions that

characterize how learner knowledge dictate their responses and how it evolves; they

are sometimes referred to as the response model and the knowledge evolution model,

respectively.

4.2 Related Work

Earlier developments in KT methods before 2010 can be divided into two classes.

The first class centered around the Bayesian knowledge tracing (BKT) method [109,

184] where knowledge (ht) is a binary-valued scalar that characterizes whether or not

a learner masters the (single) concept covered by a question. Since the response (rt)

is also binary-valued, the response and knowledge evolution models are simply noisy

binary channels, parameterized by the guessing, slipping, learning, and forgetting

probabilities. The second class centered around item response theory (IRT) models

[94] and use these models (especially sigmoidal link functions) as the response model

f(·); learner knowledge level is then modeled as real-valued vectors (ht) for questions

that cover multiple concepts. Among these methods, the SPARFA-Trace method [80]

used a simple affine transformation model as the explicit knowledge evolution model

g(·). Other methods, e.g., additive factor models [13], performance factor analysis

[113], the difficulty, ability, and student history (DASH) model [90], and a few recent

methods including knowledge factorization machines [158] and an extension to the

DASH model, the DAS3H model [17], used hand-crafted features such as the number of

previous attempts, successes, and failures on each concept in their knowledge evolution

model. Methods in both classes rely on expert labels to associate questions to concepts,

resulting in excellent interpretability since they can effectively estimate the knowledge

level of each learner on expert-defined concepts.

Recent developments in KT centered around using more sophisticated and flexible

models to fully exploit the information contained in large-scale learner response

58

datasets. The deep knowledge tracing (DKT) method [117] was the first method

to explore the use of (possibly deep) neural networks for KT by using long short-

term memory (LSTM) networks [67] as the knowledge evolution model g(·). Since

LSTM units are nonlinear, complex functions, they are more flexible than affine

transformations and more capable of capturing nuances in real data.

The dynamic key-value memory networks (DKVMN) method extended DKT by

using an external memory matrix (Ht) to characterize learner knowledge [186]. The

matrix is separated into two parts: a static, “key” matrix that contains the fixed

representation of each concept, and a dynamic, “value” matrix that contains the

evolving knowledge levels of each learner on each concept. DKVMN also uses separate

“read” and “write” processes on this external matrix for the response and knowledge

evolution models; these processes make it even more flexible than DKT. DKT and

KVMN reported state-of-the-art performance in predicting future learner performance

[70] and have been the benchmark for new KT methods.

The self-attentive knowledge tracing (SAKT) method [107] is the first method to

use attention mechanisms in the context of KT. Attention mechanisms are more flexible

than recurrent and memory-based neural networks and have demonstrated superior

performance in natural language processing tasks. The basic setup of SAKT has many

similarities to the Transformer model [156], an effective model for many sequence-to-

sequence prediction tasks. However, we observe that SAKT does not outperform DKT

and DKVMN in our experiments; see Section 4.5 for details. Possible reasons for this

include i) unlike in language tasks where strong long-distance dependencies between

words are more common, the dependence of future learner performance on the past

is likely restricted to a much shorter window, and ii) the sizes of learner response

datasets are several magnitudes lower than natural language datasets and are less

likely to benefit from highly flexible and large-scale attention models.

59

More importantly, no existing KT method truly excels at both future performance

prediction and interpretability. Early KT methods exhibit excellent interpretability

but do not provide state-of-the-art performance on future learner performance pre-

diction. Recent KT methods based on deep learning excel at that but offer limited

interpretability. Therefore, these KT methods do not fully meet the needs of personal-

ized learning, which requires not only accurate performance prediction but also the

ability to provide automated, interpretable feedback and actionable recommendations

to help learners achieve better learning outcomes.

4.3 Contributions

For the task of predicting the learner’s response to the current question, we propose

the attentive knowledge tracing (AKT) method, which uses a series of attention

networks to draw connections between this question and every question the learner

has responded to in the past. We summarize our key innovations below:

1. Contrary to existing attention methods that use raw question and response embed-

dings, we put raw embeddings into context and use context-aware representations

of past questions and responses by taking a learner’s entire practice history into

account.

2. Inspired by cognitive science findings on the mechanisms of forgetting, we propose

a novel monotonic attention mechanism that uses an exponential decay curve to

down weight the importance of questions in the distant past. We also develop

a context-aware measure to characterize the time distance between questions a

learner has responded to in the past.

3. Leveraging the Rasch model, a simple and interpretable IRT model, we use a series

of Rasch model-based embeddings to capture individual differences among questions

without introducing an excessive amount of model parameters.

60

We conduct a series of experiments on several benchmark real-world educational

datasets comparing AKT to state-of-the-art KT methods. Our results show that

AKT (sometimes significantly) outperforms other KT methods in predicting future

learner performance. Further, we perform ablation studies on each of the key AKT

model components to demonstrate their value. We also perform several case studies to

show that AKT exhibits excellent interpretability and has the potential for automated

feedback and practice question recommendation, both key requirements of personalized

learning.

4.4 Methodology

4.4.1 Problem Setup

Each learner’s performance record consists of a sequence of questions and responses

at each discrete time step. For learner i at time step t, we denote the combination of

the question that they answered, the concept this question covers, and their graded

response as a tuple, (qit, cit, rit), where qit ∈ N+ is the question index, cit ∈ N+ is the

concept index, and rit ∈ {0, 1} is the response. Under this notation, (qit, cit, 1) means

learner i responded to question qit on concept cit correctly at time t. We note that

this setup is different from some prior works on deep knowledge tracing that often

ignore the question index and summarize learner performance as (cit, r
i
t). This choice

was made to avoid overparameterization; see Section 4.4.5 for a detailed analysis.

In the following discussions, we omit the superscript i as we discuss how to predict

future performance for a single learner. Given their past history up to time t− 1 as

{(q1, c1, r1), . . . , (qt−1, ct−1, rt−1)}, our goal is to predict their response rt to question

qt on concept ct at the current time step, t.

Question and response embeddings. Following previous work [186], we use

real-valued embedding vectors xt ∈ RD and yt ∈ RD to represent each question

and each question-response pair (qt, rt), respectively. xt characterizes information

61

about questions, and yt characterizes the knowledge learners acquire by responding

to questions, with two separate embeddings for correct and incorrect responses,

respectively. D denotes the dimension of these embeddings. Therefore, let Q denote

the number of questions, there are a total of Q question embedding vectors and 2Q

question-response embedding vectors. In most real-world educational settings, the

question bank is considerably larger than the set of concepts and many questions are

assigned to very few learners. Therefore, the majority of existing KT methods use

concepts to index questions to avoid overparameterization; all questions covering the

same concept are treated as a single question. In this case, qt = ct and Q = C.

4.4.2 The AKT Method

The AKT method consists of four components: two self-attentive encoders, one

for questions and one for knowledge acquisition, a single attention-based knowledge

retriever, and a feed-forward response prediction model; Figure 4.1 visualizes the AKT

method and its connected components.

We use the two self-attentive encoders to learn context-aware representations of the

questions and responses. We refer to the first encoder as the question encoder,

which produces modified, contextualized representations of each question, given

the sequence of questions the learner has previously practiced on. Similarly, we

refer to the second encoder as the knowledge encoder, which produces modified,

contextualized representations of the knowledge the learner acquired while responding

to past questions. Alternatively, we could use raw embeddings of questions and

responses similar to prior work. We found that the context-aware representation

performs better in most datasets. We refer to the knowledge evolution model as the

knowledge retriever, which retrieves knowledge acquired in the past that is relevant to

the current question using an attention mechanism. Finally, the response prediction

model predicts the learner’s response to the current question using the retrieved

62

P
rediction N

etw
ork

Knowledge Retriever

Knowledge
Encoder

Question
Encoder

Rasch
model-based
Embeddings

Monotonic Attention

Figure 4.1. Overview of the AKT method.

knowledge. The AKT method is motivated by three intuitions rooted in cognitive

science and psychometrics; we will detail these intuitions in what follows.

4.4.3 Context-aware Representations

The question encoder takes raw question embeddings {x1, . . . ,xt} as input and out-

puts a sequence of context-aware question embeddings {x̂1, . . ., x̂t} using a monotonic

attention mechanism (detailed in the next subsection). The context-aware embed-

ding of each question depends on both itself and the past questions, i.e., x̂t = fenc1

(x1, . . . ,xt). Similarly, the knowledge encoder takes raw question-response embed-

dings {y1, . . . ,yt−1} as input and outputs a sequence of actual knowledge acquired

{ŷ1, . . . , ŷt−1} using the same monotonic attention mechanism. The context-aware

embedding of acquired knowledge depend on the learner’s response to both the current

question and past questions, i.e., ŷt−1 = fenc2(y1, . . . ,yt−1).

The choice of using context-aware embeddings rather than raw embeddings reflects

our first intuition: the way a learner comprehends and learns while responding to a

question depends on the learner. These modified representations reflect each learner’s

63

actual comprehension of the question and the knowledge they actually acquire, given

their personal response history. This model choice is motivated by the intuition that

for two learners with different past response sequences, the way they understand the

same question and the knowledge they acquire from practicing on it can differ.

The knowledge retriever takes the context-aware question and question-response

pair embeddings x̂1:t and ŷ1:t−1 as input and outputs a retrieved knowledge state ht

for the current question. We note that in AKT, the learner’s current knowledge state

is also context-aware since it depends on the current question they are responding to;

this model choice is different from that in most existing methods, including DKT. We

also note that the knowledge retriever can only use information on the past questions,

the learner’s responses to them, and the representation of the current question, but not

the learner’s response to the current question, i.e., ht = fkr(x̂1, . . . , x̂t, ŷ1, . . . , ŷt−1).

The response prediction model uses the retrieved knowledge to predict the current

response.

4.4.4 The Monotonic Attention Mechanism

We use a modified, monotonic version of the scaled dot-product attention mecha-

nism for the encoders and the knowledge retriever. We start by briefly summarizing

the original scaled dot-product attention mechanism. Under this framework, each

encoder and the knowledge retriever has a key, query, and value embedding layer that

maps the input into output queries, keys, and values of dimension Dq = Dk, Dk, and

Dv, respectively. Let qt ∈ RDk×1 denote the query corresponding to the question

the learner responds to at time t, the scaled dot-product attention values αt,τ are

computed using the softmax function [55] as

αt,τ = Softmax(
q⊺
tkτ√
Dk

) =
exp(

q⊺
tkτ√
Dk

)∑
τ ′ exp(

q⊺
tkτ√
Dk

)
∈ [0, 1].

64

The output of the scaled dot-product attention mechanism is then given by
∑

τ αt,τvτ ∈

RDv×1. kτ ∈ RDk×1 and vτ ∈ RDv×1 denote the key and value for the question at time

step τ , respectively. Depending on the specific component, the output depends either

on both the past and the current (τ ≤ t for the question and knowledge encoders) or

only the past (τ < t for the knowledge retriever).

Both encoders employ the self-attention mechanism, i.e., qt, kt, and vt are computed

using the same input; the question encoder uses {x1, . . . ,xt} while the knowledge

encoder uses {y1, . . . ,yt−1}. The knowledge retriever, on the other hand, does not use

self-attention. As shown in Fig. 5.1, at time step t, it uses x̂t (the modified embedding of

the current question), {x̂1, . . . , x̂t−1} (the context-aware embeddings of past questions),

and {ŷ1, . . . , ŷt−1} (the context-aware embeddings of past question-response pairs) as

input to generate the query, keys, and values, respectively.

However, this basic scaled dot-product attention mechanism is not likely going to

be sufficient for KT. The reason is that learning is temporal and memories decay [110];

a learner’s performance in the distant past is not as informative as recent performance

when we are predicting their response to the current question. Therefore, we develop a

new monotonic attention mechanism that reflects our second intuition: when a learner

faces a new question, past experiences i) on unrelated concepts and ii) that are from

too long ago are not likely to be highly relevant. Specifically, we add a multiplicative

exponential decay term to the attention scores as:

αt,τ =
exp (st,τ)∑
τ ′ exp (st,τ ′)

,

with

st,τ =
exp (−θ · d(t, τ)) · q⊺

tkτ√
Dk

, (4.1)

65

where θ > 0 is a learnable decay rate parameter and d(t, τ) is temporal distance

measure between time steps t and τ . In other words, the attention weights for the

current question on a past question depends not only on the similarity between the

corresponding query and key, but also on the relative number of time steps between

them. In summary, our monotonic attention mechanism takes the basic form of an

exponential decay curve over time with possible spikes at time steps when the past

question is highly similar to the current question. We note that we apply exponential

decay to the attention weights rather than latent knowledge, which is the common

approach in existing learner models (see e.g., [103, 123]).

We note that there are many other possible ways to characterize the temporal

dynamics of attention. First, in language tasks that attention networks excel at,

the temporal dynamics can be modeled using additive positional embeddings or

learnable embeddings [156]. Second, in our monotonic attention mechanism, we can

also parameterize the exponential decay as st,τ =
q⊺
tkτ√
Dk
− θ · d(t, τ). However, neither

of these changes lead to comparable performance to our chosen model setup; we will

compare AKT against its variants using positional encoding rather than monotonic

attention in our experiments.

A context-aware distance measure. The exponential decay function decides the

rate at which the attention weights decay as the distance between the current time

index and the previous time indices increase. A straightforward way to define the

distance between two time indices is their absolute value difference, i.e., d(t, τ) = |t− τ |.

However, this distance is not context-aware and ignores the practice history of each

learner. For example, consider the two following sequences of concepts a learner

practiced on:

Venn Diagram (VD)1,VD2, · · · ,VD8,Prime Numbers (PN)9,PN10

66

and

PN1,VD2,VD3, · · · ,VD9,PN10,

where the notation “V D2” means that the learner practiced the concept of Venn

Diagram at time step 2. In this example, the learner answers a question on Prime

Numbers at t = 10, i.e., the current time index, in both of these sequences, but the

most recent past practice on Prime Numbers comes at different time indices. Since the

concepts of Venn Diagram and Prime Numbers are not closely related, the learner’s

previous practices on Prime Numbers is more relevant to us when predicting their

answer to the current practice question than recent practices on Venn Diagram. In

this case, with the straightforward absolute value difference, an exponential decay

curve will significantly reduce the attention weight assigned to the practice on Prime

Numbers at t = 1.

Therefore, we propose the following context-aware distance measure between time

steps d(t, τ) with τ ≤ t for the exponential decay mechanism (in the encoders):

d(t, τ) = |t− τ | ·
t∑

t′=τ+1

γt,t′ ,

γt,t′ =
exp (

q⊺
tkt′√
Dk

)∑
1≤τ ′≤t exp (

q⊺
tkτ ′√
Dk

)
, ∀t′ ≤ t.

For the knowledge retriever, we replace τ ′ ≤ t with τ < t and t′ ≤ t with t′ < t

correspondingly. In other words, this context-aware distance measure uses another

softmax function to adjust the distance between consecutive time indices according to

how the concept practiced in the past is related to the current concept. In practice, in

each iteration during model training, we use the current AKT model parameters to

compute the modified distance measure and fix it; we do not pass gradients through

the distance measure.

67

Multi-head attention and sub-layers. We also incorporate multi-head attention

which is effective in attending to past positions at multiple time scales [156]. Therefore,

we use H independent attention heads where every head has its own decay rate θ,

concatenate the final output into a (Dv · H) × 1 vector and pass it to the next

layer. This model design enables AKT to summarize past learner performance at

multiple time scales, which bears some similarities to the multiple time windows

in the multiscale context, DASH, and DAS3H models [17, 90, 110]. We also use

several sub-layers, including one for layer normalization [83], one for dropout [148], a

fully-connected feedforward layer, and a residual connection layer [61] in each encoder

and the knowledge retriever.

Response prediction. The last component of the AKT method predicts the

learner’s response to the current question. The input to the prediction model is

a vector that concatenates both the retrieved knowledge (the knowledge retriever

output ht) and the current question embedding xt; this input goes through another

fully-connected network before finally going through the sigmoid function [55] to

generate the predicted probability r̂t ∈ [0, 1] that the learner answers the current

question correctly. All learnable parameters in the entire AKT method are trained in

end-to-end fashion by minimizing the binary cross-entropy loss of all learner responses,

i.e.,

ℓ =
∑

i

∑
t−(rit log r̂it + (1− rit) log(1− r̂it)).

