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When this you see remember me 
And bear me in your mind; 

And be not like the weathercock 
That turn att eery wind. 

When I am dead and laid in grau 
And all my bones are rotten, 
By this may I remembered be 
When I should be forgotten. 

Anon. 
(Cross stitch sampler 1736) 
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Abstract 

Diffusion-type problems are described by parabolic partial differential 

equations; they are defined on a domain involving both time and space. The 

usual method of solution is to use a finite difference time-stepping process 

which leads to an elliptic equation in the space variable. The major draw- 

back with the finite difference method in time is the possibility of severe 

stability restrictions. 

An alternative process is to use the Laplace transform. The transformed 

problem can be solved using a suitable partial differential equation solver 

and the solution is transformed back into the time domain using a suit- 

able inversion process. In all practical situations a numerical inversion is 

required. For problems with discontinuous or periodic boundary conditions, 

the numerical inversion is not straightforward and we show how to overcome 

these difficulties. 

The boundary element method is a well-established technique for solv- 

ing elliptic problems. One of the procedures required is the evaluation of 

singular integrals which arise in the solution process and a new formulation 

is developed to handle these integrals. 

For the solution of non-homogeneous equations an additional technique 

is required and the dual reciprocity method used in conjunction with the 

boundary element method provides a way forward. 

The Laplace transform is a linear operator and as such cannot han- 

dle non-linear terms. We address this problem by a linearisation process 

together with a suitable iterative scheme. We apply such a procedure to 

a non-linear coupled electromagnetic heating problem with electrical and 

thermal properties exhibiting temperature dependencies. 
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Chapter 1 

Introduction 

1.1 Introduction 

In this chapter we give an overview of the programme of research associated 

with the Laplace transform boundary element method (LTBEM). We pro- 

vide a background to the work and explain how the thesis is set out. Firstly, 

however, we state the objectives which prompted this particular work and 

followed on from research already undertaken. 

Our objectives at the beginning of this research work were: 

1. To investigate the LTBEM for accuracy when considering numerical 

inversion methods, 

2. To investigate the LTBEM for accuracy when considering non-monotonic 

boundary conditions, 

3. To investigate the LTBEM on a distributed memory architecture for 

efficiency of computation. 
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1.2 Background of the research 

Eight years ago when this work began the ideas of the research team were 

centred upon investigating the boundary element method and the solution 
to problems using a distributed memory architecture. Four transputers were 

available, configured in parallel, then the work was transferred to a network 

of SUN workstations using the PVM message passing protocol and finally 

the university acquired an nCube parallel machine. The Laplace transform 

method was considered for reducing a parabolic problem to either Laplace's 

equation or the modified Helmholtz problem and a variety of different elliptic 

solvers were used before inverting back into the time space, the ideas which 

form the basis of this thesis. 

However, with the university losing the nCube and pc's themselves hav- 

ing a much larger memory than before, parallelisation wasn't such a priority 

and the work took a different direction to investigate the evaluation of singu- 

lar integrals within the boundary element method. Working with members 

of the Computer Science Department, Automatic Differentiation (AD) was 

considered and a program was developed using Taylor polynomial coeffi- 

cients to evaluate the singular integrals involved with quadratic elements 

along similar lines to AD. Although the method worked well and accuracy 

on test problems was very encouraging, the efficiency of the method was 

not as favourable as other methods in use and it was decided to concen- 

trate on linear elements in the boundary element method and use code for 

implementation which was already available. 

Inversion techniques for the Laplace transform were investigated and a 

real-variable inversion method was chosen which worked well, gave accurate 

results and was easy to implement There were two problems that were ac- 

knowledged with the method, namely inversions of transforms associated 

with discontinuous and periodic functions. Numerical techniques were used 

to recover the solutions and very good results were obtained. The method 

2 



was very satisfactory, it was robust and accurate, and in order to move on a 
further refinement was needed to handle the non-homogeneous problems so 
the dual reciprocity method was included. Following testing on a number 

of examples we found that this refined method gave accurate results leading 

us to consider non-linear initial boundary-value problems. 
In the following chapters, this story becomes clear as we move forward 

through the thesis. 

A number of papers have been published throughout the period of this 

research programme highlighting the contribution to knowledge within this 

area of work. We refer to them where appropriate in the thesis. 

A significant number of numerical computations have been developed but 

only certain selected results have been included in the thesis. A complete 

set of results can be found in the technical report by Crann (2005). 

1.3 Development of the thesis 

In Chapter 2 we give a general classification of partial differential equations 

and explain the significance of given boundary and/or initial conditions. 

We discuss various methods for finding the solution of such equations and 

comment on the advantages and disadvantages of using each of the methods. 

In Chapter 3 we describe in further detail the background and numerical 

implementation of the boundary element method (BEM) and we consider 

in Chapter 4 the problems associated with the evaluation of the integrals 

which occur in the BEM. We formulate a new method for dealing with 

these integrals and show that in terms of accuracy it compares well with 

alternative methods. 

The Laplace transform method is shown to be very convenient when used 

in conjunction with other solution processes for solving parabolic problems. 

The difficulty associated with using the Laplace transform manifests itself 

in the inversion which is required after the transformed equation has been 
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solved in the Laplace space. In Chapter 5 we consider two real-variable 

methods of inverting the Laplace transform which we test on a variety of 
transforms. In Chapter 6 we then use the Laplace transform method with 

our preferred inversion process to solve parabolic problems. We use a variety 

of methods both sequentially and in parallel to demonstrate the versatility of 

the Laplace transform approach. We concentrate on the Laplace transform 

boundary element method in the remainder of this thesis. 

We extend the LTBEM in Chapter 7 to accommodate non-homogeneous 

problems using the dual reciprocity method and demonstrate the combined 

method with a number of linear problems. 

The standard form of the LTBEM is not suitable for problems with 

non-monotonic time-dependent boundary conditions due to the inversion 

processes which smooth out the discontinuities or oscillations. In Chapter 8, 

we show that using the Laplace transform method in a piecewise manner 

we can find the solution with good accuracy within the neighbourhood of a 

discontinuity or predict the oscillatory nature of the solution. 

For our final numerical work, in Chapter 9, we demonstrate that non- 

linear problems can be solved using the LTBEM with dual reciprocity using 

linearisation and iterative schemes to handle the non-linearities. We solve 

a variety of non-linear problems and consider a coupled non-linear problem 

which we solve by our method and report very good results. 

In our final chapter we summarise the contribution made in this thesis 

and bring together our ideas on the significance of the work and the areas 

for future research which it has opened. We also list the published work 

which has arisen from this research and a brief explanation of the topic and 

where in the thesis it is presented. 
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Chapter 2 

Initial boundary-value 

problems 

2.1 Introduction 

Many problems in physical science and engineering are modelled mathemat- 

ically by differential equations. Examples can be found in the classical texts 

in areas such as fluid mechanics (Lamb 1932, Dryden et al. 1956), heat trans- 

fer (Jakob 1949, Carslaw and Jaeger 1959), elasticity (Love 1927, Sokolnikoff 

1956), diffusion (Crank 1975) and electromagnetic field problems (Stratton 

1941). Most practical problems involve more than one independent vari- 

able and so are modelled by partial differential equations. More recently 

such equations have been developed to model situations in biological science 

(Edelstein-Keshet 1988) and in finance (Wilmott et al. 1995). 

For the mathematical models of these physical problems to have a unique 

solution, boundary conditions and initial conditions are necessary. If the 

number of conditions is sufficient to determine a unique solution that de- 

pends continuously on the data, then the problem is said to be well-posed 

or properly-posed (Renardy and Rogers 1993). Continuity of the solution 

may also be interpreted as small changes in data yield small changes in the 
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solution. 

2.1.1 Classification of partial differential equations 

We can classify partial differential equations in three ways as follows (Williams 

1980): 

1. Elliptic equations are associated with steady-state problems and re- 

quire conditions posed on a closed boundary. Changes in the bound- 

ary data are felt throughout the domain instantaneously, i. e. these 

equations are not associated with propagation problems. 

Typical examples of elliptic equations are Laplace's equation 

V2u=0 

and Poisson's equation 

V2u=f (2.1) 

where f is a known function of position (x, y). 

2. Hyperbolic equations are often associated with time-dependent prob- 

lems and the solution is obtained starting from some given initial con- 

dition, propagating through waves of finite speed. The solution at any 

point in the domain depends only on a finite subset of the initial data, 

the so-called domain of dependence. 

A typical equation is the wave equation 

a2u 1 a2u 
49X2 = C2 at2 

(2.2) 

3. Parabolic equations are also associated with time-dependent problems 

starting from an initial condition. However, the solution at any point 

depends on the complete set of initial data. They are similar to elliptic 

equations in that changes in the boundary data are propagated at 
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infinite speed. A typical example is the diffusion or heat condution 

equation 

alu au 
aX2 =-a at 

(2.3) 

An equation is linear when the dependent variable and all its partial 
derivatives occur as single entities e. g. 

a(x, y) 
2a2+ 

b(x, y) 
u+ 

c(x, y)u = 9(x, y) 
y 

otherwise the equation is non-linear e. g. 

a(x, y, u) 
2a2+ 

b(x, y, u) ax + c(x, y, u)u = 9(x, y, u) (2.4) 
y 

where at least one of a, b, c or g is an explicit function of u. 

This is particularly important in Chapter 5 where we introduce the 

Laplace transform since the transform is applicable only in the case of linear 

equations. For non-linear problems, in Chapter 9, we shall seek a suitable 

linearisation procedure. 

If g(x, y, u) -0 in equation (2.4), then the equation is said to be homo- 

geneous. 

2.1.2 Boundary and initial conditions 

Initial boundary value problems comprise a partial differential equation de- 

fined in some region D together with specified conditions on the boundary 

C and given values in D at some starting time. 

The three most commonly occuring types of boundary condition associ- 

ated with partial differential equations are: 

1. Dirichlet condition, where the value of the dependent variable on the 

boundary is given, 

2. Neumann condition, where the first-order space derivative of the de- 

pendent variable on the boundary in a direction normal to the bound- 

ary is given, and 
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3. Robin, or mixed condition, a linear combination of the Dirichlet and 
Neumann conditions. 

The initial conditions are the prescribed values of the function and/or 
its time derivative throughout D at time zero. 

Problems which comprise a differential equation together with boundary 

conditions only are called boundary-value problems. Problems which com- 

prise a differential equation together with initial conditions only are called 

initial-value problems. Elliptic partial differential equations are associated 

with boundary value problems. Hyperbolic and parabolic partial differential 

equations require both boundary values and initial values and are associated 

with initial boundary-value problems. 

We shall call the equation 

V2u=f(x, y, u, ux, uy, ) 

where we use the usual notation u,; = äul äx etc., with boundary and/or 

initial conditions a Poisson-type problem. 

For Poisson-type problems to be well-posed we require that either u or its 

normal derivative, au/an, must be specified at each point on the boundary. 

In particular the example due to Hadamard (1923) shows that we cannot 

specify both u and its derivative independently at any point on the boundary. 

Throughout this thesis whenever we deal with time dependence it will be in 

the context of well-posed parabolic problems so that we need just one initial 

condition, i. e. we shall specify the initial value, uo, of u. 

In this thesis we shall be looking at a generalisation of the diffusion 

equation in the form 

V u= au 
aöt 

+h (x, y, t, u, ux, uy) 

We shall call this equation a diffusion-type equation; some authors call it 

the diffusion-reaction equation (Logan 1994). 
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2.2 Numerical solutions of partial differential equa 

tions 

Williams (1980) gives an account of some analytical methods of solving 
linear partial differential equations. The methods either find the solutions 

from an infinite series of products of functions of the separate independent 

variables or use integral representations by means of integral transforms, 

the most common being Laplace or Fourier transforms. The first method 

can be used only for those relatively simple problems where the independent 

variables can be separated. Methods using an integral transform require the 

recovery of the solution using an inversion process which is usually done 

using standard tables. Again only relatively simple problems are currently 

amenable to these methods. 

The most widely used numerical methods for solving partial differential 

equations are the Finite Difference Method (FDM) (Smith 1978), the Finite 

Element Method (FEM) (Davies 1985) and the Boundary Element Method 

(BEM) (Brebbia and Dominguez 1989). In a recent search on an online 

bibliographic database Cheng and Cheng (2005) obtained 66,000 entries for 

the FEM, followed by the FDM with 19,000, BEM with 10,000 and other 

methods trailed far behind with under 3,500, showing that the FEM has 

been by far the most popular method for published articles. An indication 

of the number of annual publications for the BEM seems to be reaching a 

steady state at about 700-800 papers per year, compared with 5,000 for the 

FEM and 1,400 for the FDM. The BEM has reached a level of maturity and 

is well-established as a suitable approach to the solution of partial differential 

equations. 

However, they each have advantages and disadvantages in practical use 

and a particular method can be chosen to highlight the different aspects of 

the type of problem in question. The FDM is easy to implement with a good 
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history of successful applications although for irregular geometry problems 

can occur with implementation. The FEM is also well-established and is 

able to give a good representation of all geometries, however unbounded 

problems require a finite approximation of the boundary at infinity. The 

BEM has a smaller system matrix due to the reduction in one dimension of 
the problem compared with the other methods. However solvers used in the 

FEM are not appropriate. Exterior problems can be handled easily. The 

method is restricted to those problems for which a fundamental solution is 

known. 

2.2.1 The Finite Difference Method (FDM) 

This is the most straightforward method and can be used to solve each type 

of partial differential equation. 

The region is discretised with a grid system, usually rectangular, and 

the derivatives of the partial differential equations are replaced at each grid 

point with their corresponding finite-difference representation. Forward, 

backward or central differences can be used, and the boundary and initial 

conditions are taken into account during the geometrical set-up. 

For Poisson's equation, equation (2.1) which we shall consider in Chap- 

ter 7, we use a central difference approximation leading to: 

(Ui-lj 
- 2Uij +Ui+lj) +2 (Uij-1 

- 2Uij + Uij+1) = fij 
h2 

and in the case h=k we have the usual five-point stencil: 

2 
(Ui-lj + Uij+1 + Ui+lj + Uij-1 - 4Ujj) = fij 

h 

Figure 2.1 shows a typical grid mesh for the FDM in which we define h 

and k. U2j is the approximate value of u(x, y) at the grid point i, j. 

For the diffusion equation, equation (2.3) we can use a central difference 

approximation in space and forward difference in time to obtain the explicit 
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J 

Figure 2.1: A typical grid mesh for the FDM 

form 

Uij+l = Uij + ak 
h2 (Ui-lj - 2Uij + Ui+lj) 

In later chapters we shall use the FDM approximation as a comparison for 

our results. 

The finite difference solution is always found at every point on the grid, 

for every time value, even if only a part of the region's solution is required. 

The FDM method is simple and straightforward to use. The rectangular 

geometry is good for regular boundaries but more complicated geometry 

is difficult, as is mesh refinement. In principle, accuracy can be improved 

by reducing the mesh-size, thereby making the grid fit the region better. 

However, a significant problem associated with FDM is the possibility of 

numerical instability and care is required to avoid unstable schemes for time- 

dependent problems. 

2.2.2 The Finite Element Method (FEM) 

This method is used widely for elliptic problems. Again a grid system is 

defined over the entire region, however it does not need to be regular. In 

fact it is often the case that a graded mesh is used to improve accuracy in 
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specific regions. A typical triangular mesh is shown in Figure 2.2. 

Figure 2.2: A typical grid mesh for the FEM 

The triangular mesh fits the boundary of the region geometrically more 

accurately than a rectangular mesh similar to that of the FDM. Mesh refine- 

ment is easily possible. The equation at each node is again described using 

information from its neighbouring points, using the boundary conditions as 

necessary. The elements of the system matrix require integrals over each 

element region and these are performed numerically, usually using Gaussian 

quadrature. The system matrix is sparse, symmetric and positive definite, 

allowing very efficient equation solvers to be used. The system matrix may 

also be banded if the node numbering is appropriate. 

The whole grid system is solved and the solution at each point of the 

mesh is found whether or not it is needed. 

There was much innovative work in the early years to improve the effi- 

ciency of the solution process e. g. isoparametric elements allow even better 

geometrical approximations by using curved arcs rather than straight lines 

on the boundary (Irons 1966), the frontal method for finding each solution 

as the solver works through a banded solution matrix (Irons 1970). 

The finite element method has now reached a stage of well-developed 

maturity. Most practical engineering problems related to solids, structures, 

fluids, electromagnetism etc. are currently solved using a large number of 
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well-developed FEM packages that are commercially available. Comprehen- 

sive details of recent developments can be found in Zienkiewicz and Taylor 
(2000). 

2.2.3 The Boundary Element Method (BEM) 

The boundary element method has become the third well-accepted method 

of solving elliptic equations with a known fundamental solution (Kythe 

1996). 

The partial differential equation is recast as a boundary integral equa- 
tion, using the known fundamental solution and relationships such as Green's 

second theorem, and is solved over the boundary only of the region. In the 

case of linear elements we have N elements and N nodes see Figure 2.3. 

node i 

Figure 2.3: A typical grid mesh for the BEM 

Interpolation functions are used to describe the geometry over each el- 

ement, the simplest being constant functions, but more complicated linear, 

quadratic or high order functions can be used. Again integrals are required 

over the elements and in general, analytical integration is neither possible 

nor practical. However it is often the case that the singular integrals, which 

occur due to the singularities in the fundamental solution, may be evaluated 

analytically. The non-singular integrals are usually evaluated using Gauss 

quadrature. 
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The system matrix is formed by repeating the integration process over 

each element. The boundary values are applied at every node and values 

of the function and derivative at all points on the boundary are found by 

solving the system equations. Values at the internal points may then be 

found using the solution on the boundary. 

The advantages of the BEM are that fewer nodes are used than in the 

FDM or FEM, as only the boundary is discretised, rather than the whole 

region, and therefore fewer equations need to be solved. Values at the re- 

quired internal points only have to be obtained, rather than the solution 

over the whole interior region. 

In order to be able to set up the BEM equations we need to know a 

fundamental solution to the equation and this is not always the case. Also, 

the BEM solution matrix is dense, not necessarily symmetric nor positive 

definite. It is not diagonally dominant. However, it is non-singular. The 

equations are not appropriate for the efficient solvers used in the FEM, al- 

though the search for such schemes is the subject of a good deal of current 

reseach, such as conjugate gradients (Broyden and Vespucci 2004), multi- 

pole acceleration (Mammoli and Ingber 1999, Popov and Power 2001), fast 

wavelet transforms (Bucher and Wrobel 2001). 

2.2.4 Mesh-free methods 

The three methods FDM, FEM and BEM are the most commonly used 

processes. However, recent interest has been growing in so-called `mesh-free' 

methods. Researchers have seen mesh-free methods as being very efficient 

and accurate under suitable circumstances (Liu 2003). There is no need to 

define any sort of mesh; the solution is developed in terms of a set of basis 

functions which are defined over the whole domain. The methods are, in 

principle, easy to understand and are, in practice, easier to implement than 

FDM, FEM or BEM. We describe briefly two of these methods. Further 
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information and references can be found in the report by Davies and Crann 
(2000). 

Kansa's Multiquadratic Method (MQM) 

This method is a relatively new idea which has been investigated for elliptic 

partial differential equations. It has the advantage that a fundamental so- 
lution is not required. The approach is to approximate the solution surface 

using a scattered data approximation. 

Figure 2.4: The region for the MQM 

In this case a combination of radial basis functions is set up to inter- 

polate the solution at every point, internally and on the boundary, using 

information from every node, see Figure 2.4. 

A shape parameter is sought and different values are being investigated to 

aid stability. This method is remarkably simple and offers good results under 

certain conditions (Franke 1982). However, ill-conditioning is a significant 

problem and much work is currently being done to develop procedures that 

are not so susceptible to ill-conditioning. 

The Method of Fundamental Solutions (MFS) 

The method of fundamental solutions requires knowledge of the fundamental 

solution and so it is limited to those equations with a known fundamental 
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solution. 

Figure 2.5: The discretised region for the MFS 

The boundary is again discretised using N nodes. The whole region is 

surrounded by a known curve, usually a circle, discretised into N+1 nodes, 

see Figure 2.5. The solution is sought as a linear combination of fundamental 

solution values and a system of equations is developed using the boundary 

conditions. The set of equations is solved and values for internal points are 

found using these solutions. 

The setting-up of the equations is straightforward and good results have 

been found for certain types of problem (Goldberg and Chen 1999). However 

the method also suffers from ill-conditioning problems similar to those in the 

MQM. 

Chantasiriwan (2004) extends both MFS and MQM with additional 

terms in the setting up of the approximations. He reports good results 

for Poisson, Helmholtz and diffusion-convection problems. 
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2.3 Summary of Chapter 2 

In this chapter we have set the scene for the solution of partial differential 

equations with boundary and initial conditions. Very few of these equations 

have analytical solutions. Numerical methods to solve these problems are 

almost always FDM (for elliptic, hyperbolic and parabolic equations), FEM 

(for elliptic equations) and BEM (for elliptic equations with a known fun- 

damental solution). Researchers are investigating other methods of solution 

but such techniques are a long way from competing with the main three 

methods. 

In the next chapter we describe the BEM in some detail. 
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Chapter 3 

The Boundary Element 

Method 

3.1 Introduction 

Integral equation techniques in boundary-value problems have been used 

since the late nineteenth century. Green's second theorem in 1828 (Green 

1828) and Somigliana's identity in 1886 (cited by Becker 1992) formed the 

basis of the direct approach in potential-type and elasticity problems respec- 

tively. Fredholm (1903) first published a basis of the `indirect' boundary 

integral approach, using fictitious density functions or sources that have no 

physical meaning but can be used to calculate physical quantities such as 

displacements and stresses. 

Integral formulations in potential and elasticity theory continued from 

Kellog (1929), Muskhelishvili (1953), Mikhlin (1957) and Kupradze (1965) 

but were solved analytically and were therefore limited to simple problems. 

In the early sixties, the use of computers and numerical techniques 

started attracting much more interest in practical problems. Jaswon (1963) 

and Symm (1963) published the first modern `semi-direct' formulation, where 

the functions used to formulate the problem can be differentiated or inte- 
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grated to calculate physical quantities. They used constant elements and 
employed Simpson's rule to evaluate the non-singular integrals, the singular 
integrals being integrated analytically. Similar integral equation approaches 

were adopted by Jaswon and Ponter (1963) for torsion problems and Hess 

and Smith (1964) for potential flow problems around arbitrary shapes. Har- 

rington et al. (1969) continued similarly for two-dimensional electrical en- 

gineering problems. 

