252 research outputs found

    Fluctuation-induced interactions and nonlinear nanophotonics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 293-329).We present theoretical and numerical methods for studying Casimir forces and nonlinear frequency conversion in nanophotonic media consisting of arbitrary geometries and materials. The first section of the thesis focuses on the study of various geometry-enabled resonant effects leading to strong nonlinear interactions. The starting point of this work is a coupled-mode theory framework for modeling a wide range of resonant nonlinear frequency-conversion processes in general geometries, ameliorating the need for repeated and expensive finite-difference time-domain simulations. We examine the predictions of the theory for two particular nonlinear processes: harmonic generation and difference-frequency generation. Our results demonstrate strong enhancement of nonlinear interactions at a "critical" input power leading to 100% frequency conversion, among many other interesting dynamical effects. Using a quantum-mechanical description of light, based on cavity quantum electrodynamics, similar enhancement effects are demonstrated at the single-photon level, leading to the possibility of achieving all-optical switching of a single signal photon by a single gating photon in a waveguide-cavity geometry consisting of pumped four-level atoms embedded in a cavity. Finally, we describe how one may tailor the geometry of certain materials to enhance their nonlinear susceptibilities by exploiting a consequence of the Purcell effect. The second section of the thesis, the main contribution of this work, presents a new formulation for studying Casimir forces in arbitrary geometries and materials that directly exploits efficient and well-developed techniques in computational electromagnetism. To begin with, we present the step-by-step conceptual development of our computational method, based on a well-known stress tensor formalism for computing Casimir forces. A proof-of- concept finite-difference frequency-domain implementation of the stress-tensor method is described and checked against known results in simple geometries. Building on this work, we then describe the basic theoretical ingredients of a new technique for determining Casimir forces via antenna measurements in tabletop experiments. This technique is based on a (derived) correspondence between the complex-frequency deformation of the Casimir frequency-integrand for any given geometry and the real-frequency classical electromagnetic response of the same geometry, but with dissipation added everywhere. This correspondence forms the starting point of a numerical Casimir solver based on the finite-difference time-domain method, which we describe and then implement via an off-the-shelf time-domain solver, requiring no modifications. These numerical methods are then used to explore a wide range of geometries and materials, of various levels of complexity: First, a four-body piston-like geometry consisting of two cylinders next to adjacent walls, which exhibits a non-monotonic lateral Casimir force (explained via ray optics and the method of images); Second, a zipper-like, glide-symmetric structure that leads to a net repulsive force arising from a competition between attractive interactions. Finally, we examine a number of geometries consisting of fluid-separated objects and find a number of interesting results. These include: stable levitation and suspension of compact objects, dispersion-induced orientation transitions, and strong non-zero temperature Casimir effects.by Alejandro Rodriguez-Wong.Ph.D

    ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    Get PDF
    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented

    NANOSCALE THERMAL CONDUCTION CHARACTERISATION IN THIN FILM SYSTEMS

    Full text link
    The characteristic length of the thin film systems used nowadays in nanoscale thermoelectric and microelectric devices are comparable to the mean free path and wavelength of energy carriers. As a result, the application of classical theorise to characterise thermal transport at the nanoscale is questionable. However, it is essential to understand the underlying physics of heat propagation in thin film systems to control, manipulate, and manage thermal properties in micro and nanodevices. Understanding thermal properties by experiment are challenging, especially for materials with low thermal conductivity and small mean free path (MFP). On the other hand, molecular dynamics (MD) allows investigation of sophisticated crystalline, bulk, interface and surface effects of thermal conduction problem with accuracy, fidelity, and reliability. Nevertheless, the computational results of MD can suffer from the wrong choice of critical parameters, unfit empirical potentials for thermal application and provide unreliable thermal conductivity. Moreover, the dependence of the thermal boundary resistance (TBR) on temperature, thin film's dimension, and defects are not systematically assessed for the important thin films in the thermal application. To solve this problem, a systematic equilibrium molecular dynamics (EMD), addressing the critical issues in thermal conduction characterisation is proposed at the classical temperature range, where thermal conduction is dominated by phonons. The model has been validated by investigating the thermal conduction of Si and dielectrics used in thin film systems. The issue with empirical potential is addressed by critically assessing the performance of a potential on the basis of thermal conductivity, atomic energy and phonon density of state prediction. Later, thin film systems are studied to understand relative phonon propagation at the interface and quantify TBR's dependence on interface area, interfacial distance as well as temperature. Finally, the thermal resistance of thin film systems with defects is characterised to understand realistic phonon propagation scenario in the thermal application of thin film systems