4.4.5 Rasch Model-Based Embeddings

As we discussed above, existing KT methods use concepts to index questions, i.e.,

setting qt = ct. This setup is necessary due to data sparsity. Let Q denote the total

number of questions and L denote the number of learners. In most real-world learner

response datasets, the number of learner responses is comparable to CL and much

less than QL since many questions are assigned to few learners. Therefore, using

68

concepts to index questions is effective in avoiding overparameterization and overfitting.

However, this basic setup ignores the individual differences among questions covering

the same concept, thus limiting the flexibility of KT methods and their potential for

personalization.

We use a classic yet powerful model in psychometrics, the Rasch model (which is

also known as the 1PL IRT model) [94, 120], to construct raw question and knowledge

embeddings. The Rasch model characterizes the probability that a learner answers

a question correctly using two scalars: the question’s difficulty, and the learner’s

ability. Despite its simplicity, it has shown to achieve comparable performance to

more sophisticated models on learner performance prediction in formal assessments

when knowledge is static [79, 170]. Specifically, we construct the embedding of the

question qt from concept ct at time step t as

xt = cct + µqt · dct ,

where cct ∈ RD is the embedding of the concept this question covers, and dct ∈ RD is

a vector that summarizes the variation in questions covering this concept, and µqt ∈ R

is a scalar difficulty parameter that controls how far this question deviates from the

concept it covers. The question-response pairs (qt, rt) from concept ct are extended

similarly using the scalar difficulty parameter for each pair:

yt = e(ct,rt) + µqt · f(ct,rt),

where e(ct,rt) ∈ RD and f(ct,rt) ∈ RD are concept-response embedding and variation

vectors. This model choice reflects our third intuition: questions labeled as covering

the same concept are closely related but have important individual differences that

should not be ignored. This model choice is partly inspired by another work in fusing

KT and IRT models [69].

69

Dataset Learners Concepts Questions Responses

Statics2011 333 1, 223 - 189, 297
ASSISTments2009 4, 151 110 16, 891 325, 637
ASSISTments2015 19, 840 100 - 683, 801
ASSISTments2017 1, 709 102 3, 162 942, 816

Table 4.1. Statistics of the KT datasets.

These Rasch model-based embeddings strike the right balance between modeling

individual question differences and avoiding overparameterization. For the question

embeddings, the total number of embedding parameters in this model is 2CD +Q,

which is slightly more than that in a model that uses concepts to index questions

(CD), but much less than that in a model where each question is parameterized

individually (QD), since C ≪ Q and D ≫ 1. We further define the concept-response

embeddings as e(ct,rt) = cct + grt , where g1 and g0 denote the embeddings for correct

and incorrect responses (regardless of the concept), respectively. Therefore, we only

introduce a total of (C + 2)D +Q new embedding parameters instead of 2CD +Q

new parameters for the concept-response embeddings. These compact embedding

representations significantly reduce the number of parameters in not only AKT but

also some other KT methods, leading to improved performance on future learner

performance prediction.

4.5 Experimental Results

In this section, we detail a series of experiments we conducted to test on several

real-world datasets. We evaluate AKT both quantitatively through predicting future

learner responses and qualitatively through a series of visualizations and case studies.

4.5.1 Experimental Setup

Datasets. We evaluate the performance of AKT and several baselines on pre-

dicting future learner responses using four benchmark datasets: ASSISTments2009,

70

Dataset BKT+ DKT DKT+ DKVMN SAKT AKT-NR AKT-R

Statics2011 ∼ 0.75 0.8233 0.8301 0.8195 0.8029 0 .8265
ASSITments2009 ∼ 0.69 0 .817 0.8024 0.8093 0.752 0.8169 0.8346
ASSITments2015 0.731 0 .7313 0.7276 0.7212 0.7828
ASSITments2017 0.7263 0.7124 0.7073 0.6569 0 .7282 0.7702

Table 4.2. AUC performance of all KT methods on all datasets in predicting future
learner responses.

ASSISTments2015, ASSISTments20171, and Statics20112. The ASSISTments datasets

were collected from an online tutoring platform; in particular, the ASSISTments2009

dataset has been the standard benchmark for KT methods over the last decade. The

Statics2011 dataset was collected from a college-level engineering course on statics. On

all these datasets, we follow a series of standard pre-processing steps in the literature.

For the ASSISTments2009 dataset, we remove all interactions that are not associated

to a named concept. For the ASSISTments2015 dataset, we remove all interactions

where the “isCorrect” field is not 0 or 1. We list the numbers of learners, concepts,

questions, and question-response pairs in Table 4.1. Out of these datasets, only the

ASSISTments2009 and ASSISTments2017 datasets contain question IDs; therefore,

the Rasch model-based embeddings are only applicable to these two datasets.

Baseline methods and evaluation metric. We compare AKT against several

baseline KT methods, including BKT+ [184], DKT, DKT+ (which is an improved

version of DKT with regularization on prediction consistency [181]), DKVMN [186],

and the recently proposed self-attentive KT (SAKT) method [107], which uses an

attention mechanism that can be viewed as a special case of AKT without context-aware

representations of questions and responses and the monotonic attention mechanism.

We use the area under the receiver operating characteristics curve (AUC) as the metric

1The ASSISTments datasets are retrieved from sites.google.com/site/assistmentsdata/home and
sites.google.com/view/assistmentsdatamining/.

2The Statics2011 dataset is retrieved from pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507.

71

https://sites.google.com/site/assistmentsdata/home
https://sites.google.com/view/assistmentsdatamining/
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507

Dataset AKTraw-NR AKT-NR AKTraw-R AKT-R

Statics2011 0.8253 0.8265
ASSISTments2009 0.8082 0.8169 0.8267 0.8346
ASSISTments2015 0.7332 0.7828
ASSISTments2017 0.7066 0.7282 0.7552 0.7702

Table 4.3. AKT outperforms its variants that do not use contextual-aware question
and response representations.

to evaluate the performance of all KT methods on predicting binary-valued future

learner responses to questions.

Training and testing. For evaluation purposes, we perform standard k-fold

cross-validation (with k = 5) for all models and all datasets. Thus, for each fold, 20%

learners are used as the test set, 20% are used as the validation set, and 60% are used

as the training set. For each fold, we use the validation set to perform early stopping

and tune the parameters for every KT method.

We truncate learner response sequences that are longer than 200, following [117,

186], for computational efficiency reasons. If a learner has more than 200 responses,

we break up their entire sequence into multiple shorter sequences. We use the Adam

optimizer to train all models [73] with a batch size of 24 learners to ensure that an

entire batch can fit into the memory of our machine (equipped with one NVIDIA

Titan X GPU). We implement all versions of AKT in PyTorch; We also re-implement

DKT, DKT+, and SAKT, since including question IDs requires new dataset partitions

and leads to new experimental results. We use the Xavier parameter initialization

method [54] for AKT, DKT, DKT+, and SAKT; for DKVMN, we follow their work

and use samples from normal distributions to initialize the parameters [186]. We do

not re-implement BKT+; its performance on various datasets is taken from [186]. For

most datasets and most algorithms, one training epoch takes less than 10 seconds. We

set the maximum number of epochs to 300.

72

Dataset SAKT AKT-NRpos AKT-NRfixed AKT-NR

Statics2011 0.8029 0.8196 0.8196 0.8265
ASSISTments2009 0.752 0.7706 0.7708 0.8169
ASSISTments2015 0.7212 0.7271 0.7272 0.7828
ASSISTments2017 0.6569 0.672 0.6722 0.7282

Table 4.4. AKT significantly outperforms its variants that do not use monotonic
attention.

Dataset DKT DKT-R DKT+ DKT+-R DKVMN DKVMN-R SAKT SAKT-R AKT-NR AKT-R

ASSISTments2009 0.817 0.8179 0.8024 0.8033 0.8093 0.8235 0.752 0.7784 0.8169 0.8346
ASSISTments2017 0.7263 0.7543 0.7124 0.7382 0.7073 0.7628 0.6569 0.7137 0.7282 0.7702

Table 4.5. The Rasch model-based embeddings (sometimes significantly) improve
the performance of KT methods.

4.5.2 Results and Discussion

Table 4.2 lists the performance of all KT methods across all datasets on predicting

future learner responses; we report the averages across five test folds; the standard

deviation is less than 0.01 in all cases, and we omit these numbers. AKT-R and AKT-

NR represent variants of the AKT model with and without the Rasch model-based

embeddings, respectively. We see that AKT (sometimes significantly) outperforms

other KT methods on the ASSISTments datasets while DKT+ marginally outperforms

AKT on the smallest Statics2011 dataset. In general, AKT performs better on larger

datasets; this result suggests that attention mechanisms are more flexible than recurrent

neural networks and are thus more capable of capturing the rich information contained

in large-scale real-world learner response datasets. On the ASSISTments2015 and

ASSISTments2017 datasets, AKT-NR improves the AUC by 6% and 1% over the closest

baseline. It performs on-par with the best-performing baseline on the Statics2011 and

ASSISTments2009 datasets. More importantly, on the ASSISTments2009 and 2017

datasets with question IDs, AKT-R significantly outperforms other KT methods, by

2% and 6% over the closest baseline, respectively. We note that DKT outperforms

the more advanced DKVMN method in our implementation. While we are able to

73

replicate the performance of DKVMN using the same experimental setting [186], we

found that DKT performs much better than previously reported in that work. DKT+

performs on-par with DKT, with minor improvements on the Statics2011 dataset. We

also observe that the RNN-based model, DKT, outperforms SAKT on all datasets.

Ablation study. In order to justify the three key innovations in the AKT

method, context-aware representations of questions and responses, the monotonic

attention mechanism, and the Rasch model-based embeddings, we perform three

additional ablation experiments comparing several variants of the AKT method. The

first experiment compares AKT-NR and AKT-R using context-aware question and

response representations (with the question and knowledge encoders) with two variants

AKTraw-NR and AKTraw-R; In these variants, we use raw question and response

embeddings as their representations instead of the context-aware representations

(i.e., without passing them through the encoders). The second experiment compares

AKT-NR against several variants without the monotonic attention mechanism. These

variants include AKT-NRpos, which uses (learnable) positional encoding to capture

temporal dependencies in learner response data and AKT-NRfixed, which uses (fixed)

positional encoding using different frequencies of sine and cosine functions [156]. The

third experiment compares AKT-R with AKT-NR, DKT, DKT-R, DKT+, DKT+-R,

DKVMN, DKVMN-R, SAKT, and SAKT-R on the ASSISTments2009 and 2017

datasets where question IDs are available; DKT-R, DKT+-R, DKVMN-R, and SAKT-

R refer to the DKT, DKT+, DKVMN, and SAKT methods augmented with the Rasch

model-based embeddings as input, respectively.

Table 4.3 shows the results (only averages and not standard deviations across test

folds, due to spatial constraints) of the first ablation experiment for the context-aware

representations (i.e., the question and knowledge encoders). On all datasets AKT-R

and AKT-NR outperform their counterparts, AKTraw-NR and AKTraw-R, which

use only a single self-attention mechanism with exponential decay (i.e., the knowledge

74

retriever). These results suggest that our context-aware representations of questions

and responses are effective at summarizing each learner’s practice history.

Table 4.4 shows the results of the second ablation experiment for the monotonic

attention mechanism. We see that AKT-NR significantly outperforms other attention

mechanisms using positional embeddings, including SAKT, by about 1% to 6% on

all datasets. We postulate that the reason for this result is that unlike in language

tasks where strong long-distance dependencies between words are more common, the

dependence of future learner performance on the past is restricted to a much shorter

time window. Therefore, using multi-head attention with different exponential decay

rates in the attention weights can effectively capture short-term dependencies on the

past at different time scales.

Table 4.5 shows the results of the third ablation experiment for the Rasch model-

based embeddings on the two ASSISTments datasets where question IDs are available.

All baseline KT methods with the added Rasch model-based embeddings outperform

their regular versions, especially on the ASSISTments2017 dataset. These results

confirm our intuition that treating all questions covering the same concept as a single

question is problematic; individual differences among these questions should not be

ignored as long as overparameterization can be avoided.

Remark. Our standard experimental setting follows that used in [117, 186]. In

this setting, for questions tagged with multiple concepts (in the ASSISTments2009

dataset), a single learner response is repeated multiple times, one for each concept.

Other works used different experimental settings for these questions; In [170], the

authors removed such questions and as a result, DKT’s performance dropped to 0.71.

In [175], the authors built new concepts for each combination of co-occurring single

concepts and as a result, DKT’s performance dropped to 0.73. Therefore, we also use

an alternative experimental setting on the ASSISTments2009 dataset. For a question

tagged with multiple concepts, we average the corresponding concept embeddings and

75

DKT DKT+ DKVMN SAKT AKT-NR AKT-R

0.7616 0.7552 0.7556 0.7432 0 .7627 0.7866

Table 4.6. AKT still outperforms other KT methods on the ASSISTments2009
dataset under an alternative experimental setting for questions tagged with multiple
concepts.

use them as both input embeddings and for response prediction. Table 4.6 lists the

performance of all KT methods on the ASSISTments2009 dataset under this setting.

DKT’s performance dropped to 0.76 using average embeddings, faring better than

settings under [170, 175]. We observe similar performance drops compared to our

standard experimental setting for all KT methods, while AKT-R still comfortably

outperforms all baselines.

4.5.3 Visualizing Learned AKT Parameters

Monotonic attention. Figure 4.2 shows the interpretability offered by AKT’s

monotonic attention mechanism using the ASSISTments2009 dataset. Figure 4.2(a)

visualizes the attention weights in the knowledge retriever for one learner as an example;

we plot the attention weights used to predict their performance on 20 consecutive

practice questions across three attention heads. We see that each attention head

operates on its own time scale: they all have attention windows of different widths.

For example, the second head is capable of attending to the entire past, up to 20

time steps (in this example); on the contrary, the third head can only attend to the

immediate past and focuses primarily on the last 3-5 time steps. This observation

suggests that some questions and responses in the past contain information that is

highly predictive of the learner’s response to the current question; this information

can be effectively captured by multiple attention heads with different decay rates.

Figure 4.2(b) visualizes the normalized attention weights in the knowledge retriever

for a single learner for three consecutive time steps. In the top row, the learner

76

is responding to a question on Concept 30 at time T after practicing this concept

from T − 10 to T − 5, then taking a break to practice on Concept 42, before coming

back to Concept 30 at time T − 1. We see that AKT predicts their response to the

current question by focusing more on previous practices on this concept (both in

the immediate past and further back) than practices on another concept also in the

immediate past. In the middle row, the learner switches to practicing on Concept 42

again. Again, AKT learns to focus on past practices on the same concept rather than

the immediate past on a different concept at times T −2 and T −1. In the bottom row,

the learner practices on Concept 42 for the second consecutive time, and AKT shows

a similar focus pattern to that in the top row, with the roles of Concepts 30 and 42

swapped. These observations suggest that AKT’s monotonic attention mechanism has

the potential to provide feedback to teachers by linking a learner’s current response

to their responses in the past; this information may enable teachers to select certain

questions that they have practiced for them to re-practice and clear misconceptions

before moving on. We also note that AKT, using a data-driven approach, learns these

attention patterns that match hand-crafted features in existing KT methods (e.g., the

number of total attempts and correct attempts on this concept) [90, 113].

Rasch model-based embeddings. Figure 4.3 visualizes the learned Rasch

model-based question embeddings for several concepts using t-SNE [154] using the

ASSISTments2009 dataset, together with their empirical difficulties for selected ques-

tions (portions of correct responses across learners). We also highlight the hardest

and easiest question for each concept based on their empirical difficulties. We see

that questions on the same concept form a curve and are ordered by their difficulty

levels: for the majority of concepts, questions on one end of the line segment are

easy while questions on the other end are hard. This result confirms our intuition

that questions from the same concept are not identical but closely related to each

77

Concept Question µq

From the list of numbers below, which number
is the largest? 6.7, 6.4, 3.4, 5.1

-0.0397

Ordering
Positive
Decimals

Which of following decimals is the smallest?
0.107, 0.1889, 0.12, 0.11582

0.0090

Arrange these numbers from least to greatest.
-1/4, 12.1, -1.4, -4/4

0.0279

Steve has a marble jar, that he likes to ran-
domly select marbles from it to play with. The
jar has 5 orange marbles and 5 purple marbles.
What is the probability that Steve gets an or-
ange marble from the jar?