Rizzo (1967) was the first to use the `direct' approach of using physi- 

cal quantities in an integral equation applicable over the boundary. It is 

interesting to note that Rizzo extended the ideas from potential problems 

to develop the BEM for elasticity in contrast to Zienkiewicz and Cheung 

(1965) who extended the FEM by applying ideas from elasticity to potential 

problems (Becker 2003). Cruse (1969) used a similar formulation to Rizzo 

to solve a three-dimensional problem using flat triangular elements on the 

surface. Other early work provided a firm foundation for boundary element 

development and demonstrated that the approach could be reliable and ac- 

curate. The name `boundary element method' was first used by Brebbia 

and Dominguez (1977) who realised the analogy between the discretisation 

process for the boundary integral equation method and that for the already 

established finite element method. 

Higher order elements, quadratic shape functions, were described by 

Lachat and Watson (1976). Together with further publications by Jaswon 

and Symm (1977), Brebbia (1978) and many others, the boundary element 

method was accepted as a serious alternative to the finite element method 

with clear advantages from the modelling point of view. 

During the eighties the development of parallel computing received con- 

siderable attention since it offered the possibility of significantly improved 

computation times. Ortega and Voigt (1985) considered such approaches for 

finite differences and Lai and Liddell (1987) did the same for finite elements. 
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Symm (1984) described the first parallel implementation for the boundary 

element method and this work was continued by Davies (1988a, b, c) and 

subsequently by many others (Ingber and Davies 1997). 

Cheng and Cheng (2005) give an excellent historical account of the de- 

velopment of the BEM with short biographies of the major contributors. 

3.2 The Boundary Integral Equation 

3.2.1 Laplace's equation 

The basis of the BEM is that boundary-value problems involving partial dif- 

ferential equations can be transformed to boundary integral equations. We 

illustrate using the two-dimensional potential problem defined on a region 

D, bounded by the closed curve C= Cl + C2, see Figure 3.1. 

Suppose that u satisfies Laplace's equation 

V2u=0 inD 

subject to the Dirchlet condition 

u=ui(s) on Cl 

and the Neumann condition 

aý 
s on C2 

än -q=q2ý 

where n is the outward normal vector to C and s is the distance around C. 

We would like to know u at any point inside, on or outside C. We 

consider only Dirichlet and Neumann conditions but the approach can easily 

be modified to incorporate a Robin boundary condition. 

Suppose that R is the position vector of a point Q, relative to a point 

P. Surround P by a small disc, D, centre P radius e. The points P and Q 

are often called the source and field points respectively, see Figure 3.1. 
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D 

Q 

V2u 

c, \ 
R=q2 

n Cý u=u, 

Figure 3.1: Potential problem in the region of D 

A good description of the fundamental solution is given by Kythe (1996). 

It can be explained as the solution to the original partial differential equation 

over an unbounded region, subject to a point source of unit strength. In 

our case the fundamental solution satisfies Laplace's equation at all points 

except the point of application of the source. The fundamental solution, 

u*, satisfies V2u* =0 everywhere except at P where it has a logarithmic 

singularity. In particular V2u* =0 in that part of D which excludes the 

disc D6. 

We apply the second form of Green's theorem to the region D- DE 

(uV 2u* - u*V 2u) dA =U 
au* 

- u* 
au 

ds (3.1) I 
an an J 

_D 
and consider what happens as 6 -4 0 for P inside, on and outside the 

boundary C. 

A fundamental solution of Laplace's equation in two dimensions is 

ic* 2-1nR 

For the interior solution for u suppose that P and Q are inside C. In 

the limit as e -+ 0, equation (3.1) becomes 

up 21 
1 (uan(1nR) - qlnR) ds (3.2) 

c 
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Suppose that P itself is a point on the boundary at which there is a kink 

with angle ap, see Figure 3.2, then in a similar manner to the derivation of 
equation (3.2), equation (3.1) becomes for points P on the boundary, 

(In R) -q In R) ds (3.3) 27r up 27r 
j 

(n 
On c 

If the boundary is smooth at P then a= 'ir. 

P 

" -_ý 

,ýpý, 
ýý 

Figure 3.2: Point P on the boundary 

If P is outside the boundary then 

0= 
2ý 1(u 

O 
(1n R) -q In R) ds (3.4) 

c 

It is convenient to write these equations in the form 

(In R) -q In R) ds cpup = 
27r 

f 
(u 

an C 

where 
1 for P inside the boundary 

Cp = ap/27r for P on the boundary 

0 for P outside the boundary 

These equations, (3.2), (3.3) and (3.4) enable us to obtain values of u at 

any point, P, if we know the values of u and q everywhere on the boundary. 

Unfortunately this is not the case. For properly-posed problems we know 

only one of u or q at each boundary point, so before we can use equation (3.2) 

we must obtain both u and q everywhere on the boundary. 
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3.2.2 General second order linear partial differential equa- 
tions 

Laplace's equation is a special case of the second order partial differential 

equation 

52 a2 U 
al a-2 

+ a2 
2+ 

a3 
Xa 

+ a4- + a5 
aý 

+ a6u = b(x, y) yy ay 
i. e. in operator form 

. 
F[u] = b. 

Suppose that ,. 
' has a fundamental solution u* with associated normal 

derivative q*, then in a similar manner to the derivation of equations (3.2), 

(3.3) and (3.4) we can obtain the following integral formulation of the partial 
differential equation 

Cpup = 
ic 

(qu* - uq*)ds +f u*bdA (3.5) 
D 

where 
1 PED 

CP= ap/27r PEC 

0 PcDUC 

We notice that if the equation is non-homogeneous then we have the domain 

integral fD u*b dA which needs special treatment and we shall consider this 

in Chapter 7. The homogeneous equation leads to a boundary only integral. 

3.3 The Boundary Element Method 

The integral equation in Section 3.2 has been known since the early nine- 

teenth century but it has only been since the introduction of the modern 

digital computer in the nineteen sixties that the equation has been exploited 

as an important technique for the solution of the potential problem. 

The boundary element method provides an approximate solution to the 

boundary integral equation. First we must approximate the boundary, C, 

by a simpler curve. We shall assume that C is approximated by a polygon, 
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CN, the N edges of which are called the boundary elements. We choose 
a set of N points, called the nodes, at which we shall seek approximations 
UZ and Qi (i = 1,2, 

... , N) to the exact values ui and qi respectively. We 

shall adopt the numbering notation i to represent node number i and [j] to 

represent element number j, see Figure 3.3. 

I 

Figure 3.3: Boundary element approximation to the curve C 

Suppose that {wj (s) :j=1,2, ... , N} is a set of linearly independent 

functions of arc length, s, around CN, where, if node j is at the point sj, 

then wi (sj) = SZj with the Kronecker delta given by 

sij = 
1 i=j 

0i 54j 

The boundary element approximations to the geometry may be of any order. 

We illustrate constant, linear and quadratic elements, see Figure 3.4. 

Similarly we may approximate u and q using the same interpolation 

functions 
NN 

> wj (s)Uj and r wj (s)Qj (3.6) 
j=1 j=1 

When the same interpolation is used to approximate the geometry and the 

unknowns we have the so-called isoparametric elements. 

We shall use the point collocation method to find an approximate so- 

lution to equation (3.3) by substituting the approximations (3.6) into the 
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element- 

constant element 
node 

element, - 
'ý 

node 
linear element 

`- element 

quadratic element node 

Figure 3.4: Constant, linear and quadratic boundary element approxima- 
tions to the curve C 

boundary integral equation (3.3) with the curve C replaced by Cr and 

choosing the boundary point P to be, successively, the nodes 1,2,.. ., 
N. 

Hence we obtain, writing ci = ai/2ir, 

NN 

DUZ 2ý 
E [(wi(s)ui) 

an (1nR2) -E wj (s) Qj 1nRi ds 
CN j=1 j=1 

i= 112,..., N 

which we may write as 

NN 

CA =E 27r wý(s)a-(1nRi)ds) Uj-> 
27r (-y wj(s)1nRids Qj 

N j_1 CN j- C-1 

1 

i= 112,..., N 

where Rj = JRul and RZ(s) is the position vector of a boundary point, s, 

relative to node i. 

We can rewrite this equation as 

N 
ý HZjUj +E GijQj =0 

j=1 j=1 
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where 

an 
(lnRZj) ds - ci82j and GZj _--J wj (s)1nIk-ids H2j 

27r ý] 
wj (s) 

Oa 

Rj3 = IR2j I and R2j is the position vector of a point in the target element 
[j] relative to the base node i, see Figure 3.5 

-- target element 

base node 

Figure 3.5: Target element relative to the base node 

This enables us to approximate the unknown values on the boundary 

and subsequently obtain the solution at the required points around D. Full 

details of the method can be obtained from Brebbia and Dominguez (1989). 

The approximation to the boundary integral equation can be written in 

matrix form 

HU+GQ=O (3.7) 

where U and Q are vectors of the boundary potentials and fluxes respec- 

tively. 

However, for properly-posed problems we know only one of either u or 

qj at any point and we partition the matrices to show U1 and Q2 the known 

values and U2 and Q1 the unknown values in the form 

[Hi H2 
U1 

J +LG1 
U2 

G2 ] Q1 
=0 

Q2 
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The equations are rearranged in the form 

with the system matrices 

Ax=b 

A=[H2 G1] 

and 

b=-[Hl G2 
Ü1 ý 
Q2 

and the unknown vector 
U2 

x= 
Q1 

and solved by a suitable linear equation solution routine. 

In all our problems we have used Gaussian elimination with partial piv- 

oting, a process which is 0(N3) for an NxN system. Recall from Section 

2.2.3 that the BEM equations are densely populated, non-symmetric and 

non-positive definite, so that more efficient solvers such as conjugate gradi- 

ent methods (Broyden and Vespucci 2004) cannot be used. We notice here 

that in the calculation of the coefficients in the matrices H and G the same 

computational effort is used no matter how far the base node is from the 

target element. However, as we have already mentioned, recent research has 

been directed at methods such as multipole expansions and wavelet trans- 

forms which exploit this fact to reduce the computational effort. 

Once the boundary equations have been solved internal values are cal- 

culated at L points using the discretised form of 

NN 

Uk = 27 wj (s)Uj 
): 

n 
(lnRk) - wj (s) Qj 1nRk ds 

CN j=1 j=1 

k=1,2,..., L 
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or in matrix form 

Uint = HU + GQ 

where 

1 /' a Hak =2J wj (s) an (1nRjk) ds and Gik =-2,7r wj(s)1nRjkds Ul 

fu 

I 

Of the three methods FDM, FEM and BEM, the BEM is conceptually 

more difficult to understand and implement. The BEM comprises three dis- 

tinct stages and it is important to be able to see how the method progresses 
from one stage to the next. 

The spreadsheet offers an environment which is easy to use and ideal for 

small problems and for the investigation of the properties of the solutions 

such as convergence and for changing the geometry or boundary conditions. 

It is not necessary to rearrange equation (3.7). The facility `Solver' in the 

Excel® spreadsheet package allows us to solve the equations directly and 

then find the internal solutions. Davies and Crann (1998) describe a constant 

element implementation on a spreadsheet. 

3.4 Summary of Chapter 3 

The boundary element method is now a well-accepted method and a powerful 

technique for solving elliptic problems when there is a known fundamental 

solution. The BEM is established as an effective alternative to the FDM 

and FEM. 

In this chapter we have given a general introduction to boundary element 

history and theory, as far as we shall require it, and described the numerical 

implementation of the method for potential problems. 
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Chapter 4 

Singular Integrals 

4.1 Introduction 

One of the problems encountered in boundary element computations is the 

evaluation of the integrals which occur when the base node is in the target 

element; if the kernel of the integral equation becomes infinite when the 

integration variable and collocation point coincide, then the integral becomes 

singular. 

When the base node is not in the target element then the integrals are 

regular. Such integrals are commonly evaluated using Gauss quadrature. 

Equation (4.1) shows the numerical method for a function with a single 

independent variable: 

+1 G ff( 
)d wg. f (fig) (4.1) 

g=1 

where G is the total number of Gauss quadrature points, ý9 is the Gauss 

coordinate, the abscissa, and w9 is the associated weight. The coordinates, 

which are roots of Legendre Polynomials, and the weights may be found in 

Stroud and Secrest (1966). 

For potential problems with constant or linear elements, when the base 

node is in the target element, the singular integrals may be performed analyt- 
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ically (Jaswon and Symm 1977). For quadratic elements with straight edges 

analytic values have been given by Davies (1989). However, for isopara- 

metric quadratic elements no such analytical values are available and an 

approximate method is required. 

For other elliptic problems the resulting singular integrals cannot be 

integrated analytically and require a numerical evaluation e. g. in Chapter 

5 we consider the modified Helmholtz equation with fundamental solution 
21 Ko (pR), where KO is the modified Bessel function of the second kind and 

order zero and p is the Helmholtz parameter. 

Gray (1993) uses the computer algebra package Maple® (Abell and 

Braselton 1994) to deal with singular integrals in an isoparametric Galerkin 

formulation, in a semi-analytic fashion. In a similar manner Ademoyero 

(2003) had partial success with the integrals involving Modified Bessel func- 

tions for the Modified Helmholtz equation. However, in general we must 

use a fully numerical approach and there are three commonly used ways of 

dealing with singular integrals. We shall describe these together with some 

others which have been investigated. 

We note that when the base node is in the target element the integral 

has both non-singular and singular contributions. 

4.2 Logarithmic Gauss quadrature 

When the integrand contains a logarithmic function, ln(ý), it is possible to 

use a logarithmic quadrature based on Gauss quadrature for regular inte- 

grals. The formula is shown in equation (4.2) 

1G f 
.f 

(ý)ln(ý)d -> wgf (fig) (4.2) 
0 g=1 

where the coordinates, 69, and weights, w9, are given by Stroud and Secrest 

(1966). Note that the integrals are effected over the interval [0,1] com- 
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pared with the interval for regular integrals of [-1,1] and consequently an 

appropriate transformation must be made. 

A logarithmic quadrature rule is described by Crow (1993) where a 

weighting function is used for the non-singular and singular part of the 

integral. This rule is used in a boundary element context by Smith (1996). 

4.3 Teiles self-adaptive scheme 

A second numerical approach uses a transformation in such a way that the 

Jacobian is zero at the singular point, thus removing the singularity (Teiles 

1987). Conventional Gauss quadrature may then be used. The effect of the 

transform is to bunch the Gauss points towards the singularity. 

The singular integrals are written in the form 

1 

I=f 
.f 

(ý)dý 
1 

(4.3) 

and we seek a transformation ý-q which maps [-1,1] -+ [-1,1] via a 

cubic polynomial 

ý=an3+br12+cq +d (4.4) 

Suppose that the integral has a singularity at ý and that ý is the correspond- 

ing value of q, then we choose a, b, c and d so that 

d2 
d2 

d=0 
d77 

(1) =1 

The values of a, b, c and d, given by Teiles, are 

c= 
3ßi2 1 3- 

d= -b Q, 
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where Q=1+ 3ý2. With these values a solution of equation (4.4) yields 

[(2- 1) +I2-11]3+[ (2 
- 

1) 
-I 

t2 
-1I]3 

and the value of the integral in equation (4.3) becomes 

I_1f 
((-»3+2+3)) ý% ý2 3(77 _ 

)2 
d71 (4.5) 

-, 
f 

1+3 1+3 

The integrand in equation (4.5) is well-behaved in the neighbourhood 

of 77 =ý and may be integrated using standard Gauss quadrature. As 

mentioned earlier, the effect of the transformation is to distribute the Gauss 

points so that they are bunched towards the singularity. In Figure 4.1 we 

show a geometrical transformation of a four-point quadrature rule in the 

case when ?=1 with the relevant values in Table 4.1. 

13 
a=4, b=-c=-d=-4 

ý= 
1 
4[(, l-1)3+4] 

f1 
I=31) 3+ 41 

)1 
) 2d77 

1 

The Teiles scheme is self-adaptive in that the effect of concentrating 

the quadrature points towards ý is less marked as the singular point moves 

outside the domain of integration, i. e. as 1 ý1 > 1. In fact as 1ý1 -+ oo we 

have, from equation (4.5), 

f1 
IJf (77) d77 

1 

and the integral degenerates to the standard form as in equation (4.3). Hence 

the Teiles transformation could be used as a general numerical quadrature 

rule which deals automatically with regular, near singular and singular in- 

tegrals. 
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-1 l 
s3 541 

-1 17,112 77; 17: 1 
1 

Figure 4.1: Transformation of the quadrature points for a four-point Gauss 
rule in the case ý=1 

Table 4.1: Quadrature points for a four-point Gauss rule and equivalent 
Telles transformation 

Gauss points Teiles points 
g 7]g 

-0.861136 -0.611664 
-0.339981 0.398500 
0.339981 0.928120 
0.861136 0.999331 

4.4 Subtracting the singularity 

A third method for evaluating singular integrals is to subtract out the sin- 

gularity in such a way that the remaining integrand is regular and the sub- 

tracted singular part can be integrated analytically. Thus we write 

111 

fý )d = 
f1 [f ()- F(ý)] d6 + 

f1 
F(6)d6 (4.6) 

1 

where F(6) is a function which has the same singularity as f (6) but in a 

simpler form which can be integrated exactly and f (6) -F(ý) is not singular 

and therefore can be integrated accurately by Gauss quadrature (Aliabadi 

2002). 

Since we do not investigate this method any further, we shall leave it 

here. 
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4.5 Automatic differentiation for the evaluation of 

singular integrals 

In this section we seek the numerical evaluation of the singular integrals 

which occur when using quadratic elements. We consider the problem of 

evaluating the Taylor series for the Jacobian, J, of the transformation 

s ý, ds = J(ý)dý. We seek a sequence of numerical coefficient values, 

to an arbitrary order, without the explicit formulation of symbolic formulae 

to represent them (Crann, Christianson et al. 1997). The integral then 

becomes a finite sum of numerical coefficients multiplied by terms which 

may be integrated analytically. The accuracy of the value of the singular 

integral is determined by the degree of approximation in the Taylor series 

and does not depend on a numerical quadrature. 

We use the ideas of Automatic Differention (AD) (Bartholomew-Biggs 

et al. 2000) in fortran90. Suitable data-types are defined in the form of 

coefficients of Taylor polynomials to an arbitrary degree and operator over- 

loading is used to implement the computations. The usual numerical op- 

erators, plus, minus, multiplication, division etc., are defined and algebraic 

manipulation is developed on the data-types. The module containing the 

algebraic constructs is shown in the appendix. 

4.5.1 Laplace's equation 

In two-dimensional boundary element calculations for potential problems the 

fundamental solution is ic* =- 2ý In R and hence it is necessary to evaluate 

weakly singular integrals of the form 

r1 

J wj (s(ý)) J(ý) ln(R(ý))dý 
1 

involving logarithmic singularities. 

We shall consider the quadratic element with nodes 1,2 and 3 whose 

34 



position vectors are 

rl = (xi, yl), r2 = (x2, y2), r3 = (x3, y3) 

Using the local coordinate {: -1 << 1} and Lagrange quadratic in- 

terpolation polynomials 

Li(d) = 
1ý(ý 

- 1), L2A) = I_ ý2ý L3() = 
Iý(ý 

+ 1) 
22 

the equation which defines the geometry of the element is given by 

3 

r(ý) =E Lz(ý)rz i=1,2,3 (4.7) 
2-1 

If Rj (ý) = r(ý) - rj is the position vector of a point, r(6), in the element 

relative to the base node rj, then we require the evaluation of the following 

nine singular integrals: 

f1 
IZý =J Li(ý)J(6)1nRj (6) d6 i, j=1,2,3 (4.8) 

1 

where the Jacobian, J(ý), is given by 

1 

Suppose that the singularity occurs when _ ýo i. e. r(eo) = rj, and let 

06 =6-60 then 

Rj(ý) = IRS (ý) 

= Ir(k) - rjI 
= Ir'(ýo)oý + 2r"(ýo)A62I 
= IA6I [do + O6dl + 062d2] 2 

= ILii [Rd()] 2 

where 
do = r'(ýo)" r'(ýo) (4.9) 

dl = r'(ýo)"r"(ýo) (4.10) 
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( o) (4.11) d2 = 
1r" 

(ýo)" r" 

Rd() = do + Lýdl + 0ý2d2 (4.12) 

Also 

_ [do + 2d106 + 4d2062] 2 

We develop all the terms in the integrand, equation (4.8), as Taylor 

polynomials. This approach is similar to the direct factorisation technique 

described by Smith and Mason (1982). 

The interpolation polynomials are easily written as second degree Taylor 

polynomials as follows: 

L2ý) = Li(6o) + LZ(6o)06 + 2LZ'(6o)0&2 

= l0 + 110 + 1202, say. 

The Jacobian, J(ý), and the term 1nRd() may be expanded automati- 

cally as nth degree polynomials 

and 

Jýý io + i10ý + j20ý2 + ... + in ACn 

In Rd () N bo + b1 L+ b20ý2 + ... + bn 0(n 

Now we form the product of the two Taylor polynomials for LZ(B) and J(ý) 

as 

I'i( )J( ) 
'ý 

(lo+11Aý+12L 2)(jo+j'L +J2/. 2+... +inAýn) 

a(o1) + a(jl) 0ý + ... + a(n1) O5n 
(4.13) 

where we truncate the product at the O(A I) term. 

Similarly we determine 

Li(ý)J(ý) In [Rd( )ý 2= Li(6)J(6) 21n(Rd) 

(lo + 110 + 120&2) (io + ii0ý + ... + inAýn) x 
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x (bo +b10ý+... +bnAýn) 

-a0 +a(, 2) 0 +... +a(nt)A 

The approximate value of the integral may now be obtained from 

1 

Iii =J Li (ý) J(ý) In Rj (ý) dý 
1 
11 

=f Lj(ý)J(ý) In IAýId + Li(6)J(e) In [Rd(] d 
1 

ý1 

1 

a1ý 0n In IO Id +f aý2ý0 nd 
11 k=0 k=0 

n 

_ 
(a( 

ak + ak2), 3k) 

k=0 

where 
1 

ak =f Aýk1nIL d6 
1 

1 

1 
Alk J 

- 

(4.14) 

and a(l) and a(2) are sequences of numerical coefficients for the Taylor poly- 

nomials truncated at the O(Aýn) term. 

There are three cases to consider: 

1. Singularity at r1, i. e. 6o = -1 

2+i 1 2k+i 
cxk k+1 

1112- 
k+1 'ýk k+1 

2. Singularity at r2, i. e. ýo =0 

0k odd 0k odd 
ak 2 ßk= 2 

(k + 1)2 
k even k+1k even 

3. Singularity at r3, i. e. ýo = +1 

ß_2)k+i 1 (_2)k+i 
ak k+1 

1n2- 
k+1 

ßk 
k+1 
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The convergence of the sequence as n increases requires that J0ý j<p 

where p is the radius of convergence of the series. This condition forces a 

restriction on the placement of the position vectors rl, r2 and r3. 