    The Laplace transform boundary element method for diffusion-type problems

    Get PDF
    Diffusion-type problems are described by parabolic partial differential equations; they are defined on a domain involving both time and space. The usual method of solution is to use a finite difference time-stepping process which leads to an elliptic equation in the space variable. The major drawback with the finite difference method in time is the possibility of severe stability restrictions. An alternative process is to use the Laplace transform. The transformed problem can be solved using a suitable partial differential equation solver and the solution is transformed back into the time domain using a suitable inversion process. In all practical situations a numerical inversion is required. For problems with discontinuous or periodic boundary conditions, the numerical inversion is not straightforward and we show how to overcome these difficulties. The boundary element method is a well-established technique for solving elliptic problems. One of the procedures required is the evaluation of singular integrals which arise in the solution process and a new formulation is developed to handle these integrals. For the solution of non-homogeneous equations an additional technique is required and the dual reciprocity method used in conjunction with the boundary element method provides a way forward. The Laplace transform is a linear operator and as such cannot handle non-linear terms. We address this problem by a linearisation process together with a suitable iterative scheme. We apply such a procedure to a non-linear coupled electromagnetic heating problem with electrical and thermal properties exhibiting temperature dependencies

    Development of an integrated BEM approach for hot fluid structure interaction: BEST-FSI: Boundary Element Solution Technique for Fluid Structure Interaction

    Get PDF
    As part of the continuing effort at NASA LeRC to improve both the durability and reliability of hot section Earth-to-orbit engine components, significant enhancements must be made in existing finite element and finite difference methods, and advanced techniques, such as the boundary element method (BEM), must be explored. The BEM was chosen as the basic analysis tool because the critical variables (temperature, flux, displacement, and traction) can be very precisely determined with a boundary-based discretization scheme. Additionally, model preparation is considerably simplified compared to the more familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow is captured through the use of an analytical fundamental solution, eliminating the dependence of the solution on the discretization pattern. The price that must be paid in order to realize these advantages is that any BEM formulation requires a considerable amount of analytical work, which is typically absent in the other numerical methods. All of the research accomplishments of a multi-year program aimed toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-orbit engine hot section components are detailed. Most of the effort was directed toward the examination of fluid flow, since BEM's for fluids are at a much less developed state. However, significant strides were made, not only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure interaction problem

    Influence of topography on the dynamics of baroclinic oceanic eddies

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 1994.Includes bibliographical references (leaves 187-190).by Kirill Konstantinovich Pankratov.Ph.D

    On 3-D inelastic analysis methods for hot section components (base program)

    Get PDF
    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report

    Proceedings of the Workshop on Change of Representation and Problem Reformulation

    Get PDF
    The proceedings of the third Workshop on Change of representation and Problem Reformulation is presented. In contrast to the first two workshops, this workshop was focused on analytic or knowledge-based approaches, as opposed to statistical or empirical approaches called 'constructive induction'. The organizing committee believes that there is a potential for combining analytic and inductive approaches at a future date. However, it became apparent at the previous two workshops that the communities pursuing these different approaches are currently interested in largely non-overlapping issues. The constructive induction community has been holding its own workshops, principally in conjunction with the machine learning conference. While this workshop is more focused on analytic approaches, the organizing committee has made an effort to include more application domains. We have greatly expanded from the origins in the machine learning community. Participants in this workshop come from the full spectrum of AI application domains including planning, qualitative physics, software engineering, knowledge representation, and machine learning
    corecore