−0.0515

Probability of
a Single
Event

A bag contains 8 red, 5 green, and 7 blue pop-
sicles. John is going to draw out a popsicle
without looking in the bag. What is the proba-
bility that he will draw either a green or a blue
popsicle?

0.0088

A card is selected at random from a standard
deck of 52 cards. Find the probability of choos-
ing a club or an ace card. Enter your answer
as a fraction.

0.0548

Convert 7/7 into a percent. -0.0540

Conversion of
Fractions

Convert 8/4 into a percent. 0.0038
Convert 9/8 into a percent. 0.0529

Table 4.7. Question text and learned difficulty parameters (µq) for selected questions
on three concepts.

other; this relationship can be well-captured by the Rasch model using its difficulty

parameter.

Table 4.7 lists sample questions each for three different concepts, “Ordering Positive

Decimals”, “Probability of a Single Event”, and “Conversion of Fractions to Percents”,

and their learned difficulty parameters. We show three questions for each concept: an

easy one, an average one, and a hard one. Using the “Probability of a Single Event”

concept as an example, the learned difficulty parameter values (µq) are −0.0515 for

the easy one, 0.0088 for the average one, and 0.0548 for the hard one. These learned

difficulty levels match our understanding about the difficulty levels of these questions.

78

These results suggest that AKT has the potential to be applied in real-world

educational settings. Using the estimated difficulty parameters, a computerized

learning platform can either i) automatically select questions with appropriate difficulty

levels for each learner given their past responses, or ii) support teachers to adjust

course plans by providing them feedback on question difficulty levels learned from real

data. Therefore, AKT improves over existing KT methods by not only providing state-

of-the-art predictive performance but also exhibiting interpretability and potential for

personalized learning.

4.6 Conclusions

We have proposed attentive knowledge tracing, a new method for knowledge tracing

that relies fully on attention networks. Our method improves upon existing knowledge

tracing methods by building context-aware representations of questions and responses,

using a monotonic attention mechanism to summarize past learner performance in the

right time scale, and by using the Rasch model to capture individual differences among

questions covering the same concept. Experimental results on a series of benchmark

real-world learner response datasets show that our method outperforms state-of-the-art

KT methods and exhibit excellent interpretability.

79

0 10
Past Exercise Index

0
10

Pr
es

en
t E

xe
rc

ise
 In

de
x

0 10
Past Exercise Index

0 10
Past Exercise Index

0.00 0.02 0.04 0.06 0.08 0.10

(a)

30 30 30 30 30 30 42 42 42 30 30

30 30 30 30 30 42 42 42 30 30 42

T-10 T-9 T-8 T-7 T-6 T-5 T-4 T-3 T-2 T-1 T

Time Index

30 30 30 30 42 42 42 30 30 42 42

0.00

0.05

0.10

0.15

0.20

(b)

Figure 4.2. Visualizations of (a) attention weights in the decoder of AKT for three
attention heads and (b) attention weights for three consecutive practice questions for
a learner. Concept similarity and recency are key factor that control the attention
weights.

80

Box and Whisker
1.0

0.417

Circle Graph1.0

0.118

1.0
Stem and Leaf Plot

0.0

1.0
Table

0.25

Counting Methods0.884
0.129

1.0
Pythagorean Theorem0.0

Ordering Positive Decimals
0.251.0

Ordering Integers
0.0

1.0

Addition and Subtraction Integers
0.263

0.955

Addition and Subtraction Fractions
0.938

0.312

Order of Operations All0.913
0.267

Equation Solving More Than Two Steps
1.0

0.41

Figure 4.3. Visualization of learned question embeddings with fraction of correct
responses among learners for selected concepts.

81

CHAPTER 5

CAREER PATH MODELING AND RECOMMENDATION

5.1 Introduction

New skills and knowledge are needed for jobs in the future due in part to the rapid

development of workplace technology such as artificial intelligence and internet of

things. Jobs in the future will likely require skills that are not taught in schools nor

in standard training programs. Instead, workers will have to either upskill as they

move to new jobs within the same industry, or reskill themselves through the lifelong

learning process to move to another industry. In a survey conducted by the Pew

Research Center in 2016, 87% of the participants realize the importance of retraining

and reskilling [116]. Therefore, studying how users acquire skills in their lifelong

learning process and how those skills affect their future career is of crucial importance

to the world economy. Fortunately, the big data revolution has created an opportunity

for researchers to collect and analyze large-scale data to understand the evolving labor

market landscape and the upskilling and reskilling processes. Examples of such data

include job postings, e.g., those collected by Burning Glass [125], connections between

users, companies, and skills in economic graphs [91], and user profiles/resumes on

online professional networking sites such as LinkedIn [86] and CareerBuilder [28].

These datasets enable researchers to develop tools to help individual users to navigate

possible future career paths and guide them through upskilling and reskilling to reach

their career goal [144].

There are mainly two types of existing works on career path analysis. First, there

are works at the macroscopic level that use graph embedding methods to analyze

82

co-occurrence graphs of companies, jobs, skills, or a combination thereof to learn

representations of these entities. In [185], the authors developed the Job2Vec method

to learn the relationship between jobs and companies using graph embeddings and

showed that these embeddings are effective at link prediction. In [28], the authors

developed a representation learning method to analyze transitions between jobs and

skill co-occurrences and showed that these representations are effective at the next

job and skill prediction. These methods mostly only analyze one career “hop”, i.e.,

the jump from the previous job to the next job and do not take each user’s entire

professional history into account. Therefore, these methods are not personalized and

cannot help users explore long-term career paths.

Second, there are works on the microscopic level that analyze the sequence of

career experiences in each user’s professional profile. In [86], the authors developed a

contextual long short-term memory (LSTM) model, NEMO, to predict a user’s next

job using all the previous experiences and skills listed in their LinkedIn profiles. In

some earlier works [99, 174], the authors developed survival analysis-based methods

to predict how long a user will work on a particular job [85]. These methods mostly

resort to recurrent neural networks (RNNs) and their variants to analyze sequences of

career experiences and showed good performance in the next job prediction. However,

due to the uninterpretable nature of these neural network-based methods, they cannot

be used to provide meaningful feedback to users on how they should upskill or reskill

in order to reach their career goals.

Given the limitations of existing works, there is a need to develop methods that

can not only accurately predict each user’s future jobs but also provide actionable

feedback and recommendations. These methods should satisfy two requirements. First,

they should be interpretable so that users can understand the impact of each job

on their skill set and skills they need to acquire so that they can qualify for certain

jobs. Second, they should take user preferences, e.g., their career goals and real-life

83

constraints into account in their recommendations to fully adapt to the needs of each

user.

5.2 Related Work

The latent state-space model is a generic framework for modeling sequential

data. Recently, deterministic RNNs and their modern versions such as LSTMs

and gated recurrent units (GRUs) have shown remarkable performance on most

sequential data modeling tasks including speech modeling, language processing, and

video understanding [19]. Many of the previous career modeling works use RNNs; for

example, NEMO uses an LSTM with contextual inputs to predict a user’s next career

move [86].

A common alternative to RNNs is to use models with stochastic latent states

such as hidden Markov models (HMMs) or linear state-space models (L-SSMs), which

offer interpretable latent state transition and observed state emission functions [127].

Moreover, stochastic models such as HMM/L-SSM are more appropriate for capturing

randomness in the dataset than deterministic models such as RNNs [41]. However,

HMM and L-SSM have simple (discrete or linear) latent states and can not capture

the nuance in large, noisy real-world datasets. Lately, many advances have been made

on nonlinear stochastic state-space models using the variational principle [41, 77].

However, exact inference is intractable in nonlinear state-space models. Following

prior work, we learn the parameters in MNSS by maximizing the so-called evidence

lower bound (ELBO) [72].

5.3 Contributions

We propose a novel and interpretable model, the monotonic nonlinear state-space

(MNSS) model, to analyze online user professional profiles and provide i) actionable

feedback to users on skills they need to acquire and ii) recommendations on their

84

future career path. Our model is motivated by the observation that working on a job

is not only proof that the user has the skills required for the job, but also a valuable

opportunity for a user to acquire new skills. Our specific contributions are as follows:

1. We use a series of stochastic, binary-valued latent states to characterize whether or

not a user masters a skill at each point in their career. We also restrict them to be

non-decreasing over time to capture users’ expanding skill sets during their careers.

We show that MNSS (sometimes significantly) outperforms baseline methods on the

tasks of company, job title, and skill prediction, using two large datasets collected

from LinkedIn and Indeed.

2. We formulate the task of skill gap identification as an optimization problem that

can be solved to find a small set of skills a user needs to improve the most to

achieve their desired career goal. We use several case studies to demonstrate that

the identified skill gap can be used to provide actionable feedback to users on their

upskilling and reskilling processes.

3. We formulate the task of career path recommendation as a path planning problem

that can be (approximately) solved to find feasible paths a user can follow towards

their ultimate career goal. We use several case studies to demonstrate that the

identified (approximately) optimal career paths can be used to provide practical

career recommendations to users.

We also acknowledge a limitation of our work in that the data we analyze does not

contain counterfactual information, i.e., job offers that users turned down or jobs they

did not qualify for. Therefore, we can only analyze the observed career decisions made

by each user and can neither take real-life constraints they faced into account nor study

user qualifications. Moreover, our career path recommendations are generated from

historical user career path data and may be biased. Therefore, we emphasize that our

recommendations can augment, but not replace, the decision-making process of a user

85

throughout their career. Throughout the chapter, we use only professional/educational

experiences of users for forecasting; we do not use any user (such as demographic)

information for any of the tasks.

5.4 Methodology

5.4.1 Problem Setup

We denote the career profile of user i as T i =
(
[E i1, . . . , E iTi

], S i
)
, with Ti experi-

ences in their career trajectory and E it denotes the tith experience (either professional

or educational). S i = {si1, . . . , siMi
} denotes the user’s listed skill set and sij denotes

the jith observed skill, with a total of Mi observed skills. Each educational experi-

ence contains information on e.g., School, Degree, Major, Start Time, and Duration,

whereas each professional experience contains information on e.g., Company, Job Title,

Start Time, and Duration. There is no ordering among the skills listed in the observed

skill set. Moreover, in most user profiles on major online professional network websites,

there is no information on when the user acquired each skill in their career. Instead,

the listed skill set is only a snapshot of their (evolving) true skill set captured at the

time the profile is accessed. Therefore, we do not use these observed skills to predict

a user’s professional experiences like the work in [86].

Our goal is to develop a model for user career paths that can not only i) predict

the career path of each user, but also ii) provide actionable feedback and career

recommendations to users to help them make important career decisions. In the

remainder of the chapter, we omit the superscript i for user i for simplicity of

exposition when we discuss one user. We start by defining two prediction tasks that

will help us model user career paths.

1. Company and Job Title Prediction: Predict ct, the company, and ot, the job

title of a user’s next professional experience, given their previous experiences, i.e.,

[E1, . . . , Et−1].

86

2. Skill Set Prediction: Predict a user’s listed skill set S = {s1, . . . , sM}, given

their entire career history, i.e., [E1, . . . , ET].

We can adopt many black-box models for these prediction tasks. However, due to their

uninterpretable nature, these models cannot be used to provide actionable feedback

and meaningful career recommendations to users. Therefore, we define three auxiliary

tasks that an interpretable model should be able to tackle:

3. Skill Gap Identification: Identify the skill gap a user is facing, i.e., a list of skills

that the user needs to acquire or improve on to reach their desired career goal (a

company, job title pair).

4. Career Path Recommendation: Find feasible career paths that connect a user’s

current career state to their career goal. These career paths consist of professional

experiences that are attainable and ultimately lead the user to their desired career

goal.

We start by outlining a generic latent state-space model framework for tasks (1)

and (2) defined above. In Section 5.4, we propose the interpretable MNSS model that

is capable of completing both these tasks and the auxiliary tasks (3), (4), and (5)

defined above.

Latent state-space models for career experience prediction. As shown in

Figure 5.1, we adopt a generic latent state-space model to analyze sequences of

professional experiences in user career paths. The key component of this model is to

use a set of latent states, zt ∈ RD, t = 1, . . . , T , to characterize a set of unobserved,

evolving variables that dictate the user’s career experience at each time step. At

each time step, there is an input to the latent state, denoted as ut, and an observed

output from the latent state, denoted at xt. Under most real-world settings, the

observed output from the last time step is used as the input to the next time step,

87

Tencent,
Software
Engineer

UCLA,
Masters,

Computer
Science

Amazon,
Software
Engineer

Google,
Senior

Software
Engineer

Python,
C, C++,
Cloud

Computing,
Hadoop,

Scalability
2007 2009 20132003

Figure 5.1. The structure of the MNSS model and an example user profile with T
experiences.

i.e., ut = xt−1, except for the first time step where there is no input; we initialize z1

to an all-zero vector. In our problem setting, the latent state variables zt correspond

to the latent skill states of each user at each point in time, and the observed output

variables xt correspond to the observed career experiences of the user at that time.

Since our goal is to predict professional experiences, we omit educational experiences

at the output, but they are still used as input into the next latent skill state. We do

not predict the duration of professional experiences, although that can be modeled

using point processes [34]. Instead, we use as part of the input states to learn how the

duration of a professional experience impacts a user’s skills.

This latent state-space model has two key components: a latent skill state transition

model p(zt| z1:t−1,u1:t) and an observed career experience emission model p(xt|zt).

The transition model characterizes how each professional experience impacts the latent

skill state of the user, i.e., how does a user acquire new skills and improve existing

skills in an on-job setting. We note that there are other ways for user upskilling,

such as going through training programs and taking online courses; however, since

they are not often listed in online user professional profiles, we do not model them

88

with our transition model. The emission model characterizes how latent skill states

decide a user’s next career experience. Therefore, we use the transition model to

estimate a user’s current latent skill states from their past experiences and then use

the emission model to predict their next career experience. We also introduce an

additional emission model p(S|zT+1) to predict a user’s listed skill set given their

entire career path. Our goal is to learn these transition and emission models from

real-world user career profiles.

5.4.2 The MNSS Model

In this section, we detail the MNSS model for user career path modeling. Black-

bfox neural network-based models are generally not interpretable, which means that

they can excel at prediction while being unable to provide actionable feedback to

users. For example, since the latent states in these models are usually not associated

with a user’s mastery level of any observed skills, they cannot be used to recommend

a user which skills they should acquire in order to reach their career goal.

In order to enhance interpretability, we make a key assumption: a user’s skill

mastery increases over time as they have more career (either educational or professional)

experiences. Therefore, we place a monotonic constraint on the latent skill states

of each user. Moreover, typical state-space models use continuous latent states that

are not easily interpretable. Therefore, we use binary-valued random variables as

the latent skill states in MNSS that indicate whether a user masters a latent skill or

not. In what follows, we first lay out the MNSS model and then detail a method for

efficient approximate inference using a novel monotonic GRU module.

5.4.3 Monotonic Nonlinear State-space Model

Excluding the likelihood of the listed skill set (which we detail in Section 5.4.4),

the joint probability of all career experiences in a user’s profile and their corresponding

latent skill states is given by

89

pθ(x1:T , z1:T |u1:T) = pθz(z1)
T∏
t=2

pθz(zt|zt−1,ut)
T∏
t=1

pθx(xt|zt),

where pθz(·) is the latent skill state transition model and pθx(·) is the career experience

emission model; θz and θx denote the set of parameters in these models, respectively,

and θ = {θx, θz} denotes the set of all model parameters. We exclude the term pθz(z1)

from our analysis since it is the same for all users and does not impact our predictions.

As mentioned abfove, we make two novel model choices: First, we use binary-valued

discrete random variables as the latent skill states, i.e., zt = [zt,1, . . . , zt,D] ∈ {0, 1}D,

where D denotes the number of latent skills. In this setup, zt,j′ = 1 means that

the user masters latent skill j′ after the tith experience. Second, we constraint the

latent skill states to be non-decreasing, i.e., zt−1 ≤ zt
1, where the inequality operates

element-wise on vectors. Under these model choices, zt,j′ = 1 and zt−1,j′ = 0 means

that the user acquired latent skill j′ after the tth experience, i.e., by working a job at

a company for some duration (in case of a professional experience).