Before attempting to develop the Taylor polynomials we must ensure 

that r2 is suitably placed. Consider the situation shown in Figure 4.2 where 

we illustrate geometrically the definition of the co-ordinate (X, Y). 

V 

X 

Figure 4.2: Definition of the co-ordinate (X, Y) in the quadratic element 

From equation (4.7), using the definition of the Lagrange interpolation 

polynomials, we see that 

r'() =a+ 2bß and r"(e) = 2b 

where 
11 

a=2 (r3 - ri) and b=2 (rl - 2r2 + r3) 

In (X, Y) co-ordinates we have 

so that 

and 

rl = (-1,0), r2 = (X, Y), r3 = (1,0) 

a= (1,0) and b= (-X, -Y) 

J() _ ýrý()" rý()ý2 

_ (1 - 4Xý + 4(X2 + Y2)2) 2 
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The Taylor series for the square root in J(ý) requires that, for convergence, 

14(X2 + Y2)ý2 - 4XýI <1 with -1<ý<1 

which we may write as 

_111 
(x)2+(ye)2 

4< 4 

i. e. 

0< 
(x_)2+(Ye)2< 1 

2 
The worst case corresponds to ý= ±1 so that 

0< 
(X±)2+Y2< 2 

and this region is the intersection of the two circles with radius and 

centres at (±!, O). Hence the point r2 must lie in the shaded region in 

Figure 4.3. 

Y 

X 

Figure 4.3: Region for the position of point r2 for convergence of the Taylor 

series 

Also we perform a Taylor series expansion for In Rd(e). Using equations 

(4.9), (4.10) and (4.11) we have 

do = (1 - 2Xýo)2 +4 Y2ý0 
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dl = -2X + 4X260 + 4Y2e0 

d2=X2+Y2 

so that using equation (4.12) 

1n Rd(O = In [1 
- 4X 0+ 4X2 0 +4 Y2 0 

+ (-2X + 4X20 + 4Y2ýo) (ý - co) + (X2 + Y2)(ß - e0)21 

Now the Taylor series expansion of this expression for in Rd(e) requires that, 
for convergence, 

-4Xýo + 4X2 ö +4 Y2 0 

+(-2X+4X2ý0 +4Y2 o) (ý-ýo)+ (X2+y2)(ß-eo)2 1<1 

with -1<ý<1 

[Xý + ý0) - 1]2 -1+ [Y(ý X0)]21 <1 

%. e. 

0<[X(ý+ o)-1]2+[Y(ý+X0)]2 <2 

which is always satisfied provided 

(±2X - 1)2 + (2Y)2 <2 

%. e. 

0< X± 
1)'+ 

and this is the same restriction as for the convergence of the Jacobian. 

Consequently for the convergence of the AD method it suffices that the 

point r2 lies in the shaded region in Figure 4.3. 

So far we have established that for convergence it is sufficient that r2 is 

placed inside the shaded region in Figure 4.3. We now develop the parame- 

ter, o,, which we shall use to check convergence. If we consider the geometry 

in Figure 4.4 then provided 

PQ < min (PA, PB) 
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r 

rl 

Figure 4.4: The geometry for PQ < min(PA, PB) 

r2 will be suitably placed. 

We define 
min {2 Irl 

- r2I ,2 Ira - r2I } (4.15) 1r2 
2(r1 +r3)I 

Convergence will occur provided a is sufficiently large. A very crude dis- 

cretisation of a quadrant of a circle of unit radius into two equal quadratric 

elements has a, -- 2.6. A value of a=3 requires about twenty Taylor terms 

to produce an accuracy of about ten decimal places. From a practical point 

of view a value of a greater than 3 is likely to be satisfactory. 

4.5.2 Modified Helmholtz equation 

In Chapter 6 the use of the Laplace transform leads to evaluating weakly 

singular integrals arising in the modified Helmholtz equation. Previous au- 

thors use the tables of Ramesh and Lean (1991) based on the formulae by 

Abramowitz and Stegun (1972) to evaluate the modified Bessel functions 

of the second kind and order zero. Using a fortran90 approach we develop 

the Taylor series directly from the formula, in such a way that the coeffi- 

cients can be extended to arbitrary order as required instead of restricting 
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ourselves to the normal seven coefficients used by Ramesh and Lean. 

The modified Helmholtz equation is 

V2u-Peu=0 inD (4.16) 

subject to the usual boundary conditions on C. 

The weakly singular integrals with quadratic elements analogous to equa- 
tion (4.8) are of the form 

I 

1 
Lz(ý)J(e)Ko (pRj(ý)) dý i, j= 1,2,3 (4.17) IZý =f 

where Ko (x) is the modified Bessel function of the second kind and order 

zero. 

Abramowitz and Stegun give the formula 

00 
Ko (x) = -Io (x) (ln (2) 

+ ry)+ ((2 
) 2r 

(4.18) 
r=1 

with 
00 

IO(X)= 
2 

(ý12r 
O(r)=Z1 

r=O 
(r. ) 2l 

s_1 
S 

and -y, Euler's constant, given by 

ry =l ;i 
{q(n) - ln(n) }=0.5772156649.. 

. 

Io (x) is the modified Bessel function of the first kind and order zero, and, 
for small x, Io (x) is well-behaved so we have Ko(x) - -ln(x) as x -+ 0. 

Ramesh and Lean provide explicit values for the first seven coefficients 

in the power series in equation (4.18). Previous authors use these values 

together with a logarithmic Gauss quadrature to evaluate the singular inte- 

grals with constant elements (Rizzo and Shippy 1970). Ramesh and Lean 

use linear elements and give recursive expressions in each of which are an- 

alytic contributions to the integrals. Both sets of authors use expressions 

which are equivalent to truncating the series after seven terms i. e. the x12 

term. 
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We use the expression given by Ramesh and Lean 

66 
x Ko (px) = -In 

2) Z A2ix2i +Z B2ix2i 0 <px <2 (4.19) 
/ 

i=0 i=0 

where 

( l2i 2i 
A2i Ai 

3.75 
B21 Bi 

2)' 
A2i+l = B2i+l =0 

with AZ and Bi given in Table 4.2. 

Table 4.2: Coefficients in the Ramesh and Lean series for Ko (px) 
Ai Bi 

0 1.0000000 -0.57721677 
1 3,5167229 0.42289420 
2 3.0899424 0.23069756 
3 1.2067492 0.03488590 
4 0.2659732 0.00262698 
5 0.0360768 0.00010750 
6 0.0045813 0.00000740 

The Taylor series development follows in a similar manner to that for the 

potential problem and we use the same notation with the Taylor polynomials 

being of order twelve i. e. n=0, ... , 12 (13 terms). 

From equation (4.17) 

Li(ý)J(ý)Ko (pRj(ý)) = LZ(ý)J(e)Ko (PILl [Rd(e)] 2) (4.20) 

= (lp + 11A' + 120 2) (jo + j106 + ... + jn06n) x (4.21 

x 
[(in 

J0 J) -1 In 
(cRd) 

A2 0l 
2i=O 

\ 3.75 

6 2i 
+ Bz ( [Rd(ý)1 2A ýl 

i=o 

With 

(cRd()) 
2 

In = 
(in 4+ bo + b10ý + ... + bn0ýn 

we may write 

43 



Li(ý)J(ý)Ko (pRj (ý)) 

_ 
(b') + b11)0ý + ... + b(1)0rn) In I0ýý 

+ (bot) + b12) 0ý + ... + b(2) 0ý'ý) 

The coefficients b» and b(2) are obtained using the fortran90 Taylor poly 

nomial data types and operator overloading to evaluate the necessary op- 

erations of addition, multiplication and to evaluate the natural logarithm. 

We note that there is no need to use square root because [Rd()] 2 is always 

raised to an even power. 

Finally, then 
n 

Iij = 
(b, 'ak 

+ bk2)/3k) 

k=0 

where crk and ßA are given by cases 1,2 and 3 in Section 4.5.1. 

We obtain an estimate of a bound on the error due to the truncation of 

the series for KO as follows: 

I 

IZj = 
f1 

Li(ý)J(6)Ko (pRj (6)) d6 

=1 Li(6)J(6) (k0 (pRj (6)) + e) d6 

=IZj +e 

so that 
1 

lel f ILz(ý)IIJ(ý)IIEld6 
1 

r3 
IeImax 

j 
ds 

l 

The quadrant of the circle, on the straight line joining r1 and r3 as chord, 

has length 2ý, see Figure 4.5. Hence we have the bound 

Iel < 
21121, - 1max (4.22) 

where Abramowicz and Stegun give lelm 10-7 provided that 

0<pRj(ý)<2. 
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quadrant -, -- 
---- ri 

f Iý, 
: 'ý. parabola 

rý 

Figure 4.5: Quadrant of the circle, on the straight line joining rl and r3 

The Taylor expansions in equation (4.20) require that r2 is placed so 

that the Jacobian, J(6), and the term In Rd(6) both converge and we have 

developed the required condition in Section 4.5.1. 

We need also consider the two finite sums in equation (4.21). Now, by 

virtue of equation (4.19) we require 

0< p2RdI0ýl2 <4 

which we may write, using the simplification in Section 4.5.1, as 

O< p2 
([X(+o)_1]2+[Y(+o)]2) (6 _ 6o)2 <4 

A sufficient condition is that 

(X±)2+Y2 
<2 

To ensure that these two circles intersect we require p<2, and if p<f 

the position of r2 to ensure convergence of J(ý) and In Rd(e) will also be 

sufficient for the series in equation (4.19). 
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4.6 Other methods 

4.6.1 Beale and Attwood's Correction method 

Beale and Lai (2001) describe a method for the evaluation of singular in- 

tegrals of the type lnjýj and Beale and Attwood (2002) extend this idea to 

near-singularities of the type 1njý2 + a21 where a is a small number. They 

apply standard rules of numerical integration that hold for smooth functions 

but fail in this case, then develop a correction term for the singularity or 

near-singularity that allows the evaluation of these integrals to third-order 

accuracy. 

We consider the case of the singular integral of the form 

f 
I=J 

.f 
(ý)inI6I dý 

i 

which is approximated by 

N 
1: 

wjf (ýj)in(ýj) I 

j=-N 

The numerical integration method is based on the Euler-Maclaurin summa- 

tion formula with the set of weights wj, -N <j<N derived from Bernoulli 

numbers. The weights in the interior of the interval are all set to one while 

the outer points take different values according to the particular rule, e. g. 

when we choose wN = w_N =2 then we have the trapezoidal rule. Follow- 

ing Beale and Attwood we shall use the case 

5 13 
WN=W_N-12 WN_1=W1_N-12 wj =1forý. 7l<N-1 

We observe the uncorrected term 
N 

Ef (jh)1nh jhl wjh 
j=-N, j: AO 

where h= 1/N, and then add the correction term 

hln 
2f 

(0) 
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to obtain the approximation to I. 

For such a relatively simple method, the corrected approximation con- 

verges to the value of the integral with 0(h3) accuracy. 

4.7 Results for Laplace's equation 

The examples in this section, together with those in the following section, 

were developed using fortran90 with suitable data types for the Taylor poly- 

nomials and operator overloading to define operations on the polynomials. 

Details of the relevant fortran90 constructs are given in Appendix. 

Example 4.1 

This example is considered by Smith (1996) and the element has nodal co- 

ordinates 

r1 = (0.1,0.1), r2 = (0.2,0.2 + a), r3 = (0-3,0-3) 

with a=0,0.02,0.04 0.1. 

In Tables 4.3,4.4,4.5 and 4.6 we compare the results for the integral 

Iii of our AD method using 6- and 20-degree Taylor polynomials with an 

accurate numerical approximation obtained using the adaptive numerical 

quadrature procedure available in the symbolic computation package Maple 

together with those calculated by Smith using Crow's method and those ob- 

tained using Gauss/log-Gauss 4- and 10-point quadrature. The convergence 

parameter o, is defined in equation (4.15). 

For a=0.0 our AD results are as good approximations as those from 

the other methods. For a=0.02 our AD results for the 20-degree Tay- 

lor approximation are also as good as the others, but the 6-degree Taylor 

approximation is beginning to lose accuracy. For a=0.04 and a=0.1 

our convergence parameter a shows us that, at a<2.6, our results are 
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Table 4.3: Example 4.1 Values of JI; l I with a=0.0, a= oc 
x-coordinate 0.1 0.2 0.3 
y-co-ordinate 0.1 0.2 0.3 

Maple 0.1930966 0.3952628 0.0516752 
Smith 0.1930967 0.3952628 0.0516752 

Gauss-4 0.1930966 0.3952628 0.0516753 
Gauss-10 0.1930964 0.3952628 0.0516755 
AD 6deg 0.1930966 0.3952628 0.0516752 

AD 20deg 0.1930966 0.3952628 0.0516752 

Table 4.4: Example 4.1 Values of I'j1I with a=0.02, o, = 3.91 
x-coordinate 0.1 0.2 0.3 

y-co-ordinate 0.1 0.22 0.3 
Maple 0.2182667 0.3868547 0.0378031 
Smith 0.2182668 0.3868548 0.0378030 

Gauss-4 0.2182668 0.3868547 0.0378031 
Gauss-10 0.2182665 0.3868546 0.0378033 
AD 6deg 0.2176048 0.3884189 0.0368806 
AD 20deg 0.2182667 0.3868547 0.0378031 

Table 4.5: Example 4.1 Values of 14.11 with a=0.04, a=2.15 
x-coordinate 0.1 0.2 0.3 
y-co-ordinate 0.1 0.24 0.3 

Maple 0.2438544 0.3806926 0.0270271 
Smith 0.2438547 0.3806916 0.027028o 

Gauss-4 0.2438548 0.3806905 0.0270296 
Gauss-10 0.2438542 0.3806924 0.0270274 
AD 6deg 0.2406218 0.3804058 0.0194077 
AD 20deg 0.2438514 0.3807016 0.0270217 

unlikely to be acceptable. However, our 20-degree Taylor approximation is 

still within 4 decimal places of the Maple approximation for a=0.04. 
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Table 4.6: Example 4.1 Values of IIZ, I with a=0.1, o, = 1.12 
x-coordinate 0.1 0.2 0.3 
y-co-ordinate 0.1 0.3 0.3 

Maple 0.3159910 0.3780244 0.0203769 
Smith 0.3160620 0.3778107 0.0203340 

Gauss-4 0.3161028 0.3774731 0.0206118 
Gauss-10 0.3159909 0.3780238 0.0203771 
AD 6deg 0.3200557 0.3841124 0.0366342 
AD 20deg 0.3287444 0.316909 0.0330741 

Example 4.2 

We consider the curved element with nodes 

rl = (1,0) r2 = 
(O. 5+av', 0.5 + af) r3 = (0,1) 

In Tables 4.7 to 4.10 we compare the results with an accurate result ob- 

tained using the symbolic computation package Maple. The tables show the 

absolute value of the integral for each method, Gauss/log-Gauss quadrature 

10 point, Teiles self-adaptive method 20 point, AD 20-degree Taylor polyno- 

mial and Beale and Attwood's method with N= 1000. We give results for 

a in the range 0<a<0.1, since in any reasonable discretisation a would 

not be outside this range and to agree with the convergence criterion value 

for a we need a<0.08. 

Table 4.7: Example 4.2 Values of IIii I with a=0.0, a= o0 
I11 = 133 112 = 132 113 = 131 121 = 123 122 

Maple 0.5861349 0.4589215 0.1209719 0.1602556 1.583831 
G/LG lOpt 0.5861339 0.4589211 0.1209707 0.1602562 1.583830 
Teiles 20pt 0.5861350 0.4589215 0.1209719 0.1602556 1.584883 
AD 20deg 0.5861349 0.4589214 0.1209719 0.1602556 1.583831 

Beale 1000pt 0.5861375 0.4589165 0.1209709 0.1602555 1.583832 

We see as may be expected that, in general, accuracy decreases as a in- 

creases and this is much more pronounced for Beale and Attwood's method. 

However our AD approach has results which compare very well with the 

49 



Table 4.8: Example 4.2 Values of JI; j I with a=0.001, a= 176.8 
Ill = 133 112 = 132 113 = 131 121 = 123 122 

Maple 0.5861380 0.4589190 0.1209726 0.1602563 1.583833 
G/LG lOpt 0.5861370 0.4589188 0.1209714 0.1602568 1.583832 
Teiles 20pt 0.5861381 0.4589190 0.1209726 0.1602563 1.584885 
AD 20deg 0.5861380 0.4589190 0.1209726 0.1602563 1.583833 

Beale 1000pt 0.5861439 0.4589244 0.1209719 0.1602561 1.583834 

Table 4.9: Example 4.2 Values of IIZ; I with a=0.01, a= 17.7 
1 1 Ill = 133 112 = 132 113 = 131 121 = 123 122 

Maple 0.5864408 0.4586762 0.1210427 0.1603226 1.584021 
G/LG lOpt 0.5864398 0.4586761 0.1210415 0.1603232 1.584020 
Teiles 20pt 0.5864410 0.4586762 0.1210427 0.1603226 1.585073 
AD 20deg 0.5864408 0.4586763 0.1210427 0.1603226 1.584021 

Beale 1000pt 0.5867881 0.4596170 0.1210743 0.1603227 1.584030 

Table 4.10: Example 4.2 Values of JIjj j with a=0.1, a=1.8 
1 1 Ill = 133 112 = 132 113 = 131 121 = 123 122 

Maple 0.6140498 0.4351688 0.1277617 0.1659600 1.601812 
G/LG 10pt 0.6140489 0.4351685 0.1277605 0.1659606 1.601811 
Teiles 20pt 0.6140499 0.4351687 0.1277617 0.1659600 1.602864 
AD 20deg 0.6138296 0.4354450 0.1277488 0.1659600 1.601812 

Beale 1000p) 0.6450671 0.5220976 0.1307252 0.1659603 1.602733 

other methods and even with the convergence criterion for a=0.1 being 

less than our acceptable value, a being approximately 1.8, the AD results 

are within 10-3 accuracy. 

4.8 Results for the Modified Helmholtz equation 

Example 4.3 

We consider the curved element with nodes 

rl = (0.5,0) r2 = 
(0.25 + aý, 72-, 0.25 + avf2-) r3 = (0,0.5) 

We present here in Tables 4.11 to 4.15 the results of a variety of tests against 

an accurate numerical evaluation using Maple. We consider Taylor polyno- 
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mials of degree 13 calculated by the Ramesh and Lean formula (RL) to- 

gether with Taylor polynomials of degree 13,21 and 31, calculated by the 
Abramowitz and Stegun formula (AS) directly. Further results can be found 

in Crann, Christianson et al. (1997,1998). 

Table 4.11: Example 4.3 Values of I UD I with n, = n_n_ t T= ry, 
I11 = 133 112 = 132 113 = 131 121 = 123 122 

Maple 0.3864977 0.6452758 0.0564923 0.1807186 1.181271 
RL Taylor-13 0.3864977 0.6452758 0.0564923 0.1807186 1.181271 
AS Taylor-13 0.3864977 0.6452759 0.0564923 0.1807186 1.181271 
AS Taylor-21 0.3864977 0.6452759 0.0564923 0.1807186 1.181271 
AS Taylor-31 0.3864970 0.6452759 0.0564923 0.1807186 1.181271 

Table 4.12: Example 4.3 Values of II;. i I with a=0.001, o, = 76.1 
I11 = 133 112 = 132 113 = 131 121 = 123 122 

Maple 0.3865075 0.6452769 0.0564954 0.1807239 1.181280 
RL Taylor-13 0.3865074 0.6452768 0.0564953 0.1807239 1.181280 
AS Taylor-13 0.3865070 0.6452806 0.0564993 0.1807239 1.181280 
AS Taylor-21 0.3865070 0.6452806 0.0564993 0.1807239 1.181280 
AS Taylor-31 0.3865070 0.6452806 0.0564993 0.1807239 1.181280 

Table 4.13: Example 4.3 Values of III with a=0.01, o, = 8.85 
1 1 Ill = 133 112 = 132 113 = 131 121 = 123 122 

Maple 0.3874758 0.6453778 0.0568020 0.1812449 1.182166 
RL Taylor-13 0.3874758 0.6453779 0.0568020 0.1812498 1.182166 
AS Taylor-13 0.3874271 0.6457512 0.0571990 0.1812524 1.182168 
AS Taylor-21 0.3874271 0.6457512 0.0571990 0.1812524 1.182168 
AS Taylor-31 0.3874271 0.6457512 0.0571990 0.1812524 1.182168 

Table 4.14: Example 4.3 Values of IIj I with a=0.05, o, = 1.84 
1 1 Ill = 133 112 = 132 113 = 131 121 = 123 122 

Maple 0.4092240 0.6478030 0.0638339 0.1930659 1.202788 
RL Taylor-13 0.4090073 0.6469381 0.0648255 0.1930664 1.202787 
AS Taylor-13 0.4076398 0.6572410 0.0758860 0.1931376 1.202842 
AS Taylor-21 0.4081165 0.6573899 0.0752118 0.1931370 1.202843 
AS Taylor-31 0.4075470 0.6584936 0.0749358 0.1931370 1.202843 
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Table 4.15: Example 4.3 Values of III with a=0.1. a=1.01 
I11 = 133 112 = 132 113 = 131 121 = 123 122 

Maple 0.4627852 0.6549658 0.0823129 0.2218715 1.258965 
RL Taylor-13 0.5511404 0.6150085 -0.014123 0.2234573 1.252695 
AS Taylor-13 0.5591817 0.5785737 0.0829721 0.2238240 1.252934 
AS Taylor-21 1.1836290 -0.934008 0.1468918 0.2233508 1.254540 
AS Taylor-31 29.740850 -105.4296 19.699090 0.2208742 1.265079 

We see that for a=0.1 the o, value is less than the acceptable test 

parameter of 3, and the results are meaningless. However it is surprising to 

note that the results are not too inaccurate for the I2, j integrals. Also, the 

a test value for a=0.05, at 1.84, is less than the required value of 3 but 

the results are still very reasonable. 

The results for the Ramesh and Lean formula are closer to the Maple 

results for greater values of a compared with the Abramowitz and Stegun 

formula results but this is not surprising since we suspect that the Maple 

package uses the Ramesh and Lean formula to evaluate these integrals. 

Notice that using the bound (4.22) developed in Section 4.5 we have, in 

this case, 113 = and the error due to the truncation of the modified Bessel 

function is of the order 8x 10-8. This is very small compared with errors 

due to the numerical quadrature and hence makes very little contribution 

to the error in the integral. 

4.9 Efficiency of the methods for evaluating sin- 

gular integrals 

In Table 4.16 we show the operation count for each of the methods described 

in Example 4.2 and we see that the Gauss/log-Gauss integral requires sig- 

nificantly fewer operations than the others (Crann et al. 2003). 