5.4.4 Approximate Inference

Exact inference of the posterior distribution pθ(z1:T |x1:T ,u1:T) in MNSS is compu-

tationally intractable. Therefore, following [41, 77], we use an auxiliary distribution

qϕ(z|x,u) (referred to as a recognition network and usually parameterized by an

RNN) with parameters ϕ, to approximate the true posterior. We perform approximate

inference by maximizing the ELBO on the marginal observed data log-likelihood given

by

logpθ(x1:T |u1:T) ≥ L(θ, ϕ)

= Eqϕ(z1:T |x1:T ,u1:T) log pθx(x1:T |z1:T)− β DKL(qϕ(z1:T |x1:T ,u1:T) || pθz(z1:T |u1:T)),

1In terms of the latent skill state transition model, the monotonic constraint can be stated as
pθz (zt|zt−1,ut) = 0 if ∃j′ such that zt−1,j′ > zt,j′ .

90

with respect to the model parameters θ and the recognition network parameters ϕ [72].

Here, qϕ(z1:T |x1:T ,u1:T) is the approximate posterior distribution of the latent states

and pθz(z1:T |u1:T) is its prior distribution. The first term is the reconstruction loss

of the observed data sampled from the approximate posterior distribution, whereas

the second term is the KL divergence between the approximate posterior distribution

and the prior distribution. The parameter β > 0 controls the balance between the

reconstruction loss and the KL divergence loss. Using the d-separation criterion in

Figure 5.1, we can decompose the prior distribution as

pθz(z1:T |u1:T) = pθz(z1)
∏T

t=2 pθz(zt|zt−1,ut),

and the approximate posterior distribution as

qϕ(z1:T |x1:T ,u1:T) = qϕ(z1)
∏T

t=2 qϕ(zt|zt−1,xt,ut).

To approximate qϕ(zt|zt−1,xt,ut), we need to sample zt−1 first. One option is to use

ancestral sampling to approximate qϕ in a way that is similar to the structured inference

method for nonlinear state-space models [41, 77]. However, ancestral sampling is slow

due to its sequential nature and has high variance in its estimates [31]. Therefore,

we employ another factorization of the approximate posterior distribution where the

distribution of zt does not condition on zt−1, to avoid sampling. We observe that the

variable zt depends on u1:t and xt when zt−1 is unobserved. Using recurrence, we

can equivalently write qϕ(zt|zt−1,xt, ut) = qϕ(zt|xt,u1:t). Since xt = ut+1, we have

qϕ(zt|xt,u1:t) = qϕ(zt|u1:t+1). Similarly, we can write the prior as pθz(zt|zt−1,ut) =

pθz(zt|u1:t). The final ELBO becomes:

L(θ, ϕ) = ∑T
t=1 Eqϕ(zt|u1:t+1) log pθx(xt|zt)

− β
∑T

t=1DKL(qϕ(zt|u1:t+1) || pθz(zt|u1:t)). (5.1)

91

Thus, given the input states up until time step t and the current output state xt, the

recognition network qϕ(·) predicts the distribution of the latent state zt. On the other

hand, given the input states up until the current time step, u1:t, the prior network pθ

predicts the distribution of current latent state zt. The KL divergence term regularizes

the recognition network so that it is close to the prior distribution [72]. If we replace

the approximate posterior qϕ(zt|u1:t+1) with the prior, pθ(zt|u1:t) in Eq. 5.1, the ELBO

reduces to the log-likelihood, which is the objective in maximum likelihood estimation

(MLE):

LMLE(θ) =
∑T

t=0 Epθz(zt|u1:t) log pθx(xt|zt).

In our experiments, we found that adding this objective to the ELbfo improves training

stability [19]. Thus, the final objective that we maximize for the career experiences of

all users is ∑
i Li(θ, ϕ) + αLi

MLE(θ),

where α > 0 is a tunable parameter. We learn the recognition network parameters

ϕ and the generative model parameters θ simultaneously using stochastic gradient

descent [72]. After the model parameters are trained, we use the learned prior model

pθz(zt|u1:t) to compute the distribution of the latent skill state zt, which is used to

predict the user’s next career experience, xt.

The monotonic gated recurrent unit. We now detail our choice for the recog-

nition and prior networks for the approximated posterior distribution and the prior

distribution. Since the latent state zt is a binary-valued vector, we characterize it

as Bernoulli random variables with success probabilities pθz(zt|u1:t) = γt ∈ [0, 1]D

for the prior model. We use an RNN-type model, gθz , to characterize the latent

skill state transitions as γt = gθz(γt−1,ut). Similarly, for the approximate posterior

model, we have qϕ(zt|u1:t+1) = κt ∈ [0, 1]D and another RNN-type model, gϕ, where

κt = gϕ(κt−1,xt).

92

Common RNN variants such as LSTMs and GRUs do not have monotonic latent

states. Therefore, we propose a new variant of GRU, which we dub the monotonic

GRU (MGRU), to model the latent skill state transitions. In the context of the prior,

the MGRU is defined as (the approximate posterior follows the same structure with a

different set of parameters)

γt = γt−1 + (1− γt−1)⊙ ot, (5.2)

where ⊙ denotes element-wise multiplication between vectors and

Kt = σ(Wkut + ukγt−1),

Rt = σ(Wrut + urγt−1),

ot = σ(Wout + uo(Rt ⊙ γt−1))⊙Kt, (5.3)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function and W ,u denote parameter

matrices. The γt−1 term in Eq. 5.2 corresponds to the expected value of the latent skill

states after time step t−1; since γt−1 ∈ [0, 1]D, we can interpret (1−γt−1) ∈ [0, 1]D as

the skill deficiency of the user (relative to full mastery of all latent skills, i.e., γ = 1).

ot ∈ [0, 1]D corresponds to the portion of the skill deficiency gap being filled by the

professional experience at time step t. Therefore, it is easy to see that γt ≥ γt−1.

We use a gating structure similar to that in GRUs [19] for the recurrence in Eq. 5.3;

Kt,Rt,ot correspond to the update gate, reset gate and update value components

of GRUs, respectively. We note that in addition to being non-decreasing, another

advantage of MGRU is that the gradients do not vanish due to the additive recurrence

relation in Eq. 5.2. The inference procedure for time step t is summarized in Figure 5.2.

Sampling. The KL divergence between the two Bernoulli distributions qϕ(zt|u1:t+1)

and pθz(zt|u1:t) can be computed in closed-form, so the gradient of the KL divergence

93

Prior
Network

Recognition
Network

Reconstruction Loss

Figure 5.2. Visualization of the approximate inference method for MNSS model.

term can back-propagate through the parameters ϕ and θ. To compute the expected

reconstruction loss, however, we need to sample from qϕ(zt|u1:t+1). Due to the discrete

nature of the latent state z, we can not use the reparameterization trick to sample

from qϕ. Therefore, we can use the Gumbel-softmax trick, which allows us to obtained

biased samples from qϕ [68]. In practice, we found that setting ẑ = γ, i.e., to its

expected value and avoid sampling leads to comparable model fitting quality with

lower empirical computational complexity.

Emission models. The output state at time t is xt = Et+1 = (ct,ot), where ct,ot

are one-hot encoded vectors representing the company and the job title for the user’s

professional experience at time step t. We use learnable embedding modules for all the

fields including companies, job titles, and skills; the embedding modules ec(k) ∈ RE,

eo(l) ∈ RE, es(j) ∈ RE project the kith company, lith job title, and jith observed skill

to an embedding space of dimension E, respectively.

For the task of predicting the next professional experience of a user, we treat

the company and job title fields separately. We use nonlinear embedding modules

(parameterized by fully-connected neural networks) fc(·) and fo(·) to map the latent

skill state zt into the embedding space of companies and job titles. We then minimize

94

the combined cross-entropy objective with the softmax emission function p(xt|zt) for

a (company, job title) pair as

− log
(exp(ec(k)

⊺fc(zt))∑Mc

k′=1 exp(ec(k
′)⊺fc(zt))

)
− log

(exp(eo(l)
⊺fo(zt))∑Mo

l′=1 exp(eo(l
′)⊺fo(zt))

)
,

where Mc,Mo are the number of unique companies and job titles, respectively.

However, since these numbers are likely very large, the denominators in the loss

function cannot be computed efficiently. Therefore, we employ a negative sampling

approach and convert the multi-class classification problem into a series of binary

classification problems, using a small number of randomly sampled companies and job

titles as negative examples [58, 100]. Concretely, we minimize the following objective

for company prediction:

− log(σ(ec(k)
⊺fc(zt))−

∑Ns

k′=1 log(σ(−ec(k′)⊺fc(zt)),

where k′ indexes a total of Ns negative samples from a uniform distribution among

companies that do not correspond to the user’s professional experience at time step t.

The objective for job title prediction is defined similarly. We include this objective

term for professional experiences but not educational experiences.

For the task of predicting the observed skill set S, we use a two-step approach.

First, we take the user’s current professional experience xT and use it to estimate

the user’s current latent skill state, zT+1, from pθz(zT+1|x1:T). Second, we use a

(linear) embedding module fs(·) parameterized by the matrix Ws ∈ RD×E to map

zT+1 ∈ [0, 1]D into the embedding space of observed skills as

fs(zT+1) =
∑D

j′=1 zT+1,j′ [Ws]j′ = W ⊺
s zT+1 ∈ RE,

where [Ws]j′ denotes the vector in the j′th row of Ws, i.e., the embedding of latent

skill j′. Since a user’s observed skill set contains multiple skills, we predict these

95

observed skills by minimizing the following objective:

−
∑
j∈S

log(σ(es(j)
⊺fs(zT+1)) +

∑
j /∈S

log(σ(−es(j)⊺fs(zT+1)).

Since the total number of unique skills is significantly larger than the number of

observed skills for each user, we employ negative sampling again to randomly select a

small subset of unobserved skills in the second term of the loss function abfove for

each user.

5.4.5 Career Path Recommendation

Using MNSS, we can trace a user’s latent skill states zt over time and compute

their probability of attaining any job at any company at any point in time. These

capabilities enable us to study career paths that connect a user to their desired job.

We define the career goal of a user as a (company, job title) pair (c∗,o∗); given their

experiences until time step t, our task is to plan a career path, i.e., intermediate

(company, job title) pairs, for them to eventually reach their career goal. For example,

after completing a Bachelor’s degree in Economics, a user is working in Deloitte Ltd.

as an Analyst; our goal is to recommend a path consisting of a series of intermediate

career “hops” that has the best chance of leading them to their career goal, which is

to become a partner at Goldman Sachs.

Formally, for each user, given their experiences (bfoth educational and professional)

for the first t time steps as [E1, . . . , Et], our goal is to find a path [Êt+1, . . ., ÊG], where

ÊG = (c∗,o∗) is their career goal, with an arbitrary number of intermediate hops

[Êt+1, . . . , ÊG−1]. For the path to be feasible to the user, we maximize the likelihood of

the entire career path, including each intermediate hop, as

max
[Êt+1,...,ÊG−1]

∏G
t′=t+1 p(Êt′|E1:t, Êt+1:t′−1), (5.4)

96

Dataset # Users # Experiences # Companies # Job Titles # Skills

LinkedIn 1, 136, 231 6, 281, 572 89, 126 56, 773 16, 976
Indeed 3, 945, 040 26, 009, 711 85, 427 50, 219 17, 836

Table 5.1. Statistics for the career path datasets.

where we maximize over all paths consisting of valid combinations of companies and

job titles.

Conditional optimal path. An additional relevant real-world scenario is that a

user has several options for their next career hop and need to choose one. For example,

after completing a Bachelor’s degree in Computer Science, a user has offers to join a

Ph.D. program in Economics, an MBA program, or a banking company as a developer.

They must make a decision on which offer to accept in order to maximize the chance

of reaching their final career goal, which is to become a partner at McKinsey & Co.

We denote these K choices (after time step t) as {Ê1t+1, · · · , ÊKt+1} and recommend the

user to choose the one that maximizes the likelihood of their subsequent career path

to the career goal as

max
Êk
t+1∈{Ê1

t+1,...,ÊK
t+1}

sup
Êt+2,...,ÊG−1

G∏
t′=t+2

p(Êt′|E1:t, Êkt+1, Êt+2:t′−1). (5.5)

This problem setting is also inspired by do-calculus in causal inference, where one is

interested in modeling the effect of setting a random variable (Et+1) to a particular

value and study its effect on other random variables [114].

5.5 Experimental Results

We start by conducting quantitative experiments on the standard company, job

title, and skill prediction tasks and show that MNSS outperforms baselines. We then

conduct several qualitative experiments to show that our model i) extracts insights

97

Performances Skills Companies Job Titles

Dataset Methods MPR ↓ P@10 ↑ P@100 ↑ MPR ↓ P@10 ↑ P@100 ↑ MPR ↓ P@10 ↑ P@100 ↑

LinkedIn

Job2Vec 7.16 15.99 47.69 29.14 10.09 13.9 25.74 11.87 20.93
hrm 3.82 26.18 65.11 5.38 13.98 37.4 4.94 17.9 42.13

NEMO 3.69 26.21 66.01 5.15 13.99 38.0 4.58 19.24 44.15
NSS 2.94 27.66 67.62 4.72 15.63 40.85 4.17 20.62 46.07

MNSS 2.81 27.79 67.69 4.75 15.58 40.65 4.13 20.52 46.15

Indeed

Job2Vec 8.89 22.59 50.42 28.15 12.85 18.5 21.31 15.07 25.82
hrm 7.23 26.32 57.93 12.18 7.49 22.09 5.75 18.37 42.85

NEMO 7.99 25.77 57.18 9.85 8.17 24.24 4.99 19.85 45.11
NSS 6.52 26.21 58.45 9.71 8.25 24.33 4.96 19.96 45.49

MNSS 4.61 26.6 59.16 8.97 8.71 25.24 4.81 20.29 46.15

Table 5.2. Predictive performance on companies, job titles, and skills on career path
datasets and all three metrics for all methods.

on career paths from real data and ii) provides actionable feedback and career path

recommendations to users.

5.5.1 Experimental Setup

Dataset. We use two publicly available datasets containing user career profiles,

extracted from LinkedIn2 and Indeed3. A user profile consists of educational and

professional experiences along with their skill set. Table 5.1 lists the number of user

profiles, experiences, and unique skills, companies, job titles for both datasets. In each

dataset, the numbers of unique entities, including skills, companies, job titles, schools,

degrees, and majors are very large and most of them only occur in very few profiles.

Therefore, we use a threshold to filter out infrequent entities and denote the filtered

out ones as “Unknown” and do not include them in both training and testing. To

remove outliers, we filter user profiles (around ∼ 0.5% users) with more than 10/20

professional experiences in the Indeed/Linkedin datasets. For all datasets, we sort

user experiences based on their start times in chronological order.

2https://www.kaggle.com/linkedindata/linkedin-crawled-profiles-dataset

3https://datastock.shop/download-indeed-job-resume-dataset/

98

https://www.kaggle.com/linkedindata/linkedin-crawled-profiles-dataset
https://datastock.shop/download-indeed-job-resume-dataset/

Quantitatively, we measure our model’s ability to predict professional experiences

and skills listed in each user’s profile. In each time step, we predict a user’s next

professional experience, i.e., the company and title of their next job; After the final

time step, we use all past experiences to predict the user’s listed skill set. We observe

that around 20% of the time, a user’s next job is either within the same company

or has the same job title as the previous one. Since these transitions are easy to

predict, we only evaluate job transitions where the user’s next company and job title

are different than the previous ones.

Evaluation measures and baselines. For each entity that we are predicting

(company, job title, skill), we rank all unique entities in the dataset by sorting their

predicted likelihood in descending order. We use mean percentile rank (MPR) and

precision@K (P@K) for K ∈ {10, 100} as the evaluation metrics of predictive quality.