In terms of ease of implementation we note first that the AD approach 

would be adopted only in an environment which supports operator over- 
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Table 4.16: ODeration crnrnt fnr Pi. rh mathnA 
L-G 10pt Teiles 20pt A-D 20deg Beale 1000pt 

+- 1,431 4,169 38,436 153,089 
*/ 1,962 7,634 15,051 210,139 

sqrt, log 162 362 138 15,012 
Total 3,555 12,165 53,625 378,240 

loading and Taylor series data-types. Also there is a significant cost in code 

generation so a general user would be unlikely to adopt it even though it 

is a once only cost. However, its attraction to users is that the errors are 

due only to truncation errors in the Taylor series and not to a numerical 

quadrature rule. For smaller values of a, A-D gives the best accuracy. For 

the other three methods the code implementation costs are very similar. 

We also note here that Beale and Attwood's method is interesting because 

it does not require a data set of quadrature points which depend on the 

order of quadrature but is not as accurate as the other methods. 

Comparing the four methods, in general we see that the Gauss/log-Gauss 

method provides the best overall approach in terms of accuracy, efficiency 

and ease of implementation. 

4.10 Summary of Chapter 4 

In this chapter we consider a variety of different methods for handling the 

singularity which arises in the evaluation of the integrals in BEM when the 

base node is in the target element. We develop a new method using the 

ideas of automatic differentiation with Taylor polymonial coefficients and 

use a number of examples to demonstrate its use with singular integrals in 

the solution of Laplace's equation and the modified Helmholtz equation. We 

also define a condition on the geometry of the integral to enable us to ensure 

convergence of the method. 

The AD Taylor polynomial method in a fortran90 environment provides 
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a suitable approach for evaluating the quadratic boundary element singular 

integrals. In terms of accuracy it compares well with alternative methods. 

However the attraction of the method lies in the fact that the Taylor coef- 

ficients are obtained without symbolic evaluation of derivatives. Indeed the 

approach offers a possibility for evaluating the significantly more difficult 

singular integrals which occur in boundary element computations. 
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Chapter 5 

The Laplace Transform 

Method 

5.1 Introduction 

In the boundary element solution of problems which are parabolic in the 

time variable there are several numerical techniques with which the time 

variable can be handled. A time-dependent fundamental solution may be 

used directly to derive the BEM formulations over space and time (Chang et 

al. 1973). Another technique interprets the time derivative in the diffusion 

equation as a body force and solves the problem using the dual reciprocity 

method (Wrobel 2002). An early application of the finite difference method 

in the time variable was given by Curran et al. (1980) who consider both first 

and second order schemes. A variety of time-marching schemes for two and 

three-dimensional problems and for axisymmetric problems is decribed by 

Brebbia et al. (1984). There are possible problems with the finite difference 

method since there may be severe restrictions on the step-size to ensure 

accurary or, especially, stability (Smith 1978). 

An alternative possibility is to take the Laplace transform in the time 

variable and solve the resulting elliptic problem using the BEM then invert- 
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ing back using a numerical inversion process. Rizzo and Shippy (1970) first 

used this method with an inversion method suggested by Schapery (1962). 

Their inversion method was a curve fitting process and presupposed knowl- 

edge of the expected solution. The Laplace space transform parameter was 

arbitrarily chosen and a poor choice resulted in unstable solutions or insuf- 

ficient definition of the curve which therefore reduced accuracy. 

Lachat and Combescure (1977) used the Laplace transform and bound- 

ary integral equation methods to applications of transient heat conduction 

problems and inverted using complex Legendre polynomials. They reported 

the method as being very ill-conditioned and limited in use to certain prob- 

lems only. 

Moridis and Reddell (1991a, b, c) describe a family of Laplace transform- 

based numerical methods, finite difference, finite element and boundary el- 

ement methods, for diffusion-type partial differential equations in ground- 

water flow applications. The Black-Scholes equation provides a model for 

european options in computational finance and is of diffusion-type. Crann, 

Davies, Lai and Leong (1998) and Lai et al. (2005) use this in an innova- 

tive approach using the Laplace transform with Stehfest's inversion process, 

solving the space equation using the Finite Volume Method (Jameson and 

Mavriplis 1986). Zhu et al. (1994) also use the Laplace transform with the 

Stehfest inversion method with the BEM and dual reciprocity for diffusion 

problems and we shall discuss this approach later in Chapter 7. 

The Laplace transform boundary element method for time-dependent 

problems is now well-established. It provides a technique for the solution 

of partial differential equations for initial boundary-value problems in which 

the number of independent variables is reduced by one. Ordinary differential 

equations become algebraic equations, equations such as the one-dimensional 

wave and diffusion equations become ordinary differential equations. Hyper- 

bolic and parabolic problems in time are transformed into elliptic problems 
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in the transform space. The advantages of the method are that there is no 
time-step stability problem as occurs with the usual FDM and if the solution 
is required at just one time value then there is no need for the computation 

of solutions at intermediate times. After application of the Laplace trans- 

form a variety of techniques may be employed to solve the resulting elliptic 

problem. We shall illustrate, using a simple model problem, how a variety 

of elliptic solvers may be employed. 

The difficulty associated with the method manifests itself in the inversion 

which is required after the transformed equation has been solved. If the 

transformed equations have suitable analytic solutions then the inversion 

may be effected either directly from tables (Davies and Crann 2004) or using 

the complex inversion formula (Davies 2002). If, however, such solutions are 

not suitable or if numerical solutions are obtained, then inversion can cause 

serious problems. 

5.2 The Laplace transform 

Suppose that f (t) is defined and is of exponential order for t>0i. e. there 

exists A, -y >0 and to >0 such that If (t) I<A exp (yt) for t> to. Then 

providing A> 'y the Laplace transform, f (A), exists and is given by 

f (t)e-Atdt (5.1) f [f (t)} = A(IX) =J 
00 

0 

The problem of finding f (t) from I (A) using equation (5.1) 

fM= £-1 [f (x)] (5.2) 

is a much more difficult situation. It is a Fredholm integral equation of the 

first kind and such equations are known to be ill-conditioned in their solution 

(Wing 1991). Also e-At smooths out the values of f (t) for relatively large t 

and consequently recovery of the function from the transform is likely to be 
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difficult. We shall address this particular problem for periodic functions in 
the next section. 

We now consider numerical methods for inverting the Laplace transform. 

5.3 Laplace transform numerical inversion 

No single algorithm is known which is universally applicable to all functions. 

Davies (2002) describes some important facts when considering the use of 

an appropriate algorithm: 

1. the source of values of the transform, whether the available data has 

only real values, 

2. the precision required for the particular problem, 

3. the number of time values required, how expensive the computation 

will be, 

4. reliability of the problem compared with a similar representative class 

of transforms. 

An evaluation of many methods can be found in the paper by Davies and 

Martin (1979). They test a range of algorithms on a range of transforms 

whose exact inverses are known. 

Most of the methods require evaluation at complex values of the trans- 

form parameter. However, since the methods which involve only real values 

of the transform parameter are relatively easy to implement and our prob- 

lems all contain real variables, we have chosen to consider algorithms which 

require only real values. Davies and Martin suggest a number of such meth- 

ods and report that Stehfest's method gives good results on a fairly wide 

range of functions. As well as Stehfest's method we also consider an ex- 

tension, by Aral and Gülcat (1977), of the method introduced by Zakian 

and Littlewood (1973) based on shifted Legendre polynomials. Davies and 
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Martin consider a method using Legendre polynomials and report that it 

seldom gives high accuracy, but although they did test the shifted Legen- 

dre polynomials method they didn't feel that the results were a marked 
improvement. 

5.3.1 Stehfest's numerical inversion 

Stehfest (1970) developed an inversion formula which is a weighted sum 

of transform values at a discrete set of transform parameters and is derived 

from a stochastic inversion process described by Gaver (1966). We note here 

that Stehfest says that his method is unlikely to be accurate for problems in 

which f (t) is oscillatory or for finding the inverse close to a discontinuity in 

f (t). In Section 5.4 and in Chapter 8 we shall consider an approach using 

Stehfest's method which overcomes these difficulties. 

If f (A) is the Laplace transform of f (t) then the inversion algorithm is 

as follows: 

We seek the value, f (T), for a specific value t=T. 

Choose a discrete set of transform parameters 

In2 
j=1,2,..., M (5.3) Aj =3T 

where M is even. 

The approximate numerical inversion is given by 

M 

j=1 

where the weights, wj, are given by 

min(7,2) (2%)! k i 

wj - (-1) 2 
ik! k- 1)! k! 2k -t 

(5.5) 
k=[2(1-9)]\2 

)( )(7- )( ý) 

The user chooses a value of M and various authors have considered the 

most appropriate values. Stehfest suggests that for eight-digit accuracy a 
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Table 5.1: Stehfest's weights for A=6R in 19 a,,. 1 id 
M=6 M=8 M=10 M=12 M=14 

1 -1/3 1/12 -1/60 1/360 
-49 145/3 -385/12 961/60 -461/72 
366 -906 1279 -1247 18481/20 
-858 16394/3 -46871/3 82663/3 -484371/14 
810 -43130/3 505465/6 -1579685/6 486289/9 

-270 18730 -473915/2 1324138.7 -131950391/30 
-35840/3 375912 -58375583/15 21087592 
8960/3 -340072 21159859/3 -63944913 

328125/2 -8005336.5 127597580 
-65625/2 5552830.5 -170137188 

-2155507.2 150327467 
359251.2 -84592161.5 

824366543/30 

-117766649/30 

value of M= 10 should be used. Moridis and Reddell (1991c) suggest that 

the accuracy of the method is insensitive to changes in the value of M for 

6<M< 20 and Crann (1996) suggests in general that accuracy decreases 

with increasing M> 10. Zhu et al. (1994) report that M=6 gives the best 

accuracy. It is not possible to state what the optimum value might be since 

this is problem dependent but values in the region 6<M< 10 are usually 

satisfactory. 

In Table 5.1 we compare values of the weights for M=6,8,10,12 and 14 

and we see that the values of wj become numerically very large as M in- 

creases. With numerically large values of wj associated with larger values 

of M, it is likely that there will be round-off error problems in the inversion 

process. 

5.3.2 Shifted Legendre polynomials (SLP) 

Aral and Gülcat (1977) describe a solution of the wave equation with time 

dependent boundary conditions. They use the Laplace transform together 

with the finite element method and a numerical inversion process involving 
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shifted Legendre polynomials. This inversion process is based on a method 

reported by Zakian and Littlewood (1973). 

We seek the value of f (T) for a specific value t=T. 

We choose the set of transform parameters 

k+l 
k=011,... 

Imf T 

and first obtain the constants aka given by Aral and Gülcat 

k+jk 
aka +, * _ (-1) 

kj 
0<j<k: k=0,1,..., M' 

then evaluate the shifted Legendre polynomial of degree k. 

Pk (z) = akp + aklz + ak2z2 +.. 
-+ akkzk 

We then evaluate the weights Ck 

k 

Ck _ (2k + 1) E aki (A2) 
Z=o 

Finally the solution is obtained in the form 

M' 

f (7') 
1 

CkPP (z) 
T 

k-0 

with z= e-T/T 

Aral and GülCat discuss the possible choices for the value of the arbitrary 

parameter, T. They suggest using T=T, however we find that using T=1.0 

gives as good overall results as other values. We tested smaller and larger 'r 

values but for our examples over our times, the changes made little difference 

to the tracking of the solution. 

The choice of M' is made by the user. As M' approaches infinity the 

truncation error becomes zero but as M' increases, the magnitude of the 

coefficients aka increases, hence round-off errors in the computed value of 

Ck increase. This is a characteristic instability attributed to inverse Laplace 

transforms which we have already noted with Stehfest's transform parame- 

ter. Aral and Gülcat suggest the use of M' = 12 for the transform parameter 
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but we shall test a variety of values for M' to compare with similar values 
for Stehfest's method. 

5.3.3 Examples of the inversion methods 

A variety of test cases of Laplace transforms and their inversions have been 

tested (Crann 1996) and we consider here five examples using Stehfest's 

inversion method with parameter M=6,8,10,12 and 14 and the shifted 

Legendre polynomials technique with parameter M' = 6,8,10,12 and 14. 

We compare the numerical results with the analytic values. 

Example 5.1 

This example is the Laplace transform and its inverted function 

e-t 

We see from Figure 5.1 and Table 5.2 that, using Stehfest's inversion 

method, the function has inverted very well and we recover good approxi- 

mate values. 

f(t) =e' 

o. ý 
o.: 

o. ý 
o. ý 
o.. 
0. 

0. 

0. 

o. 

* M=6 
o M=8 
v M=10 
0 M=12 

M=14 

- analytic 

* 
5 

Figure 5.1: The numerical and analytic values of Example 5.1 using Ste- 

hfest's method 
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Table 5.2: Percentage errors for Stehfest's method for Example 5.1 
time M=6 M=8 M=1(l M=12 A =14 
0.01 2.44E-03 8.42E-05 3.57E-05 1.39E-06 6.31E-07 
0.1 2.42E-02 7.27E-04 3.07E-04 2.96E-05 1.32E-06 
0.2 8.15E-03 2.72E-03 2.91E-04 7.12E-05 1.60E-06 
0.5 5.21E-01 3.87E-02 2.27E-03 1.60E-04 1.48E-05 
1.0 1.36E+00 1.96E-01 2.48E-02 2.73E-03 2.59E-04 
2.0 2.22E+00 8.17E-01 2.07E-01 4.26E-02 7.51E-03 
4.0 3.08E+01 6.67E+00 6.60E-01 1.61E-01 1.10E-01 
5.0 4.67E+01 9.95E-01 4.35E+00 2.24E+00 7.41E-01 
10.0 3.49E+03 1.99E+03 3.42E+02 1.22E+02 1.06E+02 

In Figure 5.2 we show a graph of the analytic and numerical values for 

Example 5.1 using the SLP inversion method with T=1.0 and we see that 

we recover very good results. In Table 5.3 we show the relative errors and 

see that the method has inverted very well. Values using M' =8 or M' = 10 

give the best results but then rounding errors from the very large numerically 

calculated weights start to take effect. 

f(t) =e -t 

0.1 

0.: 

o: 

0. 

o.. 

o. 

* M'=6 
o M'=8 
V M'=10 
0 M'=12 
o M'=14 

analytic 

o. 
o. 
0. 

Figure 5.2: The numerical and analytic values of Example 5.1 using the SLP 

method 
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Table 5.3: Percentage errors for the SLP method for Example 5.1 
time M'=6 M'=8 M'=10 M'=12 M'=14 
0.01 9.09E-05 4.97E-09 4.97E-09 3.54E-08 2.19E-05 
0.1 3.97E-09 3.97E-09 3.97E-09 1.81E-07 1.21E-05 
0.2 9.52E-09 2.69E-09 2.69E-09 1.61E-07 2.28E-05 
0.5 4.74E-08 2.08E-09 2.08E-09 2.45E-07 3.35E-05 
1.0 4.66E-08 7.76E-09 7.76E-09 4.43E-07 4.20E-05 
2.0 1.75E-07 2.71E-08 2.71E-08 2.71E-08 1.23E-04 
4.0 6.07E-07 6.15E-08 6.15E-08 6.15E-08 1.95E-03 
5.0 1.36E-08 1.36E-08 1.36E-08 1.36E-08 6.09E-05 
10.0 6.56E-05 6.56E-05 6.56E-05 1.64E-02 1.92E+00 

Example 5.2 

This example is the Laplace transform and its inverted function 

ýýý1 = A2 +ßi2 
f (t) = Sin7rt 

The numerical approximations and analytic values are shown in Fig- 

ure 5.3 for Stehfest's method. 

f(t) =sin (irt) 

o. ý 
o. 

o. 

o. 

* M=6 
o M=8 
v M=10 
0 M=12 
A M=14 

- analytic 

-o. 
-o. 
-o. 
-o. 

yt 
3.5 

Figure 5.3: The numerical and analytic values of Example 5.2 using Ste- 

hfest's method 

We see that the inversion approximation does not track the analytic value 

after t>0.5 for any of the M-values for the Stehfest inversion method. The 
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function is oscillatory and we would not expect good results, as suggested 
by Stehfest. The method smooths out the oscillatory nature of the function. 

In Figure 5.4, for the SLP method, we see that the numerical approx- 
imation tracks the analytic value closer for slightly longer, but eventually 

smooths out and loses the oscillatory nature of the function. 

f(t) = sm (art) 

0. 
0. 
o. 
o. 

* M'=6 
o M'=8 
V M'=l0 
0 M'=12 

M'=14 

- analytic 

-o. 
-o. 
-o. 
-o. 

3.5 

Figure 5.4: The numerical and analytic values of Example 5.2 using the SLP 
method 

Example 5.3 

This example is the Laplace transform and its inverted function 

-A 

.f 
(A) = eA 

' f(t) = H(t -1) 

where H is the Heaviside unit step function defined by 

0 t<1 
H(t-1)= 

ii t> 1 

We show the approximate and analytic values in Figure 5.5 for Stehfest's 

inversion method and in Figure 5.6 for the SLP method. 

Again, we see that the approximations do not track the analytic value 

very well. The inversions have problems with the discontinuity at t=1 and 
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f(t) =H(t 1) 
1.2 r 

o. 

o. 

o. 

o. 

-0.2' 0 0.5 

* M=6 
o M=8 
V M=10 
0 M=12 

M=14 
analytic 

1 1.5 2 2.5 3 3.5 
t 

Figure 5.5: The numerical and analytic values of Example 5.3 using Ste- 
hfest's method 

f(t) = H(t -1) 
1.2r 

o. 

0. 

0. 

0. 

0 0.5 1 1.5 2 2.5 3 3.5 

* M'=6 
o M'=8 
v M'=10 
0 M'=12 

M'=14 

- analytic 

Figure 5.6: The numerical and analytic values of Example 5.3 using the SLP 

method 

smooth out the function. By time t=2, however, the inversions are satis- 

factory. We can see this in the numerical values in Table 5.4 for Stehfest's 

method and Table 5.5 for the SLP method. 
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Table 5.4: Numerical values for Stehfest's method for Example 5.3 

time 1 1 analytic M=6 M=8 M=10 M=12 M=14 
0.01 0.0 0.000000 0.000000 0.000000 0.000000 0.000000 
0.1 0.0 0.000953 -0.000303 0.000066 -0.000009 0.000000 
0.5 0.0 -0.065674 -0.099365 -0.070222 -0.020988 0.018487 
0.9 0.0 0.465996 0.410959 0.365807 0.325568 0.288468 
1.0 1.0 0.578125 0.557292 0.545492 0.537777 0.532315 
1.1 1.0 0.670074 0.677453 0.693290 0.712680 0.733761 
2.0 1.0 0.978445 1.016469 1.032599 1.030503 1.018024 
3.0 1.0 1.012089 1.017257 1.007359 0.996731 0.992859 
4.0 1.0 1.011121 1.006560 0.998203 0.995722 0.998288 

Table 5.5: Numerical values for the SLP method for Example 5.3 

time 1 1 analytic 1 1 M'=6 M'=8 M'=10 M'=12 M'=14 

0.01 0.0 0.087730 -0.055888 0.016950 0.001892 0.005480 
0.1 0.0 -0.056353 -0.010093 0.043094 -0.018058 0.007989 
0.5 0.0 -0.095115 -0.045845 0.015725 0.041129 0.022081 
0.9 0.0 0.323143 0.290729 0.245495 0.193223 0.142926 
1.0 1.0 0.507328 0.513388 0.501796 0.488717 0.486258 
1.1 1.0 0.676341 0.713982 0.738302 0.773425 0.822785 
2.0 1.0 1.050473 1.002588 0.953891 0.944916 1.021506 
3.0 1.0 0.942677 0.984848 1.040608 1.014422 0.944189 
4.0 1.0 1.005948 1.019276 1.020761 0.935713 1.067499 

Example 5.4 

This example is the Laplace transform and its associated inverted function 

11 
f (ý) = exp(-V-A), f (t) =2 

7rt3 
exp -4t 

and we show the values in Figure 5.7 and 5.8. 

We can see that the numerical values are very good approximations for 

all values of M and M'. We show the percentage errors for these values in 

Tables 5.6 and 5.7. We notice that for small values of t none of the M and 

M' recovers a very good result, and we have found that this can often be 

a difficulty for these Laplace transform methods. However, for t>0.1 we 

see that the approximations are very good, and for M>6 for Stehfest's 
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f fi t) =a 1ý 
tp xp(-1 /4 t) 

0. 

0. 

0. 

0. 

-0.2 L 
0 

* M=6 
o M=8 
V M=10 
0 M=12 

M=14 
analytic 

0.5 1 1.5 2 2.5 3t 

Figure 5.7: The numerical and analytic values of Example 5.4 using Ste- 
hfest's method 

f (t) =21. /ý xp(-1 /4t) 

0. 

0. 

o. 

0. 

-0.2 L 
0 0.5 1 1.5 2 2.5 3 

* M'=6 
o M'=8 
V M`=10 
0 M'=12 
A M'=14 

- analytic 

Figure 5.8: The numerical and analytic values of Example 5.4 using the SLP 

method 

method the maximum error is one percent. 
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Table 5.6: Percentage errors for StPhffst'R 
ms thnd fnr FYimnlP a 

time M=6 M=8 M=10 M=12 M=14 
0.01 3.67E+07 3.91E+07 3.47E+06 2.01E+06 9.31E+05 
0.1 7.78E-01 1.04E+00 6.90E-01 3.38E-01 1.29E-01 
0.2 4.12E+00 9.98E-01 2.54E-02 1.25E-01 7.01E-02 
0.3 1.65E+00 3.85E-01 4.14E-01 1.45E-01 9.56E-03 
0.5 1.62E+00 1.16E+00 2.47E-01 5.41E-02 4.73E-02 
1.0 3.27E+00 3.47E-01 2.84E-01 9.63E-02 1.31E-02 
1.5 2.63E+00 3.86E-01 3.36E-01 4.18E-03 3.30E-02 
2.0 1.73E+00 7.69E-01 2.53E-01 5.38E-02 2.72E-02 
3.0 1.93E-01 1.00E+00 5.86E-02 8.88E-02 5.73E-03 

Table 5.7: Percentage errors for the SLP method for Example 5.4 
time 1 1 M'=6 M'=8 M'=10 M'=12 M'=14 
0.01 3.96E+09 1.83E+09 7.20E+08 6.70E+08 6.70E+08 
0.1 5.57E+00 9.42E+00 4.37E+00 2.52E+00 2.52E+00 
0.2 3.48E+00 3.48E+00 2.25E+00 9.40E-01 9.40E-01 
0.3 3.86E+00 3.87E+00 1.56E+00 7.08E-01 7.08E-01 
0.5 6.42E-01 5.56E+00 2.12E+00 6.23E-01 6.23E-01 
1.0 3.38E-01 2.75E-01 1.16E+00 7.62E-01 7.62E-01 
1.5 6.22E+00 4.09E+00 4.53E+00 3.18E-01 3.18E-01 
2.0 5.77E+00 2.29E+01 1.93E+00 7.05E-01 7.05E-01 
3.0 1.23E+01 4.93E+01 9.36E+00 7.26E-01 7.26E-01 

Example 5.5 

We now consider an example where, in order to take the Laplace transform, 

we need to take a series expansion of the function. Let 

f (t) = exp(-e-t) 

and expand it as a series 

e- 2t e- 3t 

f (t) =1- e-t + 
2ý - 31 

+ ... 

so that when we take the Laplace transform we obtain 

G[. f(t)1 -1111 A+1 + 2! (ý+2) 3! (ý+3) +... 