Using companies as an example, we define MPR as

MPR =
∑

i

∑Ti

t=1 1obsrank(cit)/ZC,

where cit denotes the actual company user i worked on at time step t and C denotes

the total number of unique companies. 1obs is the indicator function with value 1

when the event is professional (we do not predict educational experiences) and the

entity is not “Unknown”, and 0 otherwise. Z =
∑

i

∑
t 1obs is the normalizing factor

that counts all the observed occurrences. In other words, MPR corresponds to the

average percentile rank for the observed entity in our prediction; smaller MPR values

correspond to higher predictive quality. Similarly, we define P@K as

P@K =
∑

i

∑Ti

t=1 1obs1
(
rank(cit) ≤ K

)
)/Z,

where 1(rank ≤ K) is another indicator function that has value 1 if the actual observed

company is ranked at or above K in our prediction. In other words, P@K corresponds

99

to the frequency that the observed entity is within the top K predicted entities; larger

P@K values correspond to higher predictive quality. The corresponding metrics for

job title and skill prediction tasks are defined similarly, with the exception that we do

not sum over all time steps for skill prediction.

We compare MNSS against three baselines. We do not discuss simple baselines

such as recommending the most frequent skills/job titles/companies and bigrams since

they do not perform well. The first baseline, which we dub the Job2Vec method, learns

embeddings of job titles, companies, and skills from directed transition graphs of users

between jobs [185]. For each user, we only use the job title/company embedding of their

previous professional experience to predict the job title/company of their next career

experience. We also use the job title embedding of a user’s last professional experience

to predict their skill set. The second baseline, the hierarchical deep representation

learning (HRM) method [163], does not introduce recurrence in the latent skill states.

Instead, HRM aggregates the embeddings of all past experiences using max-pooling

and uses it as the latent skill state, which is used to predict the next professional

experience. The third baseline, the NEMO method [86], is the current state-of-the-art

in next job title and company prediction to our problem setting. We slightly modify

NEMO to predict a user’s skill set instead of using it as input to the LSTM model to

predict future job titles and companies since we do not know when a user acquires their

listed skills. We also experimented with a version of MNSS without the monotonic

constraints, which we dub NSS.

Training and testing. For evaluation purposes, we perform standard k-fold cross-

validation (with k = 5) for all models and all datasets. Thus, for each fold, 20% user

profiles are used as the test set, 20% are used as the validation set, and 60% are used

as the training set. The validation set is used for parameter tuning and the test set is

used for evaluation of the tuned methods.

100

Implementation details. At each time step t, we compute the input state for

all deep models (except NEMO as ut = [Education_Vectort ⊕ Profession_Vectort],

where ⊕ denotes vector concatenation. We concatenate embeddings for School, Major,

Degree, Start Time, Duration to represent the contextual Education_Vectort and we

concatenate embeddings for Company, Job Title, Start Time, Duration to represent

the contextual Profession_Vectort. For NEMO we use education vectors as input to

the initial latent skill states and use the profession vectors as input in later time steps

to predict the next job title and company [86]. Using inputs u1:t, hrm uses max-

pooling operation, NEMO and NSS use LSTM/GRU, and MNSS uses our monotonic

state-space model to update the latent skill state zt, respectively.

Since companies, job titles, and skills are likely to be closely associated with the

semantic meanings of the words in their names, we initialize the embedding vectors for

these entities using the average Glove embedding vector (300 dimensional) [115]. For

all trainable models, we do early stopping in our training process using the validation

set. We implement all the methods in PyTorch [112] and train all models on a single

NVIDIA Titan X GPU.

5.5.2 Results and Discussion

Table 5.2 lists means of the predictive performances on companies, job titles, and

skills for all models in the MPR, P@10, and P@100 metrics, on both datasets. The

standard deviations are less than 0.1 in all cases; thus, we omit standard deviation

numbers. We see that MNSS and NSS outperforms all other baselines in most cases.

Specifically, MNSS outperforms the state-of-the-art baseline NEMO by 5− 20% on the

company, job title, skill prediction tasks in MPR on both datasets. Similarly, in P@10

and P@100, we observe that MNSS significantly outperforms NEMO (by 5− 20% on

the LinkedIn dataset and 1− 5% on the Indeed dataset). We also observe that MNSS

slightly outperforms NSS on the skill prediction task. On the company and job title

101

1 2 3 4 5
Quantile

10

30

50

70

P
@
1
0
0

Skill

MNSS

NEMO

1 2 3 4 5
Quantile

10

25

40

55

P
@

1
0
0

Job Title

1 2 3 4 5
Quantile

14

26

38

50

P
@
1
0
0

Company

Figure 5.3. Performance across quantiles of skill, job title, and company prediction
according to how often they occur.

prediction tasks, MNSS performs on par with NSS in all metrics on both datasets.

This result suggests that the interpretable monotonic latent skill states in MNSS are

well-suited to model user upskilling and reskilling processes, as evident by its superior

performance on the skill prediction task; on the other hand, for the standard job title

and company prediction tasks, uninterpretable black-box models such as NEMO are

also applicable. The graph embedding-based method, Job2Vec, does not perform

well in our experiments (except for P@10 on the Indeed dataset); a possible reason

is that it does not take a user’s entire past career history into account and is not

personalized. It performs relatively better in P@10 compared to MPR since graph

embeddings are effective at finding closely related companies and job titles. On the

contrary, RNN-based methods like NEMO, NSS, and MNSS significantly outperform

other baselines since the recurrence in their latent states can capture users’ evolving

skill sets and extract information from their past carer experiences.

To further understand where the performance gain of MNSS over NEMO comes

from, we compare their performance on the different entities and user groups. In

Figure 5.3, we divide skills, job titles, and companies according to how often these

entities occur and visualize the predictive performance in P@100 for entities in different

quantiles. We observe that MNSS consistently outperforms NEMO across all quantiles,

especially in the middle quantiles. In Figure 5.4, we divide users into groups according

102

2 5 10 15 20
of Job Experiences

56

60

64

68

P
@

1
0

0

Skill

MNSS

NEMO

2 5 10 15 20
of Job Experiences

42

44

46

48

P
@

1
0

0

Job Title

2 5 10 15 20
of Job Experiences

26

32

38

44

P
@

1
0

0

Company

Figure 5.4. Performance across user groups according to the number of career
experiences listed in their profiles.

Energy
Food

Food IndustryFMCG

Food Safety
Actin

g

Entertainment
Theatre

Comedy
Aviation

Airlin
es
Hotels

Sports
Fitness

Fitness T
raining

Personal Training

Hospitality

Hospitality Industry

57
12

5
45

5
46

5
51

6

0.1

0.2

0.3

0.4

0.5

Figure 5.5. Most latent skills are associated with only a few observed skills.

to the number of career experiences listed in their profiles and visualize the predictive

performance across groups; the width of error bars increase as the number of career

experiences increase since there are fewer users in these groups. MNSS consistently

outperforms NEMO and especially in skill prediction for users with long career histories,

suggesting that it is effective in monitoring users’ upskilling processes.

In what follows, we conduct a series of qualitative experiments and present insights

we obtained from the datasets and show the excellent interpretability of MNSS We

cannot obtain these insights from uninterpretable baselines such as NEMO however,

we have to omit qualitative comparisons due to spatial constraints.

103

Project management

Business Strategy

Product Development

Data Analysis

Management Consulting

Financial Modeling

(University of
X, B.S.,

Chemical Eng.)

(L-Corp.,
Operation
Planner)

(X School of
Business, MBA)

(McKinsey & Co.,
Associate)

Figure 5.6. The reconstructed skill acquisition process with each career experience
for a user using MNSS.

Past Experiences Skills to be Improved

Goal: (Google, Engineering Manager)

(Duke, Computer Science, B.S.)
→ (CGI Inc., Senior Consultant)
→ (Cake Financial, Director)

C++, Product Development, C,
Java, Python

(MIT, Computer Science, B.S.)→
(CMU, Computer Science, M.S.)

Project Management, Product De-
velopment, Cross-functional Team
Leadership

Table 5.3. Top skills that need to be improved to reach the career goal.

Mapping latent skills to observed skills. Since the number of latent skills (D)

is significantly less than the number of observed skills (M), we can interpret the

meaning of each latent skill by examining the subset of observed skills that are the

most closely associated with it. Let Es ∈ RE×M denote the matrix containing all

observed skill embeddings es(j), the entries of the product matrix WsEs ∈ RD×M

quantify the similarity between each latent skill and each observed skill. We visualize

a re-arranged subset of WsEs in Figure 5.5, where rows correspond to latent skills and

columns correspond to observed skills; brighter colors represent higher similarities. We

see that, as expected, each latent skill is closely associated with only a few observed

skills; for example, latent skill 465 is closely associated with observed skills “Sports”,

“Fitness”, “Fitness Training”, and “Personal Training”, while latent skill 125 is closely

104

Past Experiences Optimal Path Log-
likelihood

Goal: (Goldman Sachs, Managing Director)

(PKU, Physics, B.S.)→
(UIUC, Physics, Ph.D.)

(Morgan Stanley, Quantitative Analyst) →
(Knight Capital, Analyst) → (Knight Capi-
tal, Algorithmic Trading Developer)

-0.985

Table 5.4. Optimal career path towards a user’s career goal.

Career Goals Previous Experi-
ence

(U. Toronto,
Ph.D., Com-
puter Science)

(Microsoft, Soft-
ware Engineer)

(Harvard,
MBA)

(Georgia Tech,
Assistant Profes-
sor)

(Stanford, B.S.,
Computer Sci-
ence)

-1.722 -4.217 -6.121

(Google, Engi-
neering Man-
ager)

(MIT, B.S.,
Computer Sci-
ence)

-0.5863 -0.4390 -0.9391

(McKinsey &
Co., Associate)

(Harvard, B.S.,
Economics)

-2.3868 -2.018 -0.4456

Table 5.5. Options each user faces and the log-likelihood of reaching their career
goals by taking each option.

associated with observed skills “Acting”, “Entertainment”, “Theatre”, and “Comedy”.

We found that without the monotonic property of MNSS, other baselines do not learn

clear associations between latent skills and observed skills.

Skill acquisition process. The monotonic latent skill states in MNSS enable us to

reconstruct a user’s skill acquisition process through different professional experiences

in their career. Specifically, we visualize the probability of a user mastering each

observed skill in Figure 5.6. The number in cell (j, t) corresponds to the probability

(×100) that the user masters observed skill j after the professional experience at time

step t. We see that MNSS is able to discover how professional experiences improve a

user’s skill. For example, this user acquired most of the skills listed, especially Project

105

Management, Business Strategy, and Data Analysis after getting an MBA degree

from a business school, and significantly improved on Management Consulting and

Financial Modeling after becoming an Associate at McKinsey & Co.

Skill gap analysis. For each user, we can analyze the skill gap they are facing

between their current estimated latent skill state and the desired latent skill state to

reach their career goal. In order to analyze the skill gap, we take the trained model

and solve the following optimization problem

minimizez̃ − log p
(
(c,o)|z̃

)
+ λ∥zt − z̃∥1

subject to z̃ ∈ [0, 1]D, z̃j ≥ zt,j,∀j ∈ {1, · · · , D},

where λ > 0 is a regularization parameter. In other words, we search for a new latent

skill state z̃ by minimizing the negative log-likelihood of reaching the career goal

(c,o); Moreover, since it is not realistic to ask a user to improve all skills, we use an

ℓ1-norm penalty to promote new latent skill states that requires improvements on only

a sparse set of latent skills. We solve this problem using the projected gradient descent

algorithm [96]. We then map this latent skill gap to the space of observed skills by

calculating the required increase in the probability of mastering each observed skill as

σ(es(j)
⊺fs(z

∗))− σ(es(j)
⊺fs(zt)), where z∗ denotes the solution to the optimization

problem above.

We list the observed skills that require the most improvement for two users to

reach the same career goal, Engineering Manager at Google, in Table 5.3. In this

case, although both users started with a Bachelors’s degree in Computer Science, they

need to improve different skills. One user worked in consulting and management after

graduation and needs to improve technical skills like C++, Product Development, and

Java, while the other user who pursued graduate studies needs to improve management

skills like Project Management and Cross-functional Team Leadership. These results

106

show that MNSS has the potential to provide personalized, actionable feedback to

help users plan their personal upskilling process and reach their career goals.

5.5.3 Career Path Recommendation

As detailed in Section 5.4.5, given a user’s past career experiences E1:t and a future

career goal ÊG, we can plan a path of career hops Êt+1:G to connect them to their career

goal by maximizing the overall likelihood of the entire path. However, computing

the likelihood of all possible paths between a certain start state and a certain goal

state is computationally intractable. Therefore, we use beam search [150] to identify

the most feasible career paths by using the latent skill state distributions p(zt+1|E1:t)

to compute the probabilities in Eq. 5.4 and Eq. 5.5. In our experiments, we found

that with a modest number of paths, beam search returns high-quality career paths.

We set the maximum number of intermediate hops to 5 and keep the best 10 paths

during beam search, with a small modification: we select 10 most likely companies

and 10 most likely job titles at each intermediate time step, and randomly sample 10

companies and job titles pairs from the 100 total combinations. This modification

brings some balance between the two fields, especially when one company or job title

has a significantly higher likelihood than others, which will result in that company or

job title being the only one included in the beam search process.

We show the sampled optimal career path for one user with the career goal of

Managing Director at Goldman Sachs and the corresponding log-likelihood of reaching

that goal, given their past career experiences, in Table 5.4. In this case, the path

consists of the intermediate hops of Quantitative Analyst, Analyst, and Algorithmic

Trading Developer at different banking companies. The path takes the user’s Physics

background into account and suggests that quantitative work is a good first hop for

the user to go into banking. We also show multiple options for next career experience

and the corresponding log-likelihoods of reaching their career goal for three users in

107

Table 5.5. For example, for a user graduating with a Bachelors’ Degree in Computer

Science from Stanford to reach their career goal of becoming an Assistant Professor

at Georgia Tech, the option of obtaining a Ph.D. Degree in Computer Science is

their best option among other options including becoming a Software Engineer and

obtaining an MBA degree. These results show that MNSS can help users plan career

goals and decide on the next professional experience when facing multiple options, in

order to maximize their chances of reaching their career goals.

5.6 Conclusions

We have proposed an interpretable monotonic nonlinear state-space model for

career path modeling and analyzed two large-scale online user professional profile

datasets. Experimental results show that our model achieves excellent predictive

performance on the tasks of the company, job title, and skill prediction. Moreover,

we used a series of case studies to show that our model is interpretable and can be

used to provide actionable feedback to users on the skills they need to acquire and

recommendations on feasible career paths they can take to achieve their desired career

goal.

108

CHAPTER 6

CONCLUSIONS

In this thesis, we looked at two different paradigms of learning with limited

datasets. First, we discussed the task of learning the optimal policy for performing

sequential queries with applications in computerized adaptive testing and sketching in

recommender systems. We saw that a learnable policy can query a limited number of

samples more efficiently than heuristic-based selection policies. Moreover, we observed

that we can approximate the sampling policy and construct a biased estimator of the

gradient that performs better than score function-based unbiased estimators. Second,

we discussed two tasks, knowledge tracing, and career path modeling, where the task

is to predict future observations based on the past. We saw that introducing novel

structured neural modules based on domain knowledge (monotonic attention, and

monotonic state-space model) can exploit these limited datasets efficiently compared

to more flexible neural modules.

6.1 Future Work

This thesis opens up numerous avenues for future work that we discuss next.

6.1.1 Algorithms

Improving test security in BOBCAT framework. In Chapter 2, we learned

a differentiable question selection algorithm that picks questions for optimizing per-

formance on some distribution. However, optimizing prediction performance leads

to a higher exposure rate and overlap rate, since BOBCAT prefers questions with

109

more predictive powers. Therefore, it is important to develop constrained versions of

BOBCAT to minimize its question exposure and test overlap rates before deployment.

We could regularize the question selection algorithm to control these important rates

as follows,

minimize
γ,ϕ

1

N

N∑
i=1

∑
j∈Γi

ℓ
(
Yi,j, g(j; θ

∗
i)
)
− λH(ϕ) :=

1

N

N∑
i=1

L(θ∗i ,Γi)− λH(ϕ)

s.t. θ∗i = argmin
θi

n∑
t=1

ℓ
(
Y

i,j
(t)
i
, g(j

(t)
i ; θi)

)
+R(γ, θi) := L′(θi)

where j
(t)
i ∼ Π(Y

i,j
(1)
i
, . . . , Y

i,j
(t−1)
i

;ϕ) ∈ Ω
(t)
i . (6.1)

Here H(ϕ) is the entropy of the question selection algorithm output probabilities and

λ ≥ 0 is a trade-off parameter. The constrained formulation is equivalent to our

BOBCAT formulation when λ = 0. The constrained formulation resembles a random

policy When λ =∞, minimizing the test overlap rate and the question exposure rate.

Intuitively, λ would allow us to trade off performance and these important metrics.

Improving topic-awareness in BOBCAT framework. There are several other

important constraints in real-world computerized adaptive testing. We often have

constraints on the questions to cover a variety of topics. Extending BOBCAT for topic-

aware question selection is another important direction. Similar to the constrained

BOBCAT framework for handling overlap rate and exposure rate, we could study the

constrained BOBCAT framework to tackle topic awareness.

Increasing number of actions in DiPS framework. The differentiable sketching

algorithm in Chapter 3 allows faster convergence than RL algorithms, and we used

publicly available datasets where the maximum number of items was ∼ 40, 000.

However, the time complexity of training a DiPS policy increases linearly with the

number of items, and with the ever-growing data size on the web, it is a common

110

situation to have millions of items to consider in a recommender system. Although

differentiable algorithms converge faster than score-function-based estimators, it is

slow for millions of items. We believe that differentiable physics engines combined

with the DiPS framework can be a promising solution for even faster convergence

[29, 43]. Moreover, we believe approximate algorithms would be beneficial to avoid

the linear dependence on item size. We could perform hashing algorithms and retrieve

only the relevant items before training the policy to achieve sublinear time complexity.

Incorporating dynamic knowledge tracing (or recommender system) model.

In Chapter 2, we assumed the student’s ability is static over the test period and used

a feed-forward neural network to predict future responses based on past responses.

Similarly, in Chapter 3, we assumed the future recommendation task is a static function

of the sketched items and used neural collaborative filtering for the prediction task.

However, these assumptions might not hold in real life. A student might learn over

the adaptive test, and the recommendation quality might depend on the order a user

interacted with the sketched items. We believe incorporating a dynamic model such

as LSTM/GRU would be helpful to tackle the dynamic knowledge state of a test taker

and the dynamic preference of a user over time.

Learning to acquire a minimal number of features. Supervised learning

assumes access to fully observed feature vectors and target values during the training

of predictive models. However, access to fully observed data points is impractical

in many real-world scenarios. In many applications, a model can acquire additional

information (e.g., features) at an acquisition cost. Thus, the model should know

when to acquire a feature and what features to acquire before making a prediction

[89, 140]. To address the limitation of static informativeness-based metrics, used in

active learning literature, some prior works [89, 140] reformulate the feature acquisition

task as a Markov decision process (MDP) where the policy selects the next feature to

111

acquire based on the current MDP state, which is a function of the observed features

[60, 130, 190]. We can potentially apply differentiable algorithms, using first-order

information on the reward, studied in Chapter 2 and Chapter 3, for the task of feature

acquisition and can potentially help us improve feature acquisition. The feature

acquisition task is to acquire a certain number of features sequentially to maximize

the performance of the supervised target variable prediction task. Thus, the feature

acquisition policy Π starts with an empty feature set O0 = ∅ and acquires a set of

K features sequentially and uses these acquired features, OK , to predict the target

y. We denote the predictive model as f(·) that takes as input the feature vector xt

(after observing t features) and outputs the predicted target variable y. The feature

acquisition optimization problem (for a single data point) can be written as

minimize
θ,ϕ

K∑
t=1

ℓ

(
y, f

(
xt(ϕ); θ

))
(6.2)

s.t. Ot = Ot−1 ∪ Π(xt−1;ϕ), ∀t ∈ {1, · · · , K}. (6.3)

Here, θ and ϕ are parameters for the prediction model f(·) and feature acquisition

policy Π(·), respectively. We note that the feature acquisition operation Ot =

Ot−1 ∪ Π(xt−1;ϕ) is non-differentiable; RL algorithms excel in these situations, which

is why they are used in previous works on feature acquisition. We could potentially

approximate the feature acquisition function to pass the gradient of the loss function

ℓ(·, ·) to the policy parameters, similar to Chapter 2 and Chapter 3.

6.1.2 Models

Integrating text, codes, language learning in AKT framework. In Chapter 4,

we proposed the AKT model that uses binary question response correctness to learn

the latent student knowledge state. However, in many cases, we can obtain the actual

answers in the form of text instead of only the binary correctness. We could potentially

112

augment the AKT model with natural language processing-based language models to

learn more fine-grained knowledge states. Another avenue of future work is to extend

AKT with coding practices. Finally, we could test whether our method can improve

prediction performance on language learning datasets where memory decay occurs

since our monotonic attention module explicitly encodes the decay behavior [123].

Tackling preference-aware career path planning. In Chapter 5, we formulated

the optimal career path planning problem as the path maximizing the log probability

of reaching some career goal. However, users do not necessarily have a single goal

or preference. The constraints users face in their career plans often consist of hard

constraints (e.g., location of the job) and soft constraints or preferences (e.g., desired

company, compensation level, work-life balance, etc.). For example, a user may want

to satisfy one constraint (such as ultimately getting a dream job) at the expense of

violating another constraint (such as reaching a certain compensation level within

five years). Beam search is often used in machine learning (and natural language

processing) literature to sample the next possible candidates. However, beam search

is suboptimal and often leads to inferior solutions. Moreover, beam search generates

a candidate that is greedy to a single objective. Thus, we need a general search

framework that handles multiple preferences. In addition to handling conflicting

preferences, the search algorithm needs to search in a space with many states (or

possible future job positions). We could potentially use a heuristic guided search

method for the multi-objective career path search problem with many successive states

to follow.

Learning causal models for career path modeling and knowledge tracing.

In Chapter 4, we learned student knowledge state from observational data where the

intelligent tutoring system affects the learning sequence of the student. Similarly,

in Chapter 5, we learned career path trajectories from observational data where the

113

choices made by the users affect the career paths. However, different interventions

would likely lead to very different datasets from where we learn these models. Thus,

we could potentially learn a causal knowledge tracing model to answer counterfactual

questions, such as what would have happened if the students practiced a question

from a different concept. Similarly, we could explore a potential causal career path

planning framework to answer counterfactual questions, such as what would have

happened if the user decided to join a different job [114].

6.1.3 User Data

Improving bias and fairness. Recent studies have found that language models

capture and inflate the bias present in the datasets these language models learned

from [8]. In a similar vein, in this thesis, we looked at four sequential user tasks

where the model learns from observational user data; therefore, these models are also

vulnerable to the implicit bias of these datasets. The models and algorithms proposed

in this thesis do not explicitly try to minimize bias and or try to improve fairness.

It is highly relevant to augment the proposed methods with debiasing techniques to

improve the potential impact of these methods on our society.

114

BIBLIOGRAPHY

[1] Agarwal, Pankaj K, Har-Peled, Sariel, and Varadarajan, Kasturi R. Approxi-
mating extent measures of points. Journal of the ACM (JACM) 51, 4 (2004),
606–635.

[2] Aljundi, Rahaf, Kelchtermans, Klaas, and Tuytelaars, Tinne. Task-free continual
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2019), pp. 11254–11263.

[3] Aljundi, Rahaf, Lin, Min, Goujaud, Baptiste, and Bengio, Yoshua. Gradi-
ent based sample selection for online continual learning. Advances in neural
information processing systems 32 (2019).

[4] Amos, Brandon, Koltun, Vladlen, and Kolter, J Zico. The limited multi-label
projection layer. arXiv preprint arXiv:1906.08707 (2019).

[5] Argamon-Engelson, Shlomo, and Dagan, Ido. Committee-based sample selection
for probabilistic classifiers. Journal of Artificial Intelligence Research 11 (1999),
335–360.

[6] Bachman, Philip, Sordoni, Alessandro, and Trischler, Adam. Learning algorithms
for active learning. In international conference on machine learning (2017),
PMLR, pp. 301–310.

[7] Belletti, Francois, Chen, Minmin, and Chi, Ed H. Quantifying long range
dependence in language and user behavior to improve rnns. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (2019), pp. 1317–1327.

[8] Bender, Emily M, Gebru, Timnit, McMillan-Major, Angelina, and Shmitchell,
Shmargaret. On the dangers of stochastic parrots: Can language models be too
big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency (2021), pp. 610–623.

[9] Bengio, Yoshua, Léonard, Nicholas, and Courville, Aaron. Estimating or propa-
gating gradients through stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432 (2013).

[10] Besold, Tarek R., Garcez, Artur d’Avila, Bader, Sebastian, Bowman, Howard,
Domingos, Pedro, Hitzler, Pascal, Kuehnberger, Kai-Uwe, Lamb, Luis C., Lowd,
Daniel, Lima, Priscila Machado Vieira, de Penning, Leo, Pinkas, Gadi, Poon,
Hoifung, and Zaverucha, Gerson. Neural-symbolic learning and reasoning: A
survey and interpretation, 2017.

115

[11] Borsos, Zalán, Mutnỳ, Mojmír, and Krause, Andreas. Coresets via bilevel
optimization for continual learning and streaming. In Advances in Neural
Information Processing Systems (2020).

[12] Casanova, Arantxa, Pinheiro, Pedro O, Rostamzadeh, Negar, and Pal, Christo-
pher J. Reinforced active learning for image segmentation. arXiv preprint
arXiv:2002.06583 (2020).

[13] Cen, Hao, Koedinger, Kenneth, and Junker, Brian. Learning factors analysis–
A general method for cognitive model evaluation and improvement. In Proc.
International Conference on Intelligent Tutoring Systems (June 2006), pp. 164–
175.

[14] Chang, Shiyu, Zhang, Yang, Tang, Jiliang, Yin, Dawei, Chang, Yi, Hasegawa-
Johnson, Mark A, and Huang, Thomas S. Streaming recommender systems.
In Proceedings of the 26th international conference on world wide web (2017),
pp. 381–389.

[15] Cheng, Song, Liu, Qi, Chen, Enhong, Huang, Zai, Huang, Zhenya, Chen, Yiying,
Ma, Haiping, and Hu, Guoping. Dirt: Deep learning enhanced item response
theory for cognitive diagnosis. In International Conference on Information and
Knowledge Management (2019), pp. 2397–2400.

[16] Chiu, Chung-Cheng, and Raffel, Colin. Monotonic chunkwise attention. arXiv
preprint arXiv:1712.05382 (2017).

[17] Choffin, Benoît, Popineau, Fabrice, Bourda, Yolaine, and Vie, Jill-Jênn. Das3h:
Modeling student learning and forgetting for pptimally scheduling distributed
practice of skills. In Proc. International Conference on Educational Data Mining
(July 2019), pp. 29–38.

[18] Choi, Youngduck, Lee, Youngnam, Shin, Dongmin, Cho, Junghyun, Park, Seoyon,
Lee, Seewoo, Baek, Jineon, Bae, Chan, Kim, Byungsoo, and Heo, Jaewe. Ednet:
A large-scale hierarchical dataset in education. In International Conference on
Artificial Intelligence in Education (2020), Springer, pp. 69–73.

[19] Chung, Junyoung, Gulcehre, Caglar, Cho, KyungHyun, and Bengio, Yoshua.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[20] Cohn, David A, Ghahramani, Zoubin, and Jordan, Michael I. Active learning
with statistical models. Journal of artificial intelligence research 4 (1996),
129–145.

[21] Coleman, Cody, Yeh, Christopher, Mussmann, Stephen, Mirzasoleiman, Baharan,
Bailis, Peter, Liang, Percy, Leskovec, Jure, and Zaharia, Matei. Selection via
proxy: Efficient data selection for deep learning. arXiv preprint arXiv:1906.11829
(2019).

116

[22] Contardo, Gabriella, Denoyer, Ludovic, and Artières, Thierry. A meta-learning
approach to one-step active learning. arXiv preprint arXiv:1706.08334 (2017).

[23] Cook, R Dennis, and Weisberg, Sanford. Residuals and influence in regression.
New York: Chapman and Hall, 1982.

[24] Corbett, Albert, and Anderson, John. Knowledge tracing: Modeling the acquisi-
tion of procedural knowledge. User Modeling and User-adapted Interaction 4, 4
(Dec. 1994), 253–278.

[25] Cormode, Graham. Sketch techniques for approximate query processing. Foun-
dations and Trends in Databases. NOW publishers (2011).

[26] Daniels, Hennie, and Velikova, Marina. Monotone and partially monotone neural
networks. IEEE Transactions on Neural Networks 21, 6 (2010), 906–917.

[27] Dash, Tirtharaj, Chitlangia, Sharad, Ahuja, Aditya, and Srinivasan, Ashwin. A
review of some techniques for inclusion of domain-knowledge into deep neural
networks. Scientific Reports 12, 1 (2022), 1–15.

[28] Dave, Vachik, Zhang, Baichuan, Al Hasan, Mohammad, AlJadda, Khalifeh, and
Korayem, Mohammed. A combined representation learning approach for better
job and skill recommendation. In Proc. International Conference on Information
and Knowledge Management (2018), pp. 1997–2005.

[29] de Avila Belbute-Peres, Filipe, Smith, Kevin, Allen, Kelsey, Tenenbaum, Josh,
and Kolter, J Zico. End-to-end differentiable physics for learning and control.
Advances in neural information processing systems 31 (2018).

[30] De Raedt, Luc, Dumančić, Sebastijan, Manhaeve, Robin, and Marra, Giuseppe.
From statistical relational to neural-symbolic artificial intelligence. In Proceedings
of the Twenty-Ninth International Conference on International Joint Conferences
on Artificial Intelligence (2021), pp. 4943–4950.

[31] Denton, Emily, and Fergus, Rob. Stochastic video generation with a learned prior.
In Proc. International Conference on Machine Learning (2018), pp. 1182–1191.

[32] Diligenti, Michelangelo, Gori, Marco, and Sacca, Claudio. Semantic-based
regularization for learning and inference. Artificial Intelligence 244 (2017),
143–165.

[33] Donadello, Ivan, Serafini, Luciano, and Garcez, Artur D’Avila. Logic tensor
networks for semantic image interpretation. arXiv preprint arXiv:1705.08968
(2017).

[34] Du, Nan, Dai, Hanjun, Trivedi, Rakshit, Upadhyay, Utkarsh, Gomez-Rodriguez,
Manuel, and Song, Le. Recurrent marked temporal point processes: Embedding
event history to vector. In Proc. ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2016), pp. 1555–1564.

117

[35] Evans, Richard, and Grefenstette, Edward. Learning explanatory rules from
noisy data. Journal of Artificial Intelligence Research 61 (2018), 1–64.

[36] Fang, Meng, Li, Yuan, and Cohn, Trevor. Learning how to active learn: A deep
reinforcement learning approach. arXiv preprint arXiv:1708.02383 (2017).

[37] Farahani, Reza Zanjirani, and Hekmatfar, Masoud. Facility location: concepts,
models, algorithms and case studies. Springer Science & Business Media, 2009.

[38] Fernandez, Nigel, Ghosh, Aritra, Liu, Naiming, Wang, Zichao, Choffin, Benoît,
Baraniuk, Richard, and Lan, Andrew. Automated scoring for reading compre-
hension via in-context bert tuning. In International Conference on Artificial
Intelligence in Education (2022), Springer.

[39] Finn, Chelsea, Abbeel, Pieter, and Levine, Sergey. Model-agnostic meta-learning
for fast adaptation of deep networks. In International Conference on Machine
Learning (2017), vol. 70, pp. 1126–1135.

[40] Fischer, Marc, Balunovic, Mislav, Drachsler-Cohen, Dana, Gehr, Timon, Zhang,
Ce, and Vechev, Martin. Dl2: Training and querying neural networks with logic.
In International Conference on Machine Learning (2019), PMLR, pp. 1931–1941.

[41] Fraccaro, Marco, Sønderby, Søren Kaae, Paquet, Ulrich, and Winther, Ole.
Sequential neural models with stochastic layers. In Proc. Advances in Neural
Information Processing Systems (2016), pp. 2199–2207.

[42] Franceschi, Luca, Frasconi, Paolo, Salzo, Saverio, Grazzi, Riccardo, and Pontil,
Massimiliano. Bilevel programming for hyperparameter optimization and meta-
learning. In International Conference on Machine Learning (2018), pp. 1568–
1577.