We use both Stehfest and the SLP inversion techniques and show the per- 

centage errors in Tables 5.8 and 5.9 for the truncated series. 
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Table 5.8: Percentage errors for Example 5.5 using Stehfest's method, 
M=8, on the series truncated after the number of terms 

time 1 12 terms 3 terms 4 terms 5 terms 6 terms 
0.01 97.32 34.58 8.95 1.83 0.31 
0.1 76.48 24.70 5.82 1.08 0.17 
0.2 58.90 17.09 3.64 0.60 0.09 
0.3 45.63 11.89 2.30 0.33 0.06 
0.5 27.79 5.88 0.94 0.10 0.03 
1.0 8.58 1.28 0.03 0.15 0.14 
1.5 2.89 0.35 0.11 0.11 0.12 
2.0 1.13 0.01 0.04 0.05 0.05 
3.0 0.34 0.25 0.23 0.24 0.24 

Table 5.9: Percentage errors for Example 5.5 using the SLP method, M' = 8, 
on the series truncated after the number of terms 

time 2 terms ---- 3 terms - -- -- ---- 4 terms --- 5 terms 6 terms 
0.01 97.32 34.58 8.95 1.83 0.31 
0.1 76.48 24.70 5.82 1.08 0.17 
0.2 58.90 17.11 3.64 0.61 0.08 
0.3 45.63 11.93 2.29 0.35 0.04 
0.5 27.84 5.90 0.92 0.11 0.01 
1.0 8.68 1.10 0.10 0.01 0.00 
1.5 2.89 0.22 0.01 0.00 0.00 
2.0 1.00 0.05 0.00 0.00 0.00 
3.0 0.13 0.00 0.00 0.00 0.00 

As we have often found before, the approximations for small values of 

time have the highest errors. However by the fifth term in the series the 

approximations are very good for both inversion methods. In Chapter 9 we 

shall use this process of approximating a function by a suitable series to 

effect a Laplace transform. 

We see from these examples that both inversion processes recover the 

value of the transform very well and are straightforward to use. The methods 

were tested in a parallel environment (Crann, Davies and Mushtaq 1998) 

and computation times for the two algorithms were very similar. Since 

there is little to choose between the accuracy and computation time of the 

two methods, we shall choose Stehfest's method since it is slightly easier 
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to implement. For the choice of inversion parameter, our results in these 

test examples confirm the suggestions of other researchers mentioned in 

Section 5.3.1. Consequently we shall choose a value M=8 for use in our 

applications. 

5.4 The Laplace transform method for ordinary 

differential equations 

In this section we consider initial-value problems associated with ordinary 

differential equations (Davies and Crann 1999). This will give us an indica- 

tion of how to treat the time variable in diffusion-type problems described 

by a parabolic partial differential equation. 

Example 5.6 

This problem is defined as 

d 2tX 
+2 dt + 5x = e-t sin t 

with initial conditions 

x (O) =0 and 
dt (0) 

Taking the Lapace transform we obtain 

a2±-Ax(O)- dt(0)+2(a±-x(o))+5±= 1 
(A+ l)2+1 

Rearranging and simplifying, this becomes 

11 
X a2 +2A+5 

+ (A2 +2A+5)(A2 +2A+2) 

This transform can be inverted using partial fractions and a set of tables 

(Davies and Crann 2004) as 

x (t) =3 e-t (sin t+ sin 2t) 
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The solution is oscillatory due to the sinusoidal terms. However the expo- 

nential term dominates the function x(t) and has an amplitude less than 

0.003 by t=3.0. Using Stehfest's inversion method with parameter M=8 

we show the numerical and analytic solution in Figure 5.9 and we see that 

the approximation tracks the analytic solution in a satisfactory manner. 

x(t) 0.3 

0.25 

0.2- 

0.15- 

0.05- 

0"i 

-0.05 0 ý 3 

LT approx. 
analytic 

Figure 5.9: The numerical and analytic solution of Example 5.6 using Ste- 

hfest's inversion method 

In Table 5.10 we present the analytic and numerical results together with 

the percentage errors for Stehfest's method. We see that the errors are quite 

small but the approximation fails to pick up the oscillatory nature of the 

solution. 
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Table 5.10: Numerical results for Example 5.6 using Stehfest's inversion 
method 

time analytic approximation error 
0.1 0.090032 0.089965 7.51E-02 
0.2 0.160495 0.160410 5.29E-02 
0.3 0.212408 0.213237 3.90E-01 
0.4 0.247298 0.249709 9.75E-01 
0.5 0.267055 0.270244 1.19E+00 
0.6 0.273799 0.275832 7.43E-01 
0.7 0.269756 0.268692 3.95E-01 
0.8 0.257155 0.251953 2.02E+00 
0.9 0.238138 0.228967 3.85E+00 
1.0 0.214691 0.202753 5.56E+00 
1.5 0.084686 0.084291 4.67E-01 
2.0 0.006879 0.024604 2.58E+02 
2.5 -0.009863 0.002392 -1.24E+02 
3.0 -0.002295 -0.004484 -9.54E+01 

Example 5.7 

In this example we consider a problem with a discontinuity in the data 

(Davies and Crann 1999): 

dx 
+x=H(t-1) x(0)=1 

where H(t - 1) is the Heaviside unit step function. 

Taking the Laplace transform we obtain 

(ýý-1)±=1+eß 

We call this the Full Laplace transform method (Full LT). 

The analytic solution is 

x(t) = e-t + H(t - 1)(1 - el-t) 

The numerical solution is compared with the analytic solution in Figure 5.10. 

We notice that, as suggested by Stehfest, the numerical solution does 

not compare well with the analytic solution in the neighbourhood of the 
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0. 

0. 

0. 

0. 

0. 

0. 

-*- Full LT 
analytic 

Figure 5.10: The numerical and analytic solution of Example 5.7 using the 
Full LT method 

x(t) 0.52 
-- Full LT 

0.5 ý analytic 

0.48 W 

0.46 

0.44 

0.42- 

0.4- 

0.38- 

0.36 t 
0.8 0.9 1 1.1 1.2 

Figure 5.11: The numerical and analytic solution of Example 5.7 using the 
Full LT method, detail of region near t=1.0 

discontinuity at t=1, see Figure 5.11. To overcome this we use the Laplace 

transform method to solve the equation 

dt+x=0 

subject to x(O) =1 and obtain the value of x(1). We make the change of 
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variable 

x(t)=x1(t-1) t>1 
and then solve the equation 

dxl 
dt +x1=1 

subject to xi(O) = x(1). 
So we have 

(A + 1)jý =1 to obtain x(T) for T<1 

and 

A +1 
1 ( )ý1 =A -- x(1) to obtain x(T) for T>1 

We call this the Step Laplace transform method (Step LT). 

The numerical and analytic solutions for the Step LT method are com- 

pared in Figures 5.12 and 5.13 in which we see that the numerical solution 

compares very well with the analytic solution. We shall use this idea again 

in Chapter 8 with discontinuities in the boundary conditions of partial dif- 

ferential equations. 
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0. 

0. 

0. 

0. 

0. 

0. 

-- Step LT 
analytic 

Figure 5.12: The numerical and analytic solution of Example 5.7 using the 
Step LT method 

x(t) 0.5 
-- Step LT 

0.48 analytic 

0.46- 

0.44- 

0.42- 

0.4- 

0.38- 

0.36 t 
0.8 0.9 1 1.1 1.2 

Figure 5.13: The numerical and analytic solution of Example 5.7 using the 
Step LT method, detail of region near t=1.0 

5.5 The Laplace transform method for parabolic 

problems 

We shall describe the process with reference to an initial boundary-value 

problem defined in the two-dimensional region D bounded by the closed 
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curve C= Cl + C2, such as in Figure 3.1, 

V2U 
a at 

in D (5.6) 

subject to the boundary conditions 

u= ul on Cl (5.7) 

_au_ q an= q2 on C2 (5.8) 

and the initial condition 

(r, 0) = uo(r) in D (5.9) 

We now define the Laplace transform in time by 

f ý(r; a) =J 
00 

u (r, t)e-Atdt (5.10) 
0 

so that the initial boundary-value problem (5.6), (5.7), (5.8) and (5.9) be- 

comes 

subject to 

V2ii = )ü-uo) in D (5.11) 

U1 on C1 

q=q2 on C2 

(5.12) 

(5.13) 

If uo =0 this elliptic problem in the transformed plane comprises the 

modified Helmholtz equation (5.11) subject to constant Dirichlet and Neu- 

mann boundary conditions on Cl and C2 respectively and can be solved in 

a variety of ways, as suggested in Chapter 2, and inverted using one of the 

numerical inversion methods above. Although in later chapters we shall use 

the Laplace transform together with the boundary element method, we find 

it useful to compare solutions of a test problem using a variety of different 

elliptic equation solvers and this we shall do in Section 6.1. 

77 



5.6 Summary of Chapter 5 

In this chapter we introduced a variety of ways of using the Laplace trans- 

form method and the boundary element method for the solution of time- 

dependent parabolic problems. The difficulty associated with the method is 

in the numerical inversion needed to bring the Laplace space solution back 

to the time domain and we have compared two possible techniques using 

real parameters rather than complex ones. Stehfest's numerical method is 

straightforward, easy to compute and gives good results for a variety of test 

transforms. Zakian and Littlewood's method gives results of similar accu- 

racy but is a little more complicated to implement. Consequently we shall 

use Stehfest's method in our examples throughout this thesis. We shall use 

Stehfest's inversion method with M=8 as suggested by Crann (1996) and 

in agreement with the suggestions of other authors. 

In Chapter 6 we shall solve examples of initial boundary-value partial 

differential equations using the Laplace transform to reduce the time variable 

and solve the resulting elliptic problem by a variety of methods sequentially 

and in parallel. 
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Chapter 6 

Using the Laplace Transform 

Method 

6.1 Introduction 

In Chapter 5 we described the Laplace transform method and how it can 

be used to solve time-dependent initial-value problems. In this chapter we 

demonstrate the method for time-dependent partial differential equations 

which have boundary and initial conditions. We also show that the method 

is ideally suited for use on parallel computers. 

Example 6.1 

We illustrate the solution process by solving the following two-dimensional 

heat conduction problem in the square 0<x<1,0 <y<1 

V 2U 
a ät 

(6.1) 

subject to the boundary conditions 

u(x, 0, t) = u(x, 1, t) = 20 (6.2) 

q(O, y, t) = q(1, y, t) =0 (6.3) 
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and the initial condition 

u(x, y, 0) =0 

see Figure 6.1. 

V 

u=2 

X 

Figure 6.1: Boundary and initial conditions for Example 6.1 

(6.4) 

The problem is, in fact, essentially dependent only on x and the analytic 

solution is 

u(x, y, t) = u(0, y, t) + (UR 
- UL) 

00 
+ bn sin 

(nx) 
exp (-an 27r2t/l2) 

n=1 

where UL = u(XL, y, t) 
, UR = u(XR, y) t), l= XR - XL and 

bn =2 1(u0 - UL) (1 - (-1)n) + (uR - UL) (-1)n} 
nr 

In this case XL =0 and XR = 1. 

Let ii(x, y; A) be the Laplace transform of u(x, y, t). 

The transform of equation (6.1) becomes 

L [V2U] =1£ 
[9U] 

lot 

so that 

V2ü=1 (A -u (x, y, 0)) 

Hence 

V2jj =A ii) simceuo =0 (6.5) 
a 
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subject to the boundary conditions 

ü (x, 0; A) = ü(x, 1; A) = 20/A (6.6) 

and 

q(0, y; A) = 4'(l, y; A) =0 (6.7) 

In Laplace space, equations (6.1), (6.2), (6.3) and (6.4) become the trans- 

formed equations (6.5), (6.6) and (6.7) and we solve them in a variety of 

ways. We report a comparison of the results in Section 6.5. 

6.2 Laplace transform finite difference method 

We can define a uniform grid on the square (x, y) :0<x<1,0 <y<1 and 

use the usual five-point formula for the Laplacian (Smith 1978), see Section 

2.2.1 

Ui, k = (UZ-l, k + UZ, k-1 + UZ+l, k + UZ, k+l) / (4 + Ajh2/a) 

We solve this equation for a=0.1 and mesh-size h=0.1. We then 

use Stehfest's inversion procedure with parameter M=8 to obtain the 

approximate solutions to the original problem stated in (6.1), (6.2), (6.3) 

and (6.4) and this numerical solution is compared with the analytic solution 

in Section 6.5. 

6.3 Laplace transform finite element method 

A graded mesh of 200 right-angled linear triangles is used to set the finite 

element equations in the form, (Davies 1985), 

KÜ - MU =f 
a 

Again we use M=8 in Stehfest's inversion process. 
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6.4 Laplace transform boundary element method 

The partial differential equation (6.5) in the transform plane is the modified 
Helmholtz equation, which we can write in the form 

V2ü = p2ü 

where p2 

Since 

. T[ii] = o 
where 

. ý-V2_p2 

we can use equation (3.5) with fundamental solution (Kythe 1996) 

ý* = 2ý Ko (PR) 

(6.8) 

where R is the distance of the field point from the source point. KZ is 

the modified Bessel function of the second kind. The corresponding flux 

function, q*, is given by 

an 

Since d 
(Ko(x)) = -Ki(x) (Abramowitz and Stegun 1972) it follows that 

q2 PK1(PR) 
R 

R. n 

The boundary integral equation for the modified Helmholtz equation 

(6.5) is therefore given by 

cpüp = 21 Ko(R)q + fiPKi(PR) 
RR. 

n ds 

The boundary element method is applied in the usual manner to set up 

the system of equations of the form 

HU+GQ=O 
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whose solution yields approximate values of U and Q at N nodes on the 

boundary. 

We use the Laplace transform boundary element method to solve Ex- 

ample 6.1 for a=0.1 in the square discretised into 32 linear elements with 

eight-point Gauss quadrature and using Teiles transformation method for 

the singular integrals. We once again use the inversion method of Stehfest 

with parameter M=8. We show these results together with the analytic 

solution for a variety of times in the next section. 

6.5 Results of the example using the Laplace trans- 

form method 

In Figure 6.2 we show the results of Example 6.1 along the line y=0.5 at 

times t=0.1,0.3,0.6 and 1.0 for each of the three methods, FDM, FEM, 

BEM and the analytic solution. We see that for all methods the approximate 

solutions track the analytic solution very well. 

u(x, 0.5, t) 
20 L 

18 

16 

14 

12 

10 

8 

6 

4 

2 

-0- LT-FDM 
LT-FEM 

-e- LT-BEM 

analytic 

t =1.0 
0.6 

3 

ýx 
1 

Figure 6.2: Space distribution of the solution for Example 6.1 

83 

0 -- - 0 0.2 0.4 0.6 0.8 



In Tables 6.1 and 6.2 we see the numerical values of the approximations 

and the percentage errors from the analytic solution. We see that all three 

methods are accurate. The surprisingly relatively high errors in the LTBEM 

are likely to be due to the use of the series for the modified Bessel function, 

truncated according to Ramesh and Lean, as the fundamental solution. 

Table 6.1: Analytic and approximate solutions at t=0.6 for Example 6.1 
x-value Analytic LTFDM LTFEM LTBEM 

0.0 20.0000 20.0000 20.0000 20.0000 
0.1 15.6142 15.6213 15.6162 15.7656 
0.2 11.6818 11.7009 11.6768 11.9249 
0.3 8.5922 8.6316 8.5678 8.9637 
0.4 6.6284 6.6922 6.5836 6.9780 
0.5 5.9560 6.0312 5.9028 6.3003 
0.6 6.6284 6.6922 6.5836 6.9077 
0.7 8.5922 8.6316 8.5678 8.8482 
0.8 11.6818 11.7009 11.6768 11.8082 
0.9 15.6142 15.6213 15.6162 15.6925 
1.0 20.0000 20.0000 20.0000 20.0000 

Table 6.2: Percentage errors at t=0.6 for the results in Example 6.1 

x-value LTFDM LTFEM LTBEM 
0.1 0.05 0.01 0.97 
0.2 0.16 0.04 2.08 
0.3 0.46 0.28 4.32 
0.4 0.96 0.68 5.27 
0.5 1.26 0.89 5.78 
0.6 0.96 0.68 4.21 
0.7 0.46 0.28 2.98 
0.8 0.16 0.04 1.08 
0.9 0.05 0.01 0.50 
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6.6 Implementation on a distributed memory 

architecture 

The boundary element method has been shown to be very well-suited to par- 

allel environments (Ingber and Davies 1997). These applications exploit the 

inherent parallelism in the integral formulation. In the Laplace transform 

method the space solutions for different time values are completely inde- 

pendent of the method used to solve the elliptic problem in the transform 

space and as such are ideally suited to be solved on different processors in 

a distributed system. There is no interprocessor communication during the 

solution and such an implementation has a very good load balance. The only 

interprocessor communication occurs during pre-processing when the data 

is broadcast from the host to all other processors and during post-processing 

when selected solution values are gathered on the host for the purpose of 

the display of the results. 

Example 6.2 

We illustrate the method by solving the following two-dimensional heat con- 

duction problem (Moridis and Reddell 1991c): 

12 aU 
at 

1 
at -1<x<1, -1<y<1 (6.9) 

a 

subject to the boundary conditions, see Figure 6.3 

u(-1, y, t) = u(x, -1, t) = u(l, y, t) = u(x, 1, t) =1 (6.10) 

and the initial condition 

u(x, y, 0) =0 (6.11) 

85 



V 

x 

Figure 6.3: Boundary and initial conditions for Example 6.2 

The analytic solution is 

u(x, y, t) =1- 
16 00 00 

/ 2m + 1)m+n cos 
(2n 

21)ýx ýx.. . 
ri=0 m=0 ` 1)(2n + 1) 

1(2m + 1)7ry 
p (_ 2 [( )2 ( )2] 

... x cos 2 ex p 2m +1+ 2n +1 t/4) 

A parallel implementation involves seeking the approximation U to the 

solution u at the times Tp, p=1,2, ... ,P where P is the number of proces- 

sors available. Each set of solutions Up is evaluated on a different processor, 

p=1,2, ... , 
P, in parallel. The load balancing thus achieved is excellent. 

We measure the efficiency of the implementation in parallel by speed-up, 

which is defined as 

SP= 
Ti 

- Tp 

where TZ is the computing time on i processors. 

Implementation on four T800 transputers 

The problem defined above was solved using the five different methods from 

Chapter 2 for the modified Helmholtz equation in Laplace space (Davies et 

al. 1997). 
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1. Finite difference method (FDM) A uniform 16 x 16 grid on the 

square was used with the five-point formula for the Laplacian to define 

a Gauss-Seidel formulation 

Ui, k = (UZ-l, k + Ui, k-1 + Ui+i, k + UZ, k+i) / (4 + Ajh2/a) 

with 
Uo, k = Ü16, k =U 

,p=Ui, 16 =0 

2. Finite element method (FEM) A graded 16 x 16 mesh was used 

to define a set of linearly triangular elements and the finite element 

system of equations was developed in the usual manner with an ex- 

plicit formulation of the stiffness matrix, i. e. no numerical quadrature 

(Davies 1985). The equation solution was effected using Gauss elimi- 

nation. 

3. Boundary element method (BEM) The boundary element method 

was set up with 68 linear elements and eight-point Gauss quadrature 

was used to develop the system matrices. The singular integrals were 

effected using Teiles transformation method. 

4. The method of fundamental solutions (MFS) This method was 

set up with 68 uniformly distributed field points on the boundary and 

69 source points distributed uniformly on the bounding circle. 

5. Kansa's multiquadric method (MQM) 22 uniformly distributed 

points were placed on the boundary with 32 interior points. 

The problems were solved on a network of processors comprising four 

T800 transputers and the solution was sought at eight time values: 

T=0.1,0.2,0.5,1,2,5,10 and 20 
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Table 6.3: cpu times (s) for the five different methods for the solution of 
Example 6.2 on four T800 transputers 

No. of processors 1 1 FDM FEM BEM MFS MQM 

1 2537 2617 923 92.3 73.6 
2 1269 1309 464 46.2 36.9 
4 634 654 233 23.2 18.8 

with Stehfest parameter M=6. The computing times are shown in 

Table 6.3. 

The speed-up in the five cases is indistinguishable; they all exhibit linear 

speed-up and a typical case is shown in Figure 6.4. 

speed-up 

3.: 

2.: 

1.. 

no. of proc S 

Figure 6.4: Speed-up for the solution of Example 6.2 on four T800 trans- 

puters 

This linear speed-up, i. e. doubling the number of processors halves the 

computing time, is exactly what we should expect in this situation since 

there is no interprocessor communication during the solution process. Such 

communication occurs only in broadcasting the data to the processors and 

in gathering the results prior to post-processing and these require negligable 

computing time. 

88 



Implementation on a cluster of SUN workstations using PVM 

The solution process to Example 6.2 using the Laplace transform boundary 

element method on the four transputers was compared with the solution 

using a cluster of eight SUN4 Sparcstations using the PVM message passing 

protocol. Computation times are shown in Tables 6.4 and 6.5 (Davies et al. 

1996). 

Table 6.4: Computation times for the transvuter network 
Stehfest Processors Processors Processors 

M-parameter 1 2 4 

6 923 464 233 
8 1231 619 310 
10 1539 773 388 

Table 6.5: Computation times for the PVM SUN cluster 
Stehfest Processors Processors Processors Processors 

M-parameter 1 2 4 8 

6 263 137 70 70 
8 352 188 170 91 
10 463 232 116 112 

comp. time 
1600 

1400 

1200 

1000 

-*- M=6 

-ý M=8 
ý- M=10 

Figure 6.5: Computation time for the solution of Example 6.2 on the trans- 

puter network 
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comp. time 

-t- M=6 
M=8 

-M=10 

Figure 6.6: Computation time for the solution of Example 6.2 on the PVM 
SUN cluster 

Figures 6.5 and 6.6 show the computation times to indicate the problems 

that occur on the SUN cluster. The results from the transputer network in- 

dicate almost perfect linear speed-up as we have already seen. The results 

from the PVM SUN cluster, however, are surprising. In the cases of M=6 

and M= 10 we have linear speed-up in going from 1 to 4 processors but 

there is almost no improvement in using 8 processors. In the case M=8 

the degradation in performance occurs when we go from 2 processors to 4. 