[43] Freeman, C Daniel, Frey, Erik, Raichuk, Anton, Girgin, Sertan, Mordatch, Igor,
and Bachem, Olivier. Brax–a differentiable physics engine for large scale rigid
body simulation. arXiv preprint arXiv:2106.13281 (2021).

[44] Ghadimi, Saeed, and Lan, Guanghui. Stochastic first-and zeroth-order methods
for nonconvex stochastic programming. SIAM Journal on Optimization 23, 4
(2013), 2341–2368.

[45] Ghosh, Aritra, Heffernan, Neil, and Lan, Andrew S. Context-aware attentive
knowledge tracing. In ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (2020), pp. 2330–2339.

[46] Ghosh, Aritra, and Lan, Andrew. Bobcat: Bilevel optimization-based com-
puterized adaptive testing. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21 (8 2021), Zhi-Hua Zhou, Ed.,
International Joint Conferences on Artificial Intelligence Organization, pp. 2410–
2417. Main Track.

118

[47] Ghosh, Aritra, and Lan, Andrew. Contrastive learning improves model ro-
bustness under label noise. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops (June 2021),
pp. 2703–2708.

[48] Ghosh, Aritra, and Lan, Andrew. Do we really need gold samples for sample
weighting under label noise? In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (2021), pp. 3922–3931.

[49] Ghosh, Aritra, Mitra, Saayan, and Lan, Andrew. Dips: Differentiable policy for
sketching in recommender systems. In Proceedings of the AAAI Conference on
Artificial Intelligence (2022).

[50] Ghosh, Aritra, Mitra, Saayan, Sarkhel, Somdeb, and Swaminathan, Viswanathan.
Optimal bidding strategy without exploration in real-time bidding. In Proceedings
of the 2020 SIAM International Conference on Data Mining (2020), SIAM,
pp. 298–306.

[51] Ghosh, Aritra, Mitra, Saayan, Sarkhel, Somdeb, Xie, Jason, Wu, Gang, and
Swaminathan, Viswanathan. Scalable bid landscape forecasting in real-time
bidding. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (2019), Springer, pp. 451–466.

[52] Ghosh, Aritra, Raspat, Jay, and Lan, Andrew. Option tracing: Beyond correct-
ness analysis in knowledge tracing. In International Conference on Artificial
Intelligence in Education (2021), Springer, pp. 137–149.

[53] Ghosh, Aritra, Woolf, Beverly, Zilberstein, Shlomo, and Lan, Andrew. Skill-
based career path modeling and recommendation. In 2020 IEEE International
Conference on Big Data (Big Data) (2020), IEEE, pp. 1156–1165.

[54] Glorot, Xavier, and Bengio, Yoshua. Understanding the difficulty of training deep
feedforward neural networks. In Proc. International Conference on Artificial
Intelligence and Statistics (May 2010), pp. 249–256.

[55] Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep Learning. MIT
Press, 2016.

[56] Grant, Erin, Finn, Chelsea, Levine, Sergey, Darrell, Trevor, and Griffiths,
Thomas. Recasting gradient-based meta-learning as hierarchical bayes. In 6th
International Conference on Learning Representations, ICLR 2018 (2018).

[57] Guo, Lei, Yin, Hongzhi, Wang, Qinyong, Chen, Tong, Zhou, Alexander, and Quoc
Viet Hung, Nguyen. Streaming session-based recommendation. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (2019), pp. 1569–1577.

119

[58] Gutmann, Michael, and Hyvärinen, Aapo. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Proc. International
Conference on Artificial Intelligence and Statistics (2010), pp. 297–304.

[59] Han, Kyung Chris Tyek. Components of the item selection algorithm in comput-
erized adaptive testing. Journal of Educational Evaluation for Health Professions
15 (2018).

[60] He, He, Mineiro, Paul, and Karampatziakis, Nikos. Active information acquisi-
tion. arXiv preprint arXiv:1602.02181 (2016).

[61] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual
learning for image recognition. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (June 2016), pp. 770–778.

[62] He, Ruining, and McAuley, Julian. Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering. In proceedings of the 25th
international conference on world wide web (2016), pp. 507–517.

[63] He, Xiangnan, Liao, Lizi, Zhang, Hanwang, Nie, Liqiang, Hu, Xia, and Chua,
Tat-Seng. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web (2017), pp. 173–182.

[64] Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J. An algorithmic
framework for performing collaborative filtering. In Proc. 22nd Annual Intl.
ACM SIGIR Conf. on Research and Development in Information Retrieval (Aug.
1999), pp. 230–237.

[65] Hidasi, Balázs, and Karatzoglou, Alexandros. Recurrent neural networks with
top-k gains for session-based recommendations. In Proceedings of the 27th ACM
international conference on information and knowledge management (2018),
pp. 843–852.

[66] Hidasi, Balázs, Karatzoglou, Alexandros, Baltrunas, Linas, and Tikk, Domonkos.
Session-based recommendations with recurrent neural networks. arXiv preprint
arXiv:1511.06939 (2015).

[67] Hochreiter, Sepp, and Schmidhuber, Jürgen. Long short-term memory. Neural
Computation 9, 8 (Nov. 1997), 1735–1780.

[68] Jang, Eric, Gu, Shixiang, and Poole, Ben. Categorical reparametrization with
gumbel-softmax. In Proc. International Conference on Learning Representations
(2017).

[69] Khajah, MM, Huang, Y, González-Brenes, JP, Mozer, MC, and Brusilovsky,
P. Integrating knowledge tracing and item response theory: A tale of two
frameworks. In Proc. International Workshop on Personalization Approaches in
Learning Environments (Jan. 2014), vol. 1181, pp. 7–15.

120

[70] Khajah, Mohammad, Lindsey, Robert, and Mozer, Michael. How deep is
knowledge tracing? In Proc. International Conference on Educational Data
Mining (July 2016), pp. 94–101.

[71] Kim, Yoon, Denton, Carl, Hoang, Luong, and Rush, Alexander M. Structured
attention networks. arXiv preprint arXiv:1702.00887 (2017).

[72] Kingma, Diederik, and Welling, Max. Auto-encoding variational Bayes. In Proc.
International Conference on Learning Representations (2014).

[73] Kingma, Diederik P, and Ba, Jimmy. Adam: A method for stochastic opti-
mization. In Proc. International Conference on Learning Representations (May
2015).

[74] Kirsch, Andreas, Van Amersfoort, Joost, and Gal, Yarin. Batchbald: Efficient
and diverse batch acquisition for deep bayesian active learning. Advances in
neural information processing systems 32 (2019).

[75] Koh, Pang Wei, and Liang, Percy. Understanding black-box predictions via
influence functions. In International Conference on Machine Learning (2017),
pp. 1885–1894.

[76] Konyushkova, Ksenia, Sznitman, Raphael, and Fua, Pascal. Discovering general-
purpose active learning strategies. arXiv preprint arXiv:1810.04114 (2018).

[77] Krishnan, Rahul, Shalit, Uri, and Sontag, David. Structured inference networks
for nonlinear state space models. In Proc. AAAI Conference on Artificial
Intelligence (2017).

[78] Lan, Andrew, and Baraniuk, Richard. A contextual bandits framework for
personalized learning action selection. In Proc. International Conference on
Educational Data Mining (June 2016), pp. 424–429.

[79] Lan, Andrew, Goldstein, Tom, Baraniuk, Richard, and Studer, Christoph.
Dealbreaker: A nonlinear latent variable model for educational data. In Proc.
International Conference on Machine Learning (June 2016), pp. 266–275.

[80] Lan, Andrew, Studer, Christoph, and Baraniuk, Richard. Time-varying learning
and content analytics via sparse factor analysis. In Proc. ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Aug. 2014),
pp. 452–461.

[81] Lavrač, Nada, Škrlj, Blaž, and Robnik-Šikonja, Marko. Propositionalization
and embeddings: two sides of the same coin. Machine Learning 109, 7 (2020),
1465–1507.

[82] Lee, Kwonjoon, Maji, Subhransu, Ravichandran, Avinash, and Soatto, Stefano.
Meta-learning with differentiable convex optimization. In IEEE Conference on
Computer Vision and Pattern Recognition (2019), pp. 10657–10665.

121

[83] Lei Ba, Jimmy, Kiros, Jamie Ryan, and Hinton, Geoffrey E. Layer normalization.
arXiv preprint arXiv:1607.06450 (July 2016).

[84] Lewis, David D., and Gale, William A. A sequential algorithm for training text
classifiers. In Proc. ACM SIGIR Conference on Research and Development in
Information Retrieval (July 1994), pp. 3–12.

[85] Li, Huayu, Ge, Yong, Zhu, Hengshu, Xiong, Hui, and Zhao, Hongke. Prospecting
the career development of talents: A survival analysis perspective. In Proc.
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (2017), pp. 917–925.

[86] Li, Liangyue, Jing, How, Tong, Hanghang, Yang, Jaewon, He, Qi, and Chen,
Bee-Chung. Nemo: Next career move prediction with contextual embedding.
In Proc. International Conference on World Wide Web Companion (2017),
pp. 505–513.

[87] Li, Tao, and Srikumar, Vivek. Augmenting neural networks with first-order
logic. arXiv preprint arXiv:1906.06298 (2019).

[88] Li, Xiao, Xu, Hanchen, Zhang, Jinming, and Chang, Hua-hua. Deep reinforce-
ment learning for adaptive learning systems. arXiv preprint arXiv:2004.08410
(2020).

[89] Li, Yang, and Oliva, Junier. Active feature acquisition with generative surrogate
models. In International Conference on Machine Learning (2021), PMLR,
pp. 6450–6459.

[90] Lindsey, Robert, Shroyer, Jeffery, Pashler, Harold, and Mozer, Michael. Im-
proving students’ long-term knowledge retention through personalized review.
Psychological Science 25, 3 (Jan. 2014), 639–647.

[91] LinkedIn Corp. The LinkedIn economic graph. Online: https://
economicgraph.linkedin.com/, 2020.

[92] Liu, Hanxiao, Simonyan, Karen, and Yang, Yiming. Darts: Differentiable
architecture search. In International Conference on Learning Representations
(2018).

[93] Liu, Xiao, Zhang, Fanjin, Hou, Zhenyu, Mian, Li, Wang, Zhaoyu, Zhang, Jing,
and Tang, Jie. Self-supervised learning: Generative or contrastive. IEEE
Transactions on Knowledge and Data Engineering (2021).

[94] Lord, Frederick. Applications of Item Response Theory to Practical Testing
Problems. Erlbaum Associates, 1980.

[95] Luecht, Richard M, and Sireci, Stephen G. A review of models for computer-
based testing. research report 2011-12. College Board (2011).

122

https://economicgraph.linkedin.com/
https://economicgraph.linkedin.com/

[96] Madry, Aleksander, Makelov, Aleksandar, Schmidt, Ludwig, Tsipras, Dimitris,
and Vladu, Adrian. Towards deep learning models resistant to adversarial
attacks. In Proc. International Conference on Learning Representations (2018).

[97] Manhaeve, Robin, Dumancic, Sebastijan, Kimmig, Angelika, Demeester, Thomas,
and De Raedt, Luc. Deepproblog: Neural probabilistic logic programming.
Advances in Neural Information Processing Systems 31 (2018).

[98] Marra, Giuseppe, and Kuželka, Ondřej. Neural markov logic networks. In
Uncertainty in Artificial Intelligence (2021), PMLR, pp. 908–917.

[99] Meng, Qingxin, Zhu, Hengshu, Xiao, Keli, Zhang, Le, and Xiong, Hui. A
hierarchical career-path-aware neural network for job mobility prediction. In
Proc. ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (2019), pp. 14–24.

[100] Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado, Greg, and Dean, Jeff.
Distributed representations of words and phrases and their compositionality. In
Proc. Conference on Advances in Neural Information Processing Systems (2013),
pp. 3111–3119.

[101] Mitra, Saayan, Ghosh, Aritra, Sarkhel, Somdeb, and Xie, Jiatong. Utilizing
machine learning to generate parametric distributions for digital bids in a real-
time digital bidding environment, July 16 2020. US Patent App. 16/248,287.

[102] Mohamed, Shakir, Rosca, Mihaela, Figurnov, Michael, and Mnih, Andriy. Monte
carlo gradient estimation in machine learning. J. Mach. Learn. Res. 21, 132
(2020), 1–62.

[103] Mozer, Michael, Kazakov, Denis, and Lindsey, Robert. Discrete-event continuous-
time recurrent nets. arXiv preprint arXiv:1710.04110 (Oct. 2017).

[104] Neal, Radford M. Bayesian learning for neural networks, vol. 118. Springer
Science & Business Media, 2012.

[105] Nurakhmetov, Darkhan. Reinforcement learning applied to adaptive classification
testing. In Theoretical and Practical Advances in Computer-based Educational
Measurement. Springer, Cham, 2019, pp. 325–336.

[106] Padmakumar, Aishwarya, Stone, Peter, and Mooney, Raymond J. Learning a
policy for opportunistic active learning. arXiv preprint arXiv:1808.10009 (2018).

[107] Pandey, Shalini, and Karypis, George. A self attentive model for knowledge
tracing. In Proc. International Conference on Educational Data Mining (July
2019), pp. 384–389.

[108] Pang, Kunkun, Dong, Mingzhi, Wu, Yang, and Hospedales, Timothy. Meta-
learning transferable active learning policies by deep reinforcement learning.
arXiv preprint arXiv:1806.04798 (2018).

123

[109] Pardos, Zachary, and Heffernan, Neil. Modeling individualization in a Bayesian
networks implementation of knowledge tracing. In Proc. International Conference
on User Modeling, Adaptation, and Personalization (June 2010), pp. 255–266.

[110] Pashler, Harold, Cepeda, Nicholas, Lindsey, Robert, Vul, Ed, and Mozer, Michael.
Predicting the optimal spacing of study: A multiscale context model of memory.
In Proc. Conference on Advances in Neural Information Processing Systems
(Dec. 2009), pp. 1321–1329.

[111] Paszke, Adam, Gross, Sam, Chintala, Soumith, Chanan, Gregory, Yang, Edward,
DeVito, Zachary, Lin, Zeming, Desmaison, Alban, Antiga, Luca, and Lerer,
Adam. Automatic differentiation in pytorch. In NeurIPS Workshop on Autodiff
(2017).

[112] Paszke, Adam, Gross, Sam, Massa, Francisco, Lerer, Adam, Bradbury, James,
Chanan, Gregory, Killeen, Trevor, Lin, Zeming, Gimelshein, Natalia, Antiga,
Luca, et al. Pytorch: An imperative style, high-performance deep learning
library. In Proc. Conference on Advances in Neural Information Processing
Systems (2019), pp. 8024–8035.

[113] Pavlik Jr, Philip, Cen, Hao, and Koedinger, Kenneth. Performance factors
analysis–A new alternative to knowledge tracing. In Proc. International Confer-
ence on Artificial Intelligence in Education (June 2009), pp. 531–538.

[114] Pearl, Judea, et al. Causal inference in statistics: An overview. Statistics Surveys
3 (2009), 96–146.

[115] Pennington, Jeffrey, Socher, Richard, and Manning, Christopher. Glove: Global
vectors for word representation. In Proc. Conference on Empirical Methods in
Natural Language Processing (2014), pp. 1532–1543.

[116] Pew Research Center. The future of jobs and job training. online: https://www.
pewinternet.org/2017/05/03/the-future-of-jobs-and-jobs-training/,
2017.

[117] Piech, Chris, Bassen, Jonathan, Huang, Jonathan, Ganguli, Surya, Sahami,
Mehran, Guibas, Leonidas J, and Sohl-Dickstein, Jascha. Deep knowledge
tracing. In Proc. Conference on Advances in Neural Information Processing
Systems (Dec. 2015), pp. 505–513.

[118] Piech, Chris, Huang, Jonathan, Nguyen, Andy, Phulsuksombati, Mike, Sahami,
Mehran, and Guibas, Leonidas. Learning program embeddings to propagate
feedback on student code. In Proc. International Conference on Machine
Learning (July 2015), pp. 1093–1102.

[119] Rajeswaran, Aravind, Finn, Chelsea, Kakade, Sham M, and Levine, Sergey.
Meta-learning with implicit gradients. In Advances in Neural Information
Processing Systems (2019), pp. 113–124.