Overall in all three cases we have a speed-up by a factor of approximately 

3.9, about fifty percent of what would be expected. The explanation is 

not obvious, we know that there is certainly no interprocessor communica- 

tion during computation. However, there are suspicions that, even though 

there is no need for communication under PVM, the system is nevertheless 

preparing for such communication and so incurs the overhead unnecessarily. 

The requirement to overcome the speed-up difficulties was removed by 

the acquisition of a sixty-four processor nCube machine. 
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Implementation on a sixty-four processor nCube parallel computer 

Example 6.2 was again solved but this time on a sixty-four processor nCube 

parallel computer arranged in a hypercube configuration using the Laplace 

transform boundary element method (Davies and Crann 2001). The bound- 

ary was divided into 68 linear elements. Eight-point Gauss quadrature was 

used to develop the system matrices with the singular integrals evaluated 

using Telles transformation method. Solutions were obtained at 64 different 

times, Tn = 0.1n; n=1, ..., 64 with the solution obtained using 1,2,4,8, 

16,32 and 64 processors, i. e. hypercubes of dimensions 2d :d=0, ... , 6. 

In Figures 6.7 and 6.8 we show the speed-up for the solution of Exam- 

ple 6.2. We see, in Figure 6.7, that there is almost perfect linear speed-up 

as would be expected because the time-domain decomposition of the prob- 

lem by the Laplace transform completely uncouples the calculation of the 

solution at each T. However, there is also a communication overhead asso- 

ciated with the implementation and this occurs in the so-called `broadcast' 

and `gather' of the data to and from the processors, i. e. in the passing 

of data and messages out to the processors and then retrieving data back 

again. If the `broadcast' and `gather' times are included then the speed-up 

is slightly less than linear as shown in Figure 6.8. 

Crann, Davies and Mushtaq (1998) also compare the speed-up for the 

solution of this problem using Stehfest's inversion method with the method 

using shifted Legendre polynomials and report almost identical computation 

times and therefore almost perfect linear speed-up. 

It is interesting to report here the results of a Laplace transform FDM 

approach on a distributed memory architecture. Davies et al. (2000) use a 

Jacobi iterative technique for the elliptic problem in Laplace space. We show 

that the computation effort increases with the parameter T in the Stehfest 

method as shown in Figure 6.9. 

The behaviour of the convergence of the algorithm with respect to T 
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log 2 (tkp) 
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Figure 6.7: Speed-up for the solution of Example 6.2 on the nCube: without 
`broadcast' and `gather' 

log 
2 

("3r ) 

Figure 6.8: Speed-up for the solution of Example 6.2 on the nCube: with 
`broadcast' and `gather' 

leaves us with a significant load balancing problem. We must allocate T 

values to the processors in such a way that the total work on each one is 

the same. The approximate linear nature of the relationship between work 

load and T provides a possible way forward since we can calculate suitable 

values of T so that the total work on each processor with different numbers 

of T values remains fixed. This load balancing difficulty is a feature of the 

fact that we are using an iterative, i. e. indirect, method to solve the system 
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no. of iterations 
240- 

220- 

200- 

180- 

160- 

140- 

120- 

100- 

80- 

60- 
i 
0 

Figure 6.9: Number of iterations for convergence of the LTFDM as a function 
of T 

of equations. The direct solution method that we usually use, i. e. Gauss 

elimination, does not exhibit the same problem. 

6.7 Summary of Chapter 6 

We have illustrated the Laplace transform method by solving initial-value 

problems. We used the transform to reduce the problem to an elliptic one 

in the space domain, solved this equation by a variety of methods, and then 

inverted back to a solution of the original problem using Stehfest's inversion 

method. We have compared the solutions to a test heat conduction problem 

using the Laplace transform together with the finite difference, finite element 

and boundary element methods and recorded good results. 

We have also shown that the numerical Laplace transform method using 
Stehfest's inversion process is ideally suited to implementation on a dis- 

tributed memory architecture. The user would choose the solver for the 

resulting elliptic problem according to which of the methods is preferred or 

available. 
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Chapter 7 

The Laplace Transform 

Boundary Element Method 

with Dual Reciprocity 

7.1 Introduction 

In Chapter 3 we introduced the boundary element method for the solution 

of elliptic problems. In Chapters 5 and 6 we followed with the Laplace 

transform method for the solution of parabolic problems showing that they 

can be solved easily and accurately by a variety of methods when using 

the Laplace transform for the time variable including the boundary element 

method. 

In the case that the initial condition, uo, of the time-dependent problem 
is zero the resulting elliptic equation becomes homogeneous. Similarly if 

Uo is harmonic in the two-dimensional region we can make a change in the 

dependent variable to obtain a homogeneous equation. In both cases the 

resulting elliptic equation, the modified Helmholtz equation (4.16) may be 

solved using the boundary element method for which a suitable fundamental 
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solution is 

ý* = 
2ýKo 

(pR) (7.1) 

before inverting back to the time domain using a suitable inversion process. 
However if the elliptic equation is not homogeneous we must use a suit- 

able approach to handle the non-homogeneity. The dual reciprocity method 

allows us to do this and at the same time use the simpler Laplacian funda- 

mental solution 

tL* 
1 

1n(R) (7.2) 

We note here that it is not essential to use equation (7.2). Zhu et al. 
(1994) use the fundamental solution equation (7.1) in association with the 

dual reciprocity method to solve such problems. 

The dual reciprocity method was first proposed by Nardini and Brebbia 

(1982) for elastodynamic problems and extended by Nardini and Brebbia 

(1985), Partidge and Brebbia (1989) and Partridge and Wrobel (1990) and 

the first text book describing the ideas for general problems was presented 

by Partridge, Brebbia and Wrobel in 1992. It has proved to be a powerful 

technique for solving elliptic partial differential equations and its great ad- 

vantage is that only boundary integrals need to be carried out, preserving 

the elegance of the traditional boundary element method. 

Partridge et al. (1992) suggested, from computational experiments, that 

the number of internal points, L, and boundary points, N, should be chosen 

to ensure that L> N/2. Although it is still mentioned now and then by var- 

ious authors, in all our examples we have not found this to be necessary and 

there seems to be no definitive rule nor analytic discussion in the literature. 
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7.2 The Laplace transform boundary element method 

with dual reciprocity 

We shall describe the method in the context of the Laplace transform bound- 

ary element method with dual reciprocity as an additional scheme for han- 

dling the right-hand side of our non-homogeneous equation in Laplace space. 

We consider the initial boundary-value problem defined in the two- 

dimensional region, D, bounded by the closed curve C= C1 + C2 

V2 
1u= ýt 

inD (7.3) 

subject to the boundary conditions 

u= ui (x, y, t) on Cl (7.4) 

qn= q2 (x, y, 0 on C2 (7.5) 

and the initial condition 

u(x, y, 6) = uo(x, y) in D (7.6) 

We define the Laplace transform in the usual way so that the initial 

boundary-value problem becomes 

ý2ü= 
1 

uo) inD (7.7) 
a 

subject to 

ýc=ü1 on Cl (7.8) 

q= q2 onC2 (7.9) 

If we write the right-hand side of equation (7.7) as b= (x, y; ü, A), then 

by using the fundamental solution and Green's theorem, equation (7.7) can 

be written in the usual integral form, see equation (3.5), 

cpüüp +q zcds -iii*qds =J býc*dA (7.10) 
D CC 
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The right-hand side of equation (7.7), b, is expanded over D as a series 
of interpolation functions, fj, 

N+L 
b 1: aj fj (R) (7.11) 

j=1 

where aj are coefficients to be determined by a collocation process using N 

boundary points and L interior points, see Figure 7.1. The interpolation 

functions, fj, are chosen so that we can find a particular solution, ic, with 

the property V2ici = fj 
. 

Figure 7.1: Boundary and internal nodes used in the dual reciprocity 
method. 

Using equation (7.11) in the right-hand-side of equation (7.10) together 

with Green's theorem we obtain the boundary integral form 

N 

CZü + q*üds - *qds = aj cidj + q*üjds - ýc*qjds 
CC j_l cc C 

(7.12) 

Internal values are given by 

L 

CO + q*üds - qds = 
ýaj (ckiýj 

-f- *üjds - zý*qj ds 
CC j_l c 

ic 

(7.13) 

Note that equation (7.13) contains no domain integrals since the source term 

integral has been replaced by equivalent boundary integrals. 

97 

N boundary nodes 



Combining equations (7.12) and (7.13) and collocating at the N+L 

points, yields the overall set of equations 

HU+GQ = 
[HLT+GQ] 

a 
(7.14) 

_ 
[HtJ 

+ GQ] F-lb 

using 

b=Fa (7.15) 

where the matrix F= [fj (RZ)] is the collocation matrix from equation (7.11). 

Defining 

S= [HU 
+ GQ] F-1 (7.16) 

equation (7.14) becomes 

HÜ+GQ=Sb (7.17) 

and S is obtained from known matrices which depend only on the geometry. 

Although b in the right-hand-side of equation (7.10) is a function of ü, 

it is helpful to consider first the case b= b(x, y) Z. e. independent of u then 

b is known, and setting 

R= Sb 

in equation (7.17) we obtain 

HU+GQ=R (7.18) 

where R is known. 

Applying the boundary conditions in equation (7.18), we obtain the sys- 

tem of equations in matrix form in a similar manner to that described in 

Section 3.3 

Ax=y 

where x is a matrix of unknown values of V and Q and y is a vector of 

known values. 
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We now return to the situation in equation (7.10) where b depends ex- 

plicitly on & In fact since we shall need space derivatives in Chapter 9 as 

well we consider the case when b is of the form 

b= pl (x, y) + P2 (x, y) + P3 (x, y) a- + P4 (x, Y) au (7.19) 
y 

The basic approximation for the dual reciprocity method is equation (7.11) 

and its discretised form equation (7.15). Similar equations may be written 
for ü 

N+L 
1jfj (7.20) 

j=1 

U=Fß (7.21) 

Differentiating equation (7.20) with respect to x produces 

ail N+L a J3 (7.22) 
ax ax j=1 

Rewriting equation (7.21) as 8= F-lU, the discretised form of aü/äx 

becomes 
aFF-lÜ 

(7.23) 

In a similar manner, for äi/äy we obtain the expression 

Oy 
F-liJ (7.24) 

If 

Pi= diag[Pi(xk, yk)] i=2,3,4, k=1,..., L+N 

Pi = [PI(xk, yk)] 

and S is given by equation (7.16) then in a similar manner to that which 

led to equations (7.16) to (7.18) we obtain 

(H-R2)Ü+GQ=R1 

with 

R1+R2=R 
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and 

R1 = Spl, a known function of position 

and R2 =S P2 + P3 
OFF-1 

+ P4 
OFF-1 

y 
Applying the boundary conditions and rearranging, we again obtain a 

system of equations in matrix form 

Ax=y 

We solve this system of equations and invert the transform using Stehfest's 

inversion technique to produce the numerical solution to our initial boundary- 

value problem. 

7.2.1 Choice of approximation function, f 

Many types of approximating function f have been suggested. Nardini and 

Brebbia (1982) first adopted the function f=R where R is the distance 

function used in the definition of the fundamental solution. Later authors 

considered other functions from the series 

f=1 +R+R2+R3+... +Rm (7.25) 

and Partridge et al. (1992) suggested the case f=1+R to be generally 

recommended. Recent work related to the theory of mathematical interpo- 

lation based on the so-called radial basis functions, of which equation (7.25) 

is one particular case, has produced many other ideas, including the use of 

thin plate splines which we shall use later. However, as long as b is suitably 

well-behaved then the coefficients cxj are well-defined (Wrobel 2002). 

We use the dual reciprocity code written by Toutip (2001) as a sub- 

routine in our Laplace transform boundary element code. The dual reci- 

procity code considers the following Poisson-type equation: 

v2u =pi 
au au 

+p2u+P3ýX +P4ay 
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If p3 and p4 are both zero then the code supports both f=1+R and the 

augmented thin plate spline f= R2 log R+a+ bx + cy for the interpolation 

functions in equation (7.11). If one of p3 or p4 is non-zero then the code 

supports only f=1+R. 

7.3 The solution of linear initial boundary-value 

problems 

In this section we consider a variety of linear initial boundary-value prob- 

lems, with b given by equation (7.19), to demonstrate the Laplace transform 

boundary element method using dual reciprocity to handle the right-hand 

side of the equation. We use N= 32 boundary points and L=9 internal 

points, see Figure 7.2 and for the numerical Laplace transform we use Ste- 

hfest's inversion method with parameter value M=8. We include in the 

following examples a term h(x, y, t) to enable us to consider problems with 

simple analytic solutions. 

25 

" " " 

" " " 

L=9 
" " " 

17 

N=32 

I ............................................ - 9 

Figure 7.2: Distribution of boundary and internal nodes for a square geom- 
etry 
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Example 7.1 

This example is defined in the unit square {(x, y) :1<x<2,1 <y< 2}, 

see Figure 7.3 

V 2U 
a at +h (7.26) 

where 

h= (2 + x2)e-t 

with boundary conditions 

u= e-t on x=1, u= 4e-t on x=2 

q=0 ony=land y=2 

and initial condition 

uo = X2 

and we use a=1.0. 

Vý_n 

X 

Figure 7.3: Boundary and initial conditions for Example 7.1 

In Laplace space this problem is 

V2jj =1(. Aic_x2) +h 
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with 

h_ 2+x2 
1+A 

and boundary conditions 

14 
U 

1+A onx=1, c= 1+A onx=2 

q=0 on y=land y=2 

The analytic solution is 

x2e-t 

and we compare this in Figure 7.4 with the numerical solution for which we 

used the interpolating function f=1+R for the dual reciprocity method. 

U(- k, y, t) 
3.5 r 

-- LT approx. 
analytic 

2 

I 

0 

Figure 7.4: Time development of the solution for Example 7.1 

We see that the numerical solution is a good approximation to the ana- 

lytic solution. We show some of the numerical results in Table 7.1 and find 

that the maximum error is about five percent. 

We also solved this problem using augmented thin plate splines and in 

Table 7.2 we show the results for the internal node (1.5,1.5) from t=0.1 

to 1.0 and compare the two methods with the analytic solution, showing 
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Table 7.1: Analytic and numerical solution for Example 7.1 in a unit square 

time analytic 
x=1.2 

approx 
x-= 1.2 

analytic 
x=1.5 

approx 
x=1.5 

analytic 
x=1.8 

approx 
x=1.8 

0.5 0.873404 0.874977 1.364694 1.365278 1.965159 1.971795 
1.0 0.529746 0.527231 0.827729 0.822284 1.191929 1.190671 
1.5 0.321307 0.322452 0.502043 0.497957 0.722941 0.728017 
2.0 0.194882 0.195609 0.304504 0.308966 0.438486 0.446656 
2.5 0.118202 0.121666 0.184691 0.192979 0.265955 0.270008 
3.0 0.071693 0.077216 0.112021 0.116802 0.161310 0.169625 

the percentage errors. We see that the method using augmented thin plate 

splines gives very poor results. 

Table 7.2: Analytic and numerical solution for node (1.5,1.5) 
7.1, with percentage errors 

in Example 

time analytic 
solution 

f=1+R 

solution 

Aug TPS 

solution 

f=1+R 
% error 

Aug TPS 
% error 

0.1 2.035884 2.027869 2.085829 0.39 2.45 
0.2 1.842144 1.845667 1.931223 0.19 4.84 
0.3 1.666841 1.662987 1.695091 0.23 1.69 
0.4 1.508220 1.509959 1.306139 0.12 13.40 
0.5 1.364694 1.365278 1.189529 0.04 12.84 
0.6 1.234826 1.232772 0.850058 0.17 31.16 
0.7 1.117317 1.113685 -0.750861 0.33 167.20 
0.8 1.010990 1.011307 15.573210 0.03 1440.39 
0.9 0.914782 0.913680 8.720648 0.12 853.30 
1.0 0.827729 0.822284 15.450520 0.66 1766.62 
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If we scale the geometry by a factor of two so that the problem domain 

is {(x, y), 2<x<1,2 <y< 1} we obtain the results in Table 7.3. The 

results for f=1+R are similar to the previous ones but those for the 

augmented thin plate spline are now very good, in fact better than for the 

f=1+R which we might expect. 

Table 7.3: Analytic and numerical solution for node (1.5,1.5) in Example 
7.1 with percentage errors, after scaling by a factor of 2 

time analytic 
solution 

f =1+R 
solution 

Aug TPS 

solution 

f=1+R 
% error 

Aug TPS 
% error 

0.1 2.035884 2.036639 2.037439 0.04 0.08 
0.2 1.842144 1.844345 1.842113 0.12 0.00 
0.3 1.666841 1.665840 1.668133 0.06 0.08 
0.4 1.508220 1.510100 1.504669 0.12 0.24 
0.5 1.364694 1.366218 1.364577 0.11 0.01 
0.6 1.234826 1.233334 1.232312 0.12 0.20 
0.7 1.117317 1.119965 1.117729 0.24 0.04 
0.8 1.010990 1.012913 1.009925 0.19 0.11 
0.9 0.914782 0.918610 0.914851 0.42 0.01 
1.0 0.827729 0.821593 0.826981 0.74 0.09 
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This problem was also solved in squares of size {(x, y) :1<x<5,1 <y< 5} 

and {(x, y) :1<x<9,1 <y< 9} to see if the size of the geometry affected 

the solution and we obtained the results in Tables 7.4,7.5,7.6 and 7.7. 

Table 7.4: Solutions for node (3.0,3.0) in {(x, y) :1<x<5,1 <y< 5} 
with percentage errors, before scaling 

time analytic 
solution 

f=1+R 

solution 

Aug TPS 
solution 

f =1+R 
% error 

Aug TPS 
% error 

0.1 8.143537 8.098644 23.322310 0.55 186.39 
0.2 7.368577 7.312969 16.863770 0.75 128.86 
0.3 6.667364 6.680464 4.329823 0.20 35.06 
0.4 6.032880 6.017361 -4.697392 0.26 177.86 
0.5 5.458776 5.432860 27.059930 0.47 395.71 
0.6 4.939305 4.958868 10.675640 0.40 116.14 
0.7 4.469268 4.516536 -3.360534 1.06 175.19 
0.8 4.043961 4.111164 22.983370 1.66 468.34 
0.9 3.659127 3.658441 -7.487761 0.02 304.63 
1.0 3.310915 3.310810 17.148700 0.00 417.94 

Table 7.5: Solutions for node (3.0,3.0) in {(x, y) :1<x<5,1 <y< 5} 

with percentage errors, after scaling by a factor of 5 
time analytic 

solution 

f=1+R 

solution 

Aug TPS 

solution 

f=1+R 
% error 

Aug TPS 
% error 

0.1 8.143537 8.198797 8.173505 0.68 0.37 
0.2 7.368577 7.379109 7.393033 0.14 0.33 
0.3 6.667364 6.705882 6.684691 0.58 0.26 
0.4 6.032880 6.056283 6.045638 0.39 0.21 
0.5 5.458776 5.482986 5.456286 0.44 0.05 
0.6 4.939305 4.954855 4.953763 0.31 0.29 
0.7 4.469268 4.496972 4.484585 0.62 0.34 
0.8 4.043961 4.082643 4.047904 0.96 0.10 
0.9 3.659127 3.670136 3.651706 0.30 0.20 
1.0 3.310915 3.328386 3.296805 0.53 0.43 

To summarise, using f=1+R the results are satisfactory without scal- 

ing but the larger the geometry becomes the better the results are after 

scaling. However for the augmented thin plate spline the results are very 

poor before scaling but very good afterwards, even better than the results 
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Table 7.6: Solutions for node (5.0,5.0) in {(x, y) :1<x<9,1 <y< 9} 
with percentage errors, before scaling 

time analytic 
solution 

f =1+R 
solution 

Aug TPS 
solution 

f=1+R 
% error 

Aug TPS 
% error 

0.1 22.620935 23.056060 -3955.8980 1.92 17587.77 
0.2 20.468269 20.955060 -6297.1330 2.38 30865.34 
0.3 18.520456 18.809710 -1644.1830 1.56 8977.66 
0.4 16.758001 16.948760 -2378.2500 1.14 14291.73 
0.5 15.163266 15.287830 1817.6260 0.82 11887.03 
0.6 13.720291 13.780140 -2204.6360 0.44 16168.43 
0.7 12.414633 12.472840 2229.6070 0.47 17859.51 
0.8 11.233224 11.690050 -1342.5130 4.07 12051.27 
0.9 10.164241 10.042650 -390.0205 1.20 3937.18 
1.0 9.196986 9.248565 414.0055 0.56 4401.53 

Table 7.7: Solutions for node (5.0,5.0) in {(x, y) :1<x<9,1 <y< 9} 

with percentage errors, after scaling by a factor of 9 
time analytic 

solution 

f=1+R 

solution 

Aug TPS 

solution 

f=1+R 
% error 

Aug TPS 
% error 

0.1 22.620935 22.593060 22.768480 0.12 0.65 
0.2 20.468269 20.519190 20.542030 0.25 0.36 
0.3 18.520456 18.614560 18.516730 0.51 0.02 
0.4 16.758001 16.829330 16.874930 0.43 0.69 
0.5 15.163266 15.205670 15.187000 0.28 0.16 
0.6 13.720291 13.776530 13.771550 0.41 0.37 
0.7 12.414633 12.444480 12.443230 0.24 0.23 
0.8 11.233224 11.283360 11.256030 0.45 0.20 
0.9 10.164241 10.233760 10.143770 0.68 0.20 
1.0 

1 
9.196986 

1 
9.191519 9.200835 0.06 0.04 

using f=1+R. This is also compatible with the perceived wisdom within 

boundary element literature that the dual reciprocity method requires suit- 

able scaling of the geometry. There doesn't seem to be any definitive state- 

ment, however we find from time to time an aside within a paper which 

alludes to this general perception. Natalini and Popov (2005) discuss scal- 

ing the geometry although their particular interest is in computation cost 

rather than accuracy. Consequently in all our examples we shall usually 

restrict ourselves to regions which lie within {(x, y) :0<x<1,0 <y< 1}. 
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Example 7.2 

We extend the problem in the previous section to include the term Ou/ax. 

This example is defined in the unit square from (0,0) to (1,1), see Figure 7.5, 

V2 U 
äu 

u-a at ax +h (7.27) 

where 

with boundary conditions 

h=(2+2x+x2)e-t 

u=Oonx=1, u=e-tonx=2 

q=0 on y=land y=2 

initial condition 
2 UO =x 

and a=I. 

u= 

V 

x 

Figure 7.5: Boundary and initial conditions for Example 7.2 

The problem is transformed in Laplace space to: 

21 aü 0 ij= 
a 

(Au-X2) - ate +h (7.28) 

where 
h (2+2x+x2) 

1+X 
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with boundary conditions 

ü=Oonx=0, u= l1 onx=1 

q=0 on Y=O andy=1 

The problem is solved using the boundary element method with dual reci- 

procity and inverted back using Stehfest's inversion method. 

The analytic solution is the same as the previous example: 

u= x2e-t 

The solution at three internal nodes, (0.2,0.2), (0-5,0.5) and (0.8,0.8) is 

shown in Figure 7.6 with the numerical results for time at intervals of 0.5 to 

3.0 in Table 7.8. We see that the Laplace transform approximation tracks 

the analytic solution very well. 

U((y, t) 
0.7- 

0.6 

0.5- 

0.4 

0.3- 

0.2- 

0.1 

-- LT approx. 
analytic 

3 

Figure 7.6: Time development of the solution for Example 7.2 
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Table 7.8: Analytic and numerical solution for Example 7.2 

time analytic 
= 0.2 

approx 
x=0.2 

1 analytic 1x=0.5 approx 
x=0.5 

analytic 
x=0.8 

approx 
x=0.8 

0.5 0.024261 0.025936 0.151633 0.154400 0.388180 0.389557 
1.0 0.014715 0.015862 0.091970 0.093249 0.235443 0.237373 
1.5 0.008925 0.009725 0.055783 0.056919 0.142803 0.144136 
2.0 0.005413 0.005874 0.033834 0.034959 0.086615 0.088427 
2.5 0.003283 0.003544 0.020521 0.021291 0.052534 0.054107 
3.0 0.001991 0.002190 0.012447 0.013073 0.031864 0.034084 

Example 7.3 

The previous examples were essentially one-dimensional in space. We now 

consider a problem in which the solution is explicitly dependent on both 

spatial variables. 

(0,0) to (1,1) 

This example is again defined in the unit square from 

V u=aät+h 

where 

h= (4 + x2 + y2)e-t 

see Figure 7.7, with boundary conditions, 

u= (1+y2)e-t onx= 1, is= (1+x2)e-t ony= 1 

q=0 on x=Dandy=0 

and initial condition 

UO = x2 + yz 

In Laplace space this problem is 

02ic= 
1 (Ail-(X2+y2))+h 

with 
h= 4+X2 +y2 

1+A 

(7.29) 
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u =(I+ x2) e-` 
1 

q=O u=(l+j. 2)e ` 

x 
q=O 

Figure 7.7: Boundary and initial conditions of Example 7.3 

and boundary conditions 

y2 2 

fj _ 
l+ 

one=1 ic= 
l+ý 

ony= 1+A 1+ý 

q=0onx=0 and Y=O 

The analytic solution is 

(x2 + y2)e-t 

In Figure 7.8 we present the graphical solution of the analytic and approxi- 

mate solutions and in Table 7.9 we show the numerical solutions for time at 

intervals 0.5 to 3.0. We see that the approximation is again very good. 

Table 7.9: Analytic and numerical solution for Example 7.3 

time analytic 
(0.2,0.2) 

approx 
(0.2,0.2) 

analytic 
(0.5,0.5) 

approx 
(0.5,0.5) 

analytic 
(0.8,0.8) 

approx 
(0.8,0.8) 

0.5 0.048522 0.052398 0.303265 0.305371 0.776359 0.776239 
1.0 0.029430 0.032681 0.183940 0.186203 0.470886 0.469709 
1.5 0.017850 0.019922 0.111565 0.112316 0.285607 0.288195 
2.0 0.010827 0.012715 0.067668 0.069300 0.173229 0.172084 
2.5 0.006567 0.007510 0.041042 0.042540 0.105069 0.107481 
3.0 0.003983 0.004681 0.024894 0.027323 0.063727 0.066657 
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u(a y, t) 
1.4 

1.2 

1 

0.8 

0.6 

0.4- 

0.2- 

0 
0 

LT approx. 
analytic 

* 3 

Figure 7.8: Time development of the solution for Example 7.3 

Example 7.4 

We now consider a similar problem but with curved geometry and a section 

of the boundary with a prescribed non-zero derivative. The problem is 

defined in the unit circle x2 + y2 = 1. 

The partial differential equation is again 

2 1äu 
u= 

1ät 
+h (7.30) 

where 

h= (4 + x2 + y2)e-t 

with boundary conditions 

u=e-t onx>0 

q=2e-t on x<0 

and initial condition 

UO = x2 + y2 
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Exploiting the symmetry of the geometry, we shall solve the problem in 

the upper half-plane introducing the boundary condition 

q=0ony=0 

see Figure 7.9, with 32 boundary nodes and 12 internal nodes, see Figure 7.10 

and we shall use a=1. 

1' 

x 

Figure 7.9: Boundary and initial conditions for Example 7.4 

v 

t 

Figure 7.10: Boundary and internal nodes for Example 7.4 

In Laplace space this problem is 

V2jj =1(. \jj -(x2+y2)) +h 

with 
h= 

4+x2+y2 
l+a 
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and boundary conditions 

I 
ýc =1+A on the positive x-quadrant 

_2 q12A on the negative x-quadrant 

q=0 ony=1=0 

The analytic solution is again 

u= (X2 + y2)e-t 

We show this together with the numerical solution in Figures 7.11 and 7.12 

and the numerical results for the internal nodes (0.2,0.2), (0.4,0.4), (0.6,0.6) 

in Table 7.10 and internal nodes (-0.2,0.2), (-0.4,0.4), (-0.6,0.6) in Ta- 

ble 7.11. 

u@ y, t) 
0.8 

0. 

0.6 

0.5 (q; y) = (Q6, (16) 

0.4 y) = (Q4, (14) 

0.3 (@ y) = (11Z U2) 

0.2 

o. 

-- LT approx. 
analytic 

01 
w=R t 0 0.5 1 1.5 2 2.5 3 

Figure 7.11: Time development of the solution for the positive x-values in 
Example 7.4 

The results for the positive-x internal nodes are once again a very good 

approximation and although the negative-x errors are not quite as good 

the approximate solution still tracks the analytic solution very well. The 

numerical values in the left quadrant are slightly less accurate and this is 
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ý(x, y, t) 
0.8 

o. 
0.6 

0.5 (@ y) (-O. 6, (16) 

0.4 (x, y) = (-0.40.4) 

0.3 (x, y) = (-(19 0.2) 

0.2 

0.1 

-- LT approx. 
analytic 

00 
0.5 1 1.5 2 2.5 3t 

Figure 7.12: Time development of the solution for the negative x-values in 
Example 7.4 

Table 7.10: Analytic and numerical solution for positive x-internal nodes for 
Example 7.4 

time analytic 
(0.2,0.2) 

approx 
(0.2,0.2) 

analytic 
(0.4,0.4) 

approx 
(0.4,0.4) 

analytic 
(0.6,0.6) 

approx 
(0.6,0.6) 

0.5 0.048522 0.053402 0.194090 0.196540 0.436702 0.436876 
1.0 0.029430 0.035363 0.117721 0.120952 0.264873 0.266551 
1.5 0.017850 0.022534 0.071402 0.073740 0.160654 0.161731 
2.0 0.010827 0.014745 0.043307 0.046017 0.097441 0.097788 
2.5 0.006567 0.008973 0.026267 0.028301 0.059101 0.061251 
3.0 0.003983 0.006016 0.015932 0.017689 0.035847 0.038235 

frequently the case for internal points near a boundary with a Neumann 

condition. 
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Table 7.11: Analytic and numerical solution for negative x-internal nodes 
for Example 7.4 

time analytic 
(-0.2,0.2) 

approx 
(-0.2,0.2) 

analytic 
(-0.4,0.4) 

approx 
(-0.4,0.4) 

1 analytic 1 
(-0.6,0.6) 

approx 
(-0.6,0.6) 

0.5 0.048522 0.060304 0.194090 0.209394 0.436702 0.453927 
1.0 0.029430 0.041357 0.117721 0.131609 0.264873 0.280956 
1.5 0.017850 0.027367 0.071402 0.082014 0.160654 0.172343 
2.0 0.010827 0.017471 0.043307 0.050999 0.097441 0.107080 
2.5 0.006567 0.010544 0.026267 0.032981 0.059101 0.065899 
3.0 0.003983 0.007319 0.015932 0.020265 0.035847 0.042688 

Example 7.5 

We now consider a steady-state heat flow problem in a cylinder from Toutip 

(2001). Because of the symmetry in the problem, we can model it in a 

quarter annulus, using polar coordinates, bounded by the circles with radii 

r= x2 yy2 = 1, r- x2 + y2 =2 and the lines x=0 and y=0, see 

Figure 7.13. 

C) 

Figure 7.13: Boundary and initial conditions of Example 7.5 

We use 40 boundary and 45 internal nodes discretised in the region as 

shown in Figure 7.14. 

We consider two-dimensional transient heat conduction 

V. (kVu) = pc 
ýt (7.31) 
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Figure 7.14: Boundary and internal node positions for Example 7.5 

where k is the thermal conductivity, p is the density and c is the specific 
heat. 

Equation (7.31) can be written in the form 

kV2U + 
ak au 

+ 
al£ au 

- PC 
au 

axaxa ää ay ay 

which leads to 

v2U - '°Cau -A 
au 

-A 
au ý 

k at ax ax ää ýJ y 

and, provided that k, p and c are independent of u, in Laplace space this 

becomes 

v2jj =1 
[PC 

(a,, _ Uo) _a 
a- 

_a 
aii (7.32) k ax aX ay ay 

Suppose that k=1 and pc = 1. Carslaw and Jaeger (1959) provide 

an analytic solution with an infinite series of Bessel functions. However 

computation of the numerical values requires a significant amount of effort 

and an accurate FDM will serve our purpose. Using Or = 0.05 and At = 

0.001, we show in Figure 7.15 our results in time with the FDM solution 

along the lines r=1.2,1.5,1.8. We see that our results match the FDM 

solution very well. The time curves rise steeply and the steady-state values 

are becoming clear at time t=0.5. 

In Figure 7.16 we show the space distribution for a variety of times. 

117 



u(r, 7r/4, t) 
90 

80 

70 

60 

50 

40 

30 

20 

10 

-- LT approx. 
FDM 

Figure 7.15: The solution of Example 7.5 in time 

u(r, 7r/4, t) 
100- 

90- 
steady-state 

t =0.05 
. ̀ 9 

80- 
t =0.15 'm7 

70 'i 
t3 

60 
p 

,i t=Q7 d d' p 
50 

0 
40 // / .0/ ddP 
30 , 
20 p 

0i 
10 

r 
1 1.2 1.4 1.6 1.8 2 

Figure 7.16: The solution of Example 7.5 in space 

In the steady state, the analytic solution is 

100 
U 1n21nr 

and in Table 7.12 we show our results with the analytic solution for values 

of r along 0= it/4. We also report the errors of the approximation with the 

analytic value and show that our results are very satisfactory, having less 

118 

0 0.2 0.4 0.6 0.8 1t 



than 0.5 percent error. 

Table 7.12: Steady state analytic and LT approximations for Example 7.5 
with k=1.0 

r 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 

Analytic 
LT approx 

13.75 
13.80 

26.30 
26.35 

37.85 
37.96 

48.54 
48.58 

58.50 
58.60 

67.81 
67.73 

76.55 
76.68 

84.80 
84.80 

92.60 
92.72 

LT % error 0.35 0.16 0.29 0.07 0.18 0.11 0.17 0.00 0.13 

Example 7.6 

This problem models heat conduction in a functionally graded material. In 

such materials physical properties vary rapidly over short distances thus al- 

lowing a smooth transition from one material to another without the possible 

problems which can occur at the interface between materials of, say, signifi- 

cantly differing thermal conductivity. Typically thermal conductivities vary 

exponentially in one variable only (Gray et al. 2005). 

We consider again the problem in Example 7.5 but with an exponential 

thermal conductivity given by 

(x, y) = k(r) = 5e3r = 5e3(x2+y2)7 

as shown in Figure 7.17. 

ý(ýi 

I 

I 

T 

Figure 7.17: Graph of thermal conductivity k(r) for Example 7.6 
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We see from Figure 7.17 that the thermal conductivity rises very sharply 
for r>1.6, so that we would expect the temperature in the outer region 

would reach the steady state more quickly that the inner boundary. 

We use equation (7.32) with 

k= 5e3r, 
ök 

_ 
15x 

ear 1 
älß 

_ 
15y 

ear 3 uo = 0, pc = 1.0 äx r öy r 

There is no analytic solution for the problem and we again compare our 

results with an accurate FDM solution. This FDM solution, with At = 
0.000 001, shows that at a very short time, t=0.0005, the solution is well 

on the way to the steady state, see Table 7.13. We would expect the steady 

state to be reached in a time which is too short for an accurate application 

of the Laplace transform. 

Table 7.13: FDM solution for Example 7.6 at t=0.0005 

Ir 11 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 
t=0.0005 25.20 44.11 59.04 70.81 79.91 86.77 91.84 95.51 98.14 

Steady-state 32.39 54.29 69.21 79.44 86.50 91.39 94.79 97.17 98.83 

Consequently we expect our Laplace transform approach would recover 

the steady state since we would not use such very small values of time; 

therefore we report only the steady-state values. In Table 7.14 we show 

the FDM steady-state solution with our Laplace transform approximation 

and the percentage errors. For interest we also show those values reported 

by Toutip for his gradient dual reciprocity approach, using the radial basis 

function f=1+R, with 40 boundary nodes and 81 internal nodes. We see 

that our approximations compare very well with those reported by Toutip 

and with the FDM solutions. 
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Table 7.14: Steady state LT, FDM and Toutip approximations for Exam- 
ple 7.6 with k= 5e3r, together with percentage error 

r 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 
LT 33.57 55.97 70.84 80.73 87.83 92.76 95.78 97.84 99.77 

FDM 32.39 54.29 69.21 79.44 86.50 91.39 94.79 97.17 98.83 
Toutip 55.80 80.79 92.46 98.06 
% error 3.64 3.10 2.36 1.63 1.53 1.50 1.04 0.69 0.95 

Example 7.7 

All our examples so far in this chapter have been bounded in time, e. g. they 

contain boundary conditions which are negative exponential in time. To test 

our method on a problem whose solution is increasing in time we consider 

the following 

where 

V u=aät+h 

h=2t2-2x2t 

in the unit square with boundary and initial conditions as in Figure 7.18 

and we use a=1. 

V 

u= 

Y 

Figure 7.18: Boundary and initial conditions for Example 7.7 

In Laplace space the problem is defined as 

V2jj _ (A 
4 2X2 

- u0) + T3 - \2 
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with boundary conditions 

ü=Oonx=0, ýc= 3 onx=1 and 

q=0 ony=l andy=l 

The solution is shown in Figure 7.19 and we see that the approximation 

tracks the analytic solution, u= x2t2, very well. 

u( y, t) 
16r 

14 
-- LT approx. 

analytic 

12 

10 
(x, y) = (0.8,0.8) 

8 
(x, y) = (Q5, (15) 

6 
(x, y) _ (0.2,0.2) 

4 

2 

12345 

Figure 7.19: Time development of the solution for Example 7.7 

The numerical results for the internal values at nodes (0.2,0.2), (0.5,0.5), (0.8,0.8) 

together with the analytic values are shown in Table 7.15 and the percentage 

errors in Table 7.16. 

We see from Tables 7.15 and 7.16 that the solutions are very good, with 

maximum error less than three percent. 
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Table 7.15: Analytic and numerical solution for Example 7.7 

time analytic approx analytic approx analytic approx 
x=0.2 x=0.2 x=0.5 x=0.5 x=0.8 x=0.8 

0.5 0.010000 0.010171 0.062500 0.063035 0.160000 0.161266 
1.0 0.040000 0.040886 0.250000 0.252535 0.640000 0.645159 
1.5 0.090000 0.092085 0.562500 0.568471 1.440000 1.451893 
2.0 0.160000 0.163914 1.000000 1.011094 2.560000 2.582508 
2.5 0.250000 0.256187 1.562500 1.580294 4.000000 4.035404 
3.0 

1 

0.360000 0.369073 2.250000 2.275608 5.760000 5.809252 
3.5 0.490000 0.502280 3.062500 3.097056 7.840000 7.908508 
4.0 0.640000 0.656846 4.000000 4.044423 10.240000 10.324660 
4.5 0.810000 0.831822 5.062500 5.120780 12.960000 13.073050 
5.0 1.000000 1.025558 6.250000 6.322110 16.000000 16.141930 

Table 7.16: Percentage errors for Example 7.7 
time x=0.2 x=0.5 x=0.8 
0.5 1.71 0.86 0.08 
1.0 2.21 1.01 0.08 
1.5 2.32 1.06 0.08 
2.0 2.45 1.11 0.09 
2.5 2.47 1.14 0.09 
3.0 2.52 1.14 0.09 
3.5 2.51 1.13 0.09 
4. 22.63 1.11 0.08 
4.5 2.69 1.15 0.09 
5.0 2.56 1.15 0.09 

Example 7.8 

This example is modified from the Motz problem (Motz 1946) which is often 

used as a test for a new elliptic solution method as it has a singularity on 

the boundary. We seek the solution to the problem 

21 au 

a at 
The geometry and boundary conditions are defined as follows, see Fig- 

ure 7.20, 

u(x, y, t) = 500 on y=0 for 0<x<7, 
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V 

7 

9=' 00 

Y 

Figure 7.20: Boundary and initial conditions for Example 7.8 

q(x, y, t) =0 on y=0 for 7<x< 14 

u(x, y, t) = 1000 on x= 14, 

q(x, y, t)=0onx=Dandy=7 

and the initial condition is 

uo(x, y) =o 

Since uO =0 we could use the approach of Chapter 6. However we wish 

to use this problem, which has a geometric singularity at (7.0,0.0) and a 

known analytic solution in the region of the singularity, as a test of our use 

of the dual reciprocity method with the Laplace transform method. 

In Laplace space the boundary conditions are 

ü=500/A ony=0for0 <x <7 

q =0 on y= 0 for 7<x< 14 

ü= 1000/A on x= 14 

q=0onx=0 andy=7 

We discretise the boundary into 56 elements, including the singular point 

0 with 9 internal nodes, see Figure 7.21. 
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Figure 7.21: Boundary and internal nodes for Example 7.8 

We solve the problem using the augmented thin plate spline for the inter- 

polating function in the dual reciprocity and a=1. However following our 

investigation earlier when we considered a problem with a larger geometry, 

we scale the problem by a factor of 14 so that the problem domain becomes 

0<x<1,0 <y<0.5. 

We show the time development of our solution in Figure 7.22 for time 

values between 0 and 1. We see that the solutions for the internal nodes 

and the one boundary node follow smooth curves obtaining the steady-state 

values by the time t=0.4. 

In Figure 7.23 we show the approximate solutions along the boundary 

7<x< 14, y=0 at various time values and see once again that the steady 

state is reached in a small time frame. 

In Table 7.17 we compare our steady-state solution with those reported 

by Toutip, with the BETIS programme (Paris and Canas 1997) and Symm 

(1973). The symbol *** in the table means that there is no solution from 

that reference. Our results compare very favourably with those using other 

methods of solution. 

In the steady state the analytic solution in the neighbourhood of the 

singular point (7,0) in polar form is 

e 3e se 
u(r, 0) = ao + alr 2 cos 2+ a2r 2 cos 2+ air 2 cos 2+... (7.33) 
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Figure 7.22: Time development of the solution for Example 7.8 
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Figure 7.23: Space development of the solution for Example 7.8 

where ,r is the distance from (7,0) and 0 is measured counter-clockwise from 

the line y=0, x>7. Whiteman and Papamichael (1972) showed that the 

first two ai are given by 

ao = 500, al = 151.625 

We test the accuracy of our results near the point (7,0) to approximate the 
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Table 7.17: Steady state solution for FYimn1 7Q 
position from '0' +7.0 LT BETIS Symm Toutip 

0.1 545.5 544.0 *** 537.1 
0.2 565.3 565.3 *** 561.5 

0.35 589.1 588.4 *** 585.9 
0.5 607.4 607.0 608.9 605.1 

0.75 632.8 632.9 634.4 631.5 
1.0 655.2 655.2 656.5 654.1 
1.4 685.4 686.4 *** 685.7 
1.8 715.2 714.5 *** 713.9 
2.4 755.0 752.8 *** 752.6 
3.0 788.9 788.3 788.9 788.3 
4.0 844.7 844.0 844.4 844.4 
5.0 897.6 897.1 897.3 898.0 
6.0 950.5 948.8 948.9 951.3 

coefficients ao and al in equation (7.33) with those from the references. We 

refine the boundary mesh to take into account the additional values 

x=7.01,7.02,7.03,7.04,7.05,7.06 and 7.08 and obtain the results in 

Table 7.18. 

Table 7.18: Solutions for Example 7.8 for small values of r 
x-value 7.0+ approx 

0 499.949 
0.01 509.8669 
0.02 516.7933 
0.03 522.5395 
0.04 526.3172 
0.05 530.8447 
0.06 533.1944 
0.08 539.8089 
0.1 545.5303 

For small r we should have, along OB, u -- ao + alr 2. Applying the least 

squares method to fit the function to the data in Table 7.17 we obtain the 

coefficients 

ao = 497 and al = 148 

and these are in good agreement with the coefficients given previously. 
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7.4 Summary of Chapter 7 

In this chapter we have looked at a variety of problems to test the Laplace 

transform boundary element method using dual reciprocity for the non- 
homogeneity. We have shown that it behaves in a robust fashion and 

our results have been very satisfactory for boundary conditions which are 

monotonic in time. We have also shown that the method does not always 

work well for very small values of time and that for large geometries a suit- 

able scaling is necessary. Contrary to some authors' suggestions, we have 

not found it necessary to have the number of internal nodes greater than 

half the number of boundary nodes. 

We have used f=1+R and augmented thin plate splines for the radial 

basis functions in the dual reciprocity method and found that, when both 

bases are available for use, i. e. one without a au/äx or au/ay term, the 

augmented thin plate spline gives the better approximation. Future work 

will include modifying the present code to handle terms in Vu for aug- 

mented thin plate splines and also to consider other radial basis functions, 

particularly those which will accommodate the second derivative. 
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Chapter 8 

Problems with 

non-monotonic 

time-dependent boundary 

conditions 

8.1 Introduction 

In Chapter 7 we augmented the Laplace transform boundary element method 

with the additional scheme of the dual reciprocity method for the solution 

of linear Poisson-type problems and saw that when the boundary conditions 

are monotonic in time the process recovers good solutions. However, dif- 

ficulties can occur if the boundary conditions are not monotonic in time. 