124

https://www.pewinternet.org/2017/05/03/the-future-of-jobs-and-jobs-training/
https://www.pewinternet.org/2017/05/03/the-future-of-jobs-and-jobs-training/

[120] Rasch, Georg. Probabilistic Models for Some Intelligence and Attainment Tests.
MESA Press, 1993.

[121] Rebuffi, Sylvestre-Alvise, Kolesnikov, Alexander, Sperl, Georg, and Lampert,
Christoph H. icarl: Incremental classifier and representation learning. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition
(2017), pp. 2001–2010.

[122] Reckase, M. D. Multidimensional Item Response Theory. Springer, 2009.

[123] Reddy, Siddharth, Labutov, Igor, Banerjee, Siddhartha, and Joachims, Thorsten.
Unbounded human learning: Optimal scheduling for spaced repetition. In Proc.
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (Aug. 2016), pp. 1815–1824.

[124] Rendle, Steffen, Freudenthaler, Christoph, Gantner, Zeno, and Schmidt-Thieme,
Lars. Bpr: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[125] Restuccia, Dan, and Taska, Bledi. Different skills, different gaps: Measuring
and closing the skills gap. Developing Skills in a Changing World of Work:
Concepts, Measurement and Data Applied in Regional and Local Labour Market
Monitoring Across Europe (2018), 207–225.

[126] Rocktäschel, Tim, and Riedel, Sebastian. End-to-end differentiable proving.
Advances in neural information processing systems 30 (2017).

[127] Roweis, Sam, and Ghahramani, Zoubin. A unifying review of linear gaussian
models. Neural Computation 11, 2 (1999), 305–345.

[128] Roy, Nicholas, and McCallum, Andrew. Toward optimal active learning through
monte carlo estimation of error reduction. ICML, Williamstown 2 (2001),
441–448.

[129] Roychowdhury, Soumali, Diligenti, Michelangelo, and Gori, Marco. Regularizing
deep networks with prior knowledge: A constraint-based approach. Knowledge-
Based Systems 222 (2021), 106989.

[130] Rückstieß, Thomas, Osendorfer, Christian, and Smagt, Patrick van der. Se-
quential feature selection for classification. In Australasian joint conference on
artificial intelligence (2011), Springer, pp. 132–141.

[131] Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, and Klimov,
Oleg. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[132] Sener, Ozan, and Savarese, Silvio. Active learning for convolutional neural
networks: A core-set approach. arXiv preprint arXiv:1708.00489 (2017).

125

[133] Sener, Ozan, and Savarese, Silvio. Active learning for convolutional neural
networks: A core-set approach. In International Conference on Learning Repre-
sentations (2018).

[134] Serafini, Luciano, and Garcez, Artur d’Avila. Logic tensor networks: Deep
learning and logical reasoning from data and knowledge. arXiv preprint
arXiv:1606.04422 (2016).

[135] Settles, Burr. From theories to queries: Active learning in practice. In Active
Learning and Experimental Design workshop In conjunction with AISTATS 2010
(2011), pp. 1–18.

[136] Settles, Burr. Active learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning 6, 1 (Nov. 2012), 1–114.

[137] Settles, Burr, T. LaFlair, Geoffrey, and Hagiwara, Masato. Machine learning–
driven language assessment. Transactions of the Association for Computational
Linguistics 8 (2020), 247–263.

[138] Seung, H Sebastian, Opper, Manfred, and Sompolinsky, Haim. Query by
committee. In Proceedings of the fifth annual workshop on Computational
learning theory (1992), pp. 287–294.

[139] Sharma, Abhishek, Ghosh, Aritra, and Fiterau, Madalina. Generative sequential
stochastic model for marked point processes. In Proceedings of ICML Time
Series Workshop (2019).

[140] Shim, Hajin, Hwang, Sung Ju, and Yang, Eunho. Joint active feature acquisition
and classification with variable-size set encoding. Advances in neural information
processing systems 31 (2018), 1368–1378.

[141] Shorten, Connor, and Khoshgoftaar, Taghi M. A survey on image data augmen-
tation for deep learning. Journal of big data 6, 1 (2019), 1–48.

[142] Shu, Jun, Xie, Qi, Yi, Lixuan, Zhao, Qian, Zhou, Sanping, Xu, Zongben,
and Meng, Deyu. Meta-weight-net: Learning an explicit mapping for sample
weighting. In Advances in Neural Information Processing Systems (2019),
pp. 1919–1930.

[143] Sill, Joseph. Monotonic networks. Advances in neural information processing
systems 10 (1997).

[144] Sireci, Stephen G, Lounge, Brendan, and Suárez, Javier. Assessing the di-
mensionality of o*net cognitive ability ratings across job zones. Center for
Educational Assessment Research Report No. 993 (2022).

[145] Sivaraman, Aishwarya, Farnadi, Golnoosh, Millstein, Todd, and Van den Broeck,
Guy. Counterexample-guided learning of monotonic neural networks. Advances
in Neural Information Processing Systems 33 (2020), 11936–11948.

126

[146] Snell, Jake, Swersky, Kevin, and Zemel, Richard. Prototypical networks for
few-shot learning. In Advances in neural information processing systems (2017),
pp. 4077–4087.

[147] Sourek, Gustav, Aschenbrenner, Vojtech, Zelezny, Filip, Schockaert, Steven,
and Kuzelka, Ondrej. Lifted relational neural networks: Efficient learning of
latent relational structures. Journal of Artificial Intelligence Research 62 (2018),
69–100.

[148] Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever, Ilya, and
Salakhutdinov, Ruslan. Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning Research 15, 1 (June 2014),
1929–1958.

[149] Sukhbaatar, Sainbayar, Weston, Jason, Fergus, Rob, et al. End-to-end memory
networks. Advances in neural information processing systems 28 (2015).

[150] Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc. Sequence to sequence learning
with neural networks. In Proc. Advances in Neural Information Processing
Systems (2014), pp. 3104–3112.

[151] Toneva, Mariya, Sordoni, Alessandro, Combes, Remi Tachet des, Trischler,
Adam, Bengio, Yoshua, and Gordon, Geoffrey J. An empirical study of example
forgetting during deep neural network learning. arXiv preprint arXiv:1812.05159
(2018).

[152] van der Linden, Wim J, and Glas, Cees AW. Computerized adaptive testing:
Theory and practice. Springer, 2000.

[153] van der Linden, Wim J, and Pashley, Peter J. Item selection and ability
estimation in adaptive testing. In Elements of adaptive testing. Springer, 2009,
pp. 3–30.

[154] Van Der Maaten, Laurens. Accelerating t-sne using tree-based algorithms. The
Journal of Machine Learning Research 15, 1 (2014), 3221–3245.

[155] Van Engelen, Jesper E, and Hoos, Holger H. A survey on semi-supervised
learning. Machine Learning 109, 2 (2020), 373–440.

[156] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion,
Gomez, Aidan N, Kaiser, Łukasz, and Polosukhin, Illia. Attention is all you need.
In Proc. Conference on Advances in Neural Information Processing Systems
(Dec. 2017), pp. 5998–6008.

[157] Veldkamp, Bernard P, and van der Linden, Wim J. Implementing sympson-
hetter item-exposure control in a shadow-test approach to constrained adaptive
testing. International Journal of Testing 8, 3 (2008), 272–289.

127

[158] Vie, Jill-Jênn, and Kashima, Hisashi. Knowledge tracing machines: Factoriza-
tion machines for knowledge tracing. In Proc. AAAI Conference on Artificial
Intelligence (Feb. 2019), vol. 33, pp. 750–757.

[159] Vitter, Jeffrey S. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS) 11, 1 (1985), 37–57.

[160] Vitter, Jeffrey S. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS) 11, 1 (1985), 37–57.

[161] Wang, Eric, Chang, Kai-Wei, Van den Broeck, Guy, et al. Neuro-symbolic
entropy regularization. In The 38th Conference on Uncertainty in Artificial
Intelligence (2022).

[162] Wang, Fei, Liu, Qi, Chen, Enhong, Huang, Zhenya, Chen, Yuying, Yin, Yu,
Huang, Zai, and Wang, Shijin. Neural cognitive diagnosis for intelligent education
systems. In Proceedings of the AAAI Conference on Artificial Intelligence (2020),
vol. 34, pp. 6153–6161.

[163] Wang, Pengfei, Guo, Jiafeng, Lan, Yanyan, Xu, Jun, Wan, Shengxian, and
Cheng, Xueqi. Learning hierarchical representation model for nextbasket rec-
ommendation. In Proc. International ACM SIGIR conference on Research and
Development in Information Retrieval (2015), pp. 403–412.

[164] Wang, Weiqing, Yin, Hongzhi, Huang, Zi, Wang, Qinyong, Du, Xingzhong, and
Nguyen, Quoc Viet Hung. Streaming ranking based recommender systems. In
The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval (2018), pp. 525–534.

[165] Wang, Zichao, Lamb, Angus, Saveliev, Evgeny, Cameron, Pashmina, Zaykov, Yor-
dan, Hernández-Lobato, José Miguel, Turner, Richard E, Baraniuk, Richard G,
Barton, Craig, Jones, Simon Peyton, et al. Diagnostic questions: The neurips
2020 education challenge. arXiv preprint arXiv:2007.12061 (2020).

[166] Weber, Leon, Minervini, Pasquale, Münchmeyer, Jannes, Leser, Ulf, and Rock-
täschel, Tim. Nlprolog: Reasoning with weak unification for question answering
in natural language. arXiv preprint arXiv:1906.06187 (2019).

[167] Wehenkel, Antoine, and Louppe, Gilles. Unconstrained monotonic neural net-
works. Advances in neural information processing systems 32 (2019).

[168] Wei, Kai, Iyer, Rishabh, and Bilmes, Jeff. Submodularity in data subset selection
and active learning. In International conference on machine learning (2015),
PMLR, pp. 1954–1963.

[169] Williams, Ronald. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning (1992).

128

[170] Wilson, Kevin, Karklin, Yan, Han, Bojian, and Ekanadham, Chaitanya. Back to
the basics: Bayesian extensions of IRT outperform neural networks for proficiency
estimation. In Proc. International Conference on Educational Data Mining (June
2016), pp. 539–544.

[171] Woodward, Mark, and Finn, Chelsea. Active one-shot learning. arXiv preprint
arXiv:1702.06559 (2017).

[172] Woolf, Beverly Park. Building Intelligent Interactive Tutors: Student-centered
Strategies for Revolutionizing E-learning. Morgan Kaufmann, 2010.

[173] Wu, Chao-Yuan, Ahmed, Amr, Beutel, Alex, Smola, Alexander J, and Jing,
How. Recurrent recommender networks. In Proceedings of the tenth ACM
international conference on web search and data mining (2017), pp. 495–503.

[174] Wu, Weichang, Yan, Junchi, Yang, Xiaokang, and Zha, Hongyuan. Decou-
pled learning for factorial marked temporal point processes. In Proc. ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining
(2018), pp. 2516–2525.

[175] Xiong, Xiaolu, Zhao, Siyuan, Van Inwegen, Eric G, and Beck, Joseph E. Going
deeper with deep knowledge tracing. International Educational Data Mining
Society (2016).

[176] Xu, Jingyi, Zhang, Zilu, Friedman, Tal, Liang, Yitao, and Broeck, Guy. A se-
mantic loss function for deep learning with symbolic knowledge. In International
conference on machine learning (2018), PMLR, pp. 5502–5511.

[177] Xue, Hong-Jian, Dai, Xinyu, Zhang, Jianbing, Huang, Shujian, and Chen, Jiajun.
Deep matrix factorization models for recommender systems. In IJCAI (2017),
vol. 17, Melbourne, Australia, pp. 3203–3209.

[178] Yang, Dingqi, Qu, Bingqing, Yang, Jie, and Cudre-Mauroux, Philippe. Revisit-
ing user mobility and social relationships in lbsns: A hypergraph embedding
approach. In The world wide web conference (2019), pp. 2147–2157.

[179] Yang, Fan, Yang, Zhilin, and Cohen, William W. Differentiable learning of
logical rules for knowledge base reasoning. Advances in neural information
processing systems 30 (2017).

[180] Yang, Yi, Ma, Zhigang, Nie, Feiping, Chang, Xiaojun, and Hauptmann, Alexan-
der G. Multi-class active learning by uncertainty sampling with diversity maxi-
mization. International Journal of Computer Vision 113, 2 (2015), 113–127.

[181] Yeung, Chun-Kit, and Yeung, Dit-Yan. Addressing two problems in deep knowl-
edge tracing via prediction-consistent regularization. In Proc. ACM Conference
on Learning at Scale (2018), ACM, p. 5.

129

[182] Yoon, Jinsung, Arik, Sercan, and Pfister, Tomas. Data valuation using rein-
forcement learning. In International Conference on Machine Learning (2020),
pp. 10842–10851.

[183] You, Seungil, Ding, David, Canini, Kevin, Pfeifer, Jan, and Gupta, Maya. Deep
lattice networks and partial monotonic functions. Advances in neural information
processing systems 30 (2017).

[184] Yudelson, Michael, Koedinger, Kenneth, and Gordon, Geoffrey. Individualized
Bayesian knowledge tracing models. In Proc. International Conference on
Artificial Intelligence in Education (July 2013), pp. 171–180.

[185] Zhang, Denghui, Liu, Junming, Zhu, Hengshu, Liu, Yanchi, Wang, Lichen, Wang,
Pengyang, and Xiong, Hui. Job2vec: Job title benchmarking with collective
multi-view representation learning. In Proc. ACM International Conference on
Information and Knowledge Management (2019), pp. 2763–2771.

[186] Zhang, Jiani, Shi, Xingjian, King, Irwin, and Yeung, Dit-Yan. Dynamic key-
value memory networks for knowledge tracing. In Proc. International Conference
on World Wide Web (Apr. 2017), pp. 765–774.

[187] Zhao, Bo, Mopuri, Konda Reddy, and Bilen, Hakan. Dataset condensation with
gradient matching. arXiv preprint arXiv:2006.05929 (2020).

[188] Zhou, Zhi-Hua. A brief introduction to weakly supervised learning. National
science review 5, 1 (2018), 44–53.

[189] Zhuang, Fuzhen, Qi, Zhiyuan, Duan, Keyu, Xi, Dongbo, Zhu, Yongchun, Zhu,
Hengshu, Xiong, Hui, and He, Qing. A comprehensive survey on transfer learning.
Proceedings of the IEEE 109, 1 (2020), 43–76.

[190] Zubek, Valentina Bayer, Dietterich, Thomas Glen, et al. Pruning improves
heuristic search for cost-sensitive learning.

130

	Learning from Sequential User Data: Models and Sample-efficient Algorithms
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Background
	Sequential Sample Selection
	Related Work

	Sequence Labeling
	Related Work

	Thesis Overview
	Summary of Publications and Open Source Contributions

	Bilevel Optimization-Based Computerized Adaptive Testing
	Introduction
	Contributions
	Methodology
	The BOBCAT Framework
	Learning and Inference

	Experimental Results
	Experimental Setup
	Results and Discussion

	Conclusions

	Differentiable Policy for Sketching in Recommender Systems
	Introduction
	Contributions.
	Methodology
	Problem Setup
	DiPS Sketching Objective
	Recommender System Model
	Sketching Policy
	Learning and Inference
	Sketching Policy Optimization

	Experimental Results
	Experimental Setup
	Results and Discussion

	Conclusions

	Context-aware attentive knowledge tracing
	Introduction
	Related Work
	Contributions
	Methodology
	Problem Setup
	The AKT Method
	Context-aware Representations
	The Monotonic Attention Mechanism
	Rasch Model-Based Embeddings

	Experimental Results
	Experimental Setup
	Results and Discussion
	Visualizing Learned AKT Parameters

	Conclusions

	Career Path Modeling and Recommendation
	Introduction
	Related Work
	Contributions
	Methodology
	Problem Setup
	The MNSS Model
	Monotonic Nonlinear State-space Model
	Approximate Inference
	Career Path Recommendation

	Experimental Results
	Experimental Setup
	Results and Discussion
	Career Path Recommendation

	Conclusions

	Conclusions
	Future Work
	Algorithms
	Models
	User Data

	Bibliography