Stehfest says "In the following, the term `smooth' is used to express that 

the rate of convergence is sufficiently great. An oscillating F(t) certainly is 

not smooth enough unless the wavelength of the oscillations is large". 

He also says that "No accurate results are expected, too, if F(t) has 

discontinuities near T. " 
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In Section 8.2 we shall consider problems with discontinuous bound- 

ary conditions and in Section 8.3 we shall consider problems with periodic 
boundary conditions. 

Consider again the initial boundary-value problem defined in the two- 
dimensional region, D, bounded by the closed curve C= Cl + C2 from 

Section 7.2: 

V 2U 
a at 

in D (8.1) 

subject to the boundary conditions 

u= ul (x, y, t) on Cl (8.2) 

qn= q2 (x) y, t) on C2 (8.3) 

and the initial condition 

ý(x, y, 0) = uo(x, y) (8.4) 

We define the Laplace transform in the usual way so that the initial 

boundary-value problem becomes 

V u=-(Au-uo) inD (8.5) 

subject to 

u= ü1 on Cl (8.6) 

q= q2 on C2 (8.7) 

8.2 Problems with discontinuous boundary condi- 

tions 

Suppose that the time-dependent boundary conditions, equations (8.2) and 

(8.3) are discontinuous at t=Te. g. (Crann and Davies 2004a) 

1,1(x, y, t) 0< t<T 
ýi (ý, yý t) _ (8.8) 

Ul, 2(X) y, t) t>T 
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g2(Xiy, t) = 
g2,1(x, y, t) 0<t <T 

4'2,2 (x, y, t) t>T 
(8.9) 

We apply the Laplace transform piecewise in time and seek solutions 

um (x, y, t) 

U(2) (x, y, t) 

0< t<T 

t>T 

by solving as follows: 

172U(l) =1 
au(') 

a at inD, O<t<T 

subject to the boundary conditions 

u(l) = ui, l (x, y, t) on Cl and q21) = q2,1 (X, y, t) on C2 

and the initial condition 

uo (x, ýJ) 

(8.10) 

We now use u(l) (x, y, T) as the initial value to find the solution for t>T: 

We transform the time variable, t -* t-T 

2 (2) OU(2) 

ua at 
in D, t>0 

subject to the boundary conditions 

u12) = 261,2 (X, y) t) on Cl and 4'22) = 4'2,2 (x, y) t) on C2 

and the initial condition 

U(2) (x, y, 0) = u(l) (x, y, T) 

Example 8.1 

The problem in this example is the partial differential equation (8.1) defined 

in the unit square {(x, y): 0<x<1,0<y<1}. 
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The boundary conditions are defined as follows, see Figure 8.1: 

u(0, y, t) = 10 

q(x, O, t) = q(x, 1, t) =0 

u(1, y, t) = 20 + 1OH(t - 1) 
J20 0< t<1 

30 t>1 

where H(t - 1) is the Heaviside unit step function and the initial condition 
is 

uo(x, y) = 20 

v 

11= +1OH(f-i) 

x 

Figure 8.1: Boundary and initial conditions for Example 8.1 

We solve the problem with a=1.0 and use N= 32 boundary points 

and L=9 internal points. Also, in the dual reciprocity method, we use 

augmented thin plate splines for the basis functions in equation (7.11). For 

the numerical Laplace transform we use the Stehfest parameter value M=8. 

We first solve the problem using a single application of the Laplace trans- 

form. We refer to this solution as the Full LT solution. The boundary 

conditions transform to 

Ä 
9ýx, 0; A) = q(x, 1; A) =0 
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u(1, y; A) 
20 10 

_+e 

The solution is shown in Figure 8.2. 

u(X, (15, t) 

26 r 

24ý 

22 

V-ýx= 

18 
Re 

O 

18 0-OeoeO- O- ße -e 

16- x=0.5 

14 x=0.2 

120 
0.5 1 1.5 2t 

Figure 8.2: Full Laplace transform solution for 0<t<2 in Example 8.1 

We see that the approximate solutions at the three x-values are smooth 

and the effect of the discontinuity has been lost. This is as predicted by 

Stehfest. 

We now solve the problem using the piecewise application of the Laplace 

transform and use our experience from the ordinary differential problem 

in Section 5.4. We refer to this as the Step LT solution. The boundary 

conditions transform to 

ü(0, y; A) = 10/A 

4(x, 0; A) = q(x, 1; A) =0 
20 

0< t<1 
y; A) = 30 

A 
t>1 

The solution is shown in Figure 8.3. 
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(x, (1 5, t) 
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-ý 24- 

v( 
22- 

x 0.8 
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201 laý7 o .ýV Iv -v 

, o---- 118- 
ber 

16 x=0.5 

x=0.2 14 

120 
0.5 1 1.5 2 

Figure 8.3: Step Laplace transform solution for 0<t<2 in Example 8.1 

We see now the effect of the discontinuity at t=1.0 for all values of x. In 

both cases, Full and Step, the Laplace transform approach yields a relatively 

poor solution for small values of the time variable as we have already seen. 

This is a common problem associated with the numerical Laplace transform 

approach. However for values of t away from t=0 the solution is in general 

very accurate. We notice from Figures 8.2 and 8.3 that the two approaches 

differ significantly in the region of t=1, i. e. in the neighbourhood of 

the discontinuity. In order to investigate this behaviour we compare the 

results with an accurate explicit finite difference solution with Ox = 0.1 and 

At = 0.01. In Figure 8.4 we compare the two Laplace transform approaches 

with the finite difference solution for the two cases x=0.2 and x=0.8. 

We now see that the Step LT solution tracks the FDM solution very 

well. It is obvious that the Full LT solution has been smoothed out and the 

approximation is not reasonable until t is approximately 2. 
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u("- 0.5, t) 
26r 

-*- Full LT 
o Step LT 

FDM 

Figure 8.4: Comparison of the two Laplace transform solutions with the 
finite difference solution in Example 8.1 

Example 8.2 

This example is a similar problem with a discontinuous boundary condition 

but in a different geometry. 

Vu 
aat 

inD (8.11) 

u(x, y, t) =0 on the negative-x quadrant 

and 
u(x, y, t) =1+H(t-1) 

1 0< t<1 

2 t> 1 

where H(t - 1) is the Heaviside unit step function and the initial condition 

is 

uo(X, y) =0 

The partial differential equation (8.1) is defined in a circle, radius 1.0, 

although due to the symmetry of the problem we can work in the upper 

half-plane, see Figure 8.5. 
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Figure 8.5: Boundary and initial conditions for Example 8.2 

We solve the problem using the Step, piecewise, Laplace transform. The 

boundary conditions transform to 

q(x, 0; A) =0 

ic(x, y; A) =0 on the negative-x quadrant 
1 

0< t<1 
u(1, y; A) =2 on the positive-x quadrant 

3 t>1 

The solution for five internal nodes over time is shown in Figure 8.6. 

We can see that the solution is as we would expect with the discontinuity 

at t=1.0 being very obvious. The solutions at the five nodes reach their 

first, local, steady-state values by about t=0.5 and then at t=1 take the 

step and are near to their full steady-state values after a further time of 0.5. 

For the solution at (-0.65,0.65), being so near to the left-hand quadrant, 

the approximation is dominated by the boundary values on the left-hand 

quadrant and the step at t=1 is barely noticeable, while at the internal 

node (0.65,0.65) the solution quickly approaches its steady state, a value 

close to 1. It then jumps dramatically, approaching its steady state solution 

very quickly. The other three values show an intermediate behaviour as we 

would expect. 
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u(- y, t) 
2 

7V VevVV VVV V-V9v 
1.8 (x y) = (0.65,0.65) 
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1.4 iQ 
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3 

Figure 8.6: Time development of the solution for Example 8.2 for five points 
in the time period 0.1, ..., 3.0 

In Figure 8.7 we see the space discretisation of the solution. It clearly 

shows how the values along the radius r at 0 =, 7r/4 approach the local then 

global steady-state values. 

u(r, t) 
2 - 

1.8 - 

1.6 - 

1.4 - t =2.2 

1.2 cfi - 
ýt=1.4 

1 
t=L1 - 

e 
ýr 

- _o- -v 0.8 - _. -o- ' ' 

:: : 

- . 
tß. 2 

0.2 
0 0.2 0.4 0.6 0.8 1 

Figure 8.7: Space distribution of the solution for Example 8.2 for five time 
values for r at 0= irl4 
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Example 8.3 

This example is again a Step problem but with a discontinuity in the prob- 

lem, not the boundary condition. We seek the solution to the problem 

V2 u= 
ä 

-100H(t-1) 

where H(t-1) is the Heaviside unit step function. For this problem a=0.1. 

The geometry and boundary conditions are defined as follows, see Figure 8.8, 

u(x, y, t)=0onX=0 

u(x, y, t) =2 on x=1 

q(x, y, t)=0ony=Dandy=1 

and the initial condition is 

uo(x, y) =0 

h 

1f=0 

x 

Figure 8.8: Boundary and initial conditions for Example 8.3 

For the Step solution process the problem in Laplace space is 

10 t<1 
v2ýc =a ýýu - u0ý 

ioo t>1 

where the initial condition, uo for t>1 are the values of ü at t=1. 

The boundary conditions are 

ii =0onx=0 
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2 
ü= - onx=1 

q=0 on Y=O andy=1 

We solve the problem using the Step Laplace transform method, using 

the augmented thin plate spline for the interpolating function in the dual 

reciprocity. We can see the solution in Figure 8.9 for time values between 0 

and 2. The discontinuity is very clear to see between t=0.9 and t=1. 

tay, t) 12 r 
(y) _ (Q5,0.5) 

- 
10 

(x, y) = (18, a8) 

8 a-cr 

6 II A 

Ij4- (xy)=(0. Za2) 
4 !i 

Ii 
ýi 

2 fi 

.e 
-0 -O-O-o-o-ý 

- 
0 0.5 1 1.5 2 

Figure 8.9: Time development of the Step LT solution for Example 8.3 

In Figure 8.10 we see the solution of the x-values along the line y=0.5 

for t=0.1,0.9,1.1 and 2. We can see the sudden jump after t=0.9 and 

the curve is near to its maximum value of 13.3 for x=0.5, the steady-state 

value, by t=2. 
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Figure 8.10: Space development of the Step LT solution for Example 8.3 for 
the internal nodes along the line y=0.5 

8.3 Problems with periodic boundary conditions 

Parabolic problems in the time variable cannot produce time periodic solu- 

tions unless the data is itself periodic in time. The solution in such cases has 

the same period as the data. Consequently we know in advance the regions 

in which the solution is monotonic and we can apply the Laplace transform 

in a piecewise manner. 

Suppose we have time-dependent boundary conditions, equations (8.2) 

and (8.3) which are periodic (Crann and Davies 2004b) 

ui(x, y, t+T) =ui(x, y, t) 

and 

q2 (x, y, t+ T) = q2 (x, y, t) 

We apply the Laplace transform piecewise in time and seek solutions, 0) (x, y), 

in the intervals ti <t< ti + 4T, i=0,1,2,... with to =0 as follows: 

We solve 

=1 
au(i) 

ý2U(2) 
a at + h(x, y, t) in D, ti <t< 4T 
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subject to the boundary conditions 

uý2ý = ul (x, y, t) on Cl 

Rý2ý = 4'2 X3 y, t) on C2 

and the initial condition 

u(Z) (x, y, 0) = u(z-i) (x, y, ti-i + IT ) 

We effect the Laplace transform solution by making the change of variable 

t -+ ti + t' and so the problem is now defined on 0< t' < 4T. 
The following three examples are again defined in the unit square 

{(x, y) :0<x<1,0 <y< 1} using N= 32 boundary points and L=9 

internal points. Also, as in the previous section, we use augmented thin 

plate splines in the dual reciprocity method. For the numerical Laplace 

transform we again use the Stehfest parameter value M=8. 

Example 8.4 

This Dirichlet problem is defined as follows, see Figure 8.11, 

V 

U= y(l-y)sint 

x 

Figure 8.11: Boundary and initial conditions for Example 8.4 

ý2 u(2) =ai 
au(i) 

at + h(x, y, t) in D, ti<t< 4T 
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a=1.0 and with the non-homogeneous term given by 

h(x, y, t) = -2x sint - xy(1 - y) cos t 

subject to the boundary conditions 

u(o) y, t) = u(x) 0, t) = u(x, 1, t) =1 

Y, t) = 1+y(1 - y)sint 

and the initial condition 

u(x, y, 0) =1 

We see that the boundary conditions have period 27r. 

The analytic solution is 

u(x, y, 0) =1+ xy(1 - y) sin t 

In Figure 8.12 we show the solution over the period 0<t< 27r. 

t(a25,0.25, t) 1.06 

1.04 

1.02 

1 

0.98- 

0.96- 

0.94 
0246 

- Full LT 
analytic 

J 

8 

Figure 8.12: Time development at (0.25,0.25) using the Full LT solution for 
Example 8.4 

We notice that, in the first quarter period, the approximation tracks the 

analytic solution very well but very quickly fails to pick up the oscillatory 

effect of the solution, as suggested by Stehfest. 
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In Figure 8.13 we show the Step LT time development of the approximate 

solution and the analytic solution at the point (0.25,0.25) plotted over the 

interval 0<t<2 with time steps as described in Section 8.3. 

We notice that the approximate solution tracks the analytic solution 

very well. The largest errors are found for values of t close to t=2 it and 

t=2 7r and these errors are less that one percent. We also notice that the 

approximate solution is clearly exhibiting the correct periodic behaviour, 

tracking the analytic solution very well in the second period. Clearly, we 

can now predict approximate future values using the periodicity relationship 

Ur (t) = Ur (t - 2nir) when 2nir <t< (2n + 1) 7r. 

t(o. 25,0. t) 1.06 

1.04 

1.02 

1ý 

0.98 

0.96 

0.94 
0246 

-- Step LT 
analytic 

J 

8 

Figure 8.13: Time development at (0.25,0.25) using the Step LT solution for 
Example 8.4 

In the next example we consider a similar problem but with periodic 

conditions on two boundaries. 

Example 8.5 

The problem is defined as follows, see Figure 8.14: 

=1 
au(i) 

02u(Z) 
a at + h(x, y, t) in D, ti <t< 4T 
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a=1.0 and with the non-homogeneous term given by 

h(x, y, t) = -2y cos art - 2x sin art 

subject to the boundary conditions 

and the initial condition 

u(0, y, t) = u(x, 0, t) =0 

u(1, y, t) = y(1 - y) sin7rt 

u(x, 1, t) = x(1 - x) cos 7rt 

u(x, y, 0) = xy(1 - x) 

We see that this time the boundary conditions have period 2. 

v 

1 
U=x(1-x)coszt 

U=0 
( 11(1=xy(1-x) I ii=y(1-y)sinV 

u=O 1 
x 

Figure 8.14: Boundary and initial conditions for Example 8.5 

The analytic solution is 

u (x, y, 0) = xy(1 - y) sin 7rt + xy (1 - x)cosin 

In Figure 8.15 we show the time development of the approximate solution 

and the analytic solution at the point (0.25,0.25) over the interval 0<t<4. 

Once again the approximate solution tracks the analytic solution very 

well and we can predict approximate future values for t in periods 

[2n, 2(n + 1)]. 
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4(125, (125, t) 
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0.06 
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0- 

-0.02- 

-0.04- 

-0.06- 

-0 . 080 

-- Step LT 
analytic 

Figure 8.15: Time development of the solution at (0.25,0.25) for Example 
8.5 

Example 8.6 

The previous two examples do not exhibit a transient term, the initial and 

boundary conditions are such that the systems are configured in the steady 

state at time t=0. In the following example we consider a problem whose 

solution exhibits a transient term. 

In this problem a=0.2 and the non-homogeneous term is given by 

h(x, y, t) = --x cos(irt) 

The boundary conditions are given by, see Figure 8.16, 

u(O, y, t) =0 

q(ý, 0, t) = (x, 1, t) =0 

u(1, y, t) = sin7rt 

and the initial condition is 

it (x, y, 0) = sinirx 
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V 

u= litt 

Y 

Figure 8.16: Boundary and initial conditions for Example 8.6 

We see that the boundary conditions have period 2. 

The analytic solution is given by 

u(x, y, t) = exp(-a7r2t) sin 71X +x sin 71t 

In Figure 8.17 we show the time development of the approximate solution 

and the analytic solution at the point (0.25,0.25) plotted over 32 periods, 

i. e. over the interval 0<t<7. 

t(o. 25, OL 25, t) 
0.7 

-- Step LT 
0.6 analytic 

0.5- 

0.4- 

0.3- 

0.2- 

0.1 

0- 

-0.2- 

Figure 8.17: Time development of the solution at (0.25,0.25) for Example 
8.6 

We notice that the solution tracks the transient part very well and is in 
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good general agreement with the steady-state term. The numerical solution, 

see Table 8.1, suggests that the transient term has disappeared by t=3. In 

fact, in the analytic solution, the transient term has a magnitude of the order 

of 0.002 at t=3, i. e. smaller than the amplitude of the steady-state term, 

by a factor of about 100. The largest errors are at the points corresponding 

to maximum values of Jul and these predict the steady-state amplitude to 

have an error of the order of approximately ten percent. 

Table 8.1: Numerical solution of Example 8.6 for the internal node 
(0.25,0.25) 

time steady-state 
term 

transient 
term 

analytic 
solution 

approximate 
solution 

0.5 0.250000 0.263544 0.513544 0.540789 
1.0 0.000000 0.098225 0.098225 0.092984 
1.5 -0.250000 0.036609 -0.213391 -0.236448 
2.0 0.000000 0.013645 0.013645 0.025528 
2.5 0.250000 0.005085 0.255085 0.282563 
3.0 0.000000 0.001895 0.001895 -0.007991 
3.5 -0.250000 0.000706 -0.249294 -0.275734 
4.0 0.000000 0.000263 0.000263 0.011239 
4.5 0.250000 0.000098 0.250098 0.276545 
5.0 0.000000 0.000037 0.000037 -0.009184 
5.5 -0.250000 0.000014 -0.249986 -0.276623 
6.0 0.000000 0.000005 0.000005 0.010428 
6.5 0.250000 0.000002 0.250002 0.276037 
7.0 0.000000 0.000001 0.000001 -0.009111 

8.4 Summary of Chapter 8 

In this chapter we have shown that the Laplace transform boundary element 

method offers an excellent approach to the solution process for diffusion-type 

problems with discontinuous or periodic boundary conditions. 

In the former case the Laplace transform cannot be applied directly since 

the approach smooths the condition in the neighbourhood of the discontinu- 

ity. We can overcome this problem by applying the Laplace transform in a 
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piecewise manner, developing the solution up to and including the disconti- 

nuity then using this solution as the initial value for a Laplace solution after 

the discontinuity. 

If the solution is oscillatory in time we can apply the process in a piece- 

wise manner in regions of width 4T, where the period is T. An interesting 

observation is that we must use the process in a piecewise manner of inter- 

vals of width one-quarter period. We might expect that we should need only 

consider intervals of width one-half period. However our numerical experi- 

ments show that this is not the case and future work will be undertaken to 

explain this phenomenon. 
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Chapter 9 

The solution of non-linear 

initial boundary-value 

problems 

9.1 Introduction 

In Chapter 6 we introduced the Laplace transform boundary element method 

for the solution of parabolic problems, showing that they can be solved easily 

and accurately by a variety of methods when using the Laplace transform for 

the time variable. In Chapter 7 we showed that this method when combined 

with the dual reciprocity method is an excellent method for the solution of 

time-dependent linear Poisson-type problems. In this section we consider 

non-linear Poisson-type problems. 

The Laplace transform is a linear operator so we are not able to apply it 

directly to a non-linear equation. We develop an iterative process in which 

the equation is linearised in such a way that the Laplace transform can be 

used at each iterative step. The iteration proceeds until the change in the 

solution is within some predetermined tolerance. We illustrate the process 
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in the examples that follow. 

The non-linear problems we shall consider in this chapter are of the form 

172u -+ a(u) + b(u) 
au 

+ c(u) 
au 

+ h(x, y, t) 
a (u) at 

9.2 Non-linear Poisson-type problems 

Example 9.1 

We consider the following problem defined in the unit square 

0<x<1,0<y<1}, see Figure 9-1: 

V u= +u2+h (9.1) 
a at 

with 

h= (2 + x2)e-t - x4e-2t 

V 

11= 

X 

Figure 9.1: Boundary and initial conditions for Example 9.1 

The boundary conditions are defined as follows: 

u(1, y, t) = e-t 

q(ý, 0, t) = q(x, 1, t) =0 

u(0, y, t) =0 
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with initial condition 
2 u(x)y, 0) = uo =x 

The analytic solution is 

x2e-t 

We attempt to transform the problem to Laplace space as before: 
24 

However, the non-linear term cannot be transformed as it stands. We need 

to linearise the u2 term and we do this with each of the three following 

methods: 

1. Direct iteration We use direct iteration by putting the previous nu- 

merical results for u into the next iteration, so that equation (9.1) 

becomes 

aum ý2ým 
a at + um . -i 

+ (2 + x2ýe-t - x4e-2t m=1,2, ... 

so that in Laplace space the equation is transformed to 

21 um _1 
(2 + x2) x4 O 2ým= ý(ýüm-2ý0)+ -+ 1+Ä 2+A 

We start the process with the first approximation equal to the initial 

condition then solve the equation in Laplace space until we reach the 

required convergence and invert as usual. 

2. Semi-direct iteration We follow Zhu (1999) and use a semi-direct 

iteration method by linearising any un term to a (um_1)n-'Um so that 

equation (9.1) becomes 

l+ um-, um + (2 + x2)e-t _ x4e-2t m=1,2, ... 172uß'` 
1a äu 

and in Laplace space this is transformed to 

21 D Üm = 
(iý2L 

- no) + U", -j6 Üm + 
(2 + X2) X4 

a1+A2+_ 

and we can solve the problem as before. 
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3. Taylor expansion iteration Zhu (1999) also suggests using a first 

order Taylor expansion in the form 

.f 
(um)_ 

.f 
(um-1)+ f'(um-l)(um - um-1) m= 1,2, 

... 

which gives the following linearisation for equation (9.1) 

2 
1lýum 

2 Our, -,, =1U+ um-1 + Zum-1 (um - um-1) + (2 + x2)e-t _ x4e-2t 
a at 

_1aum a at 
+ Zum-lum - UM-1 + (2 + X2)e-t _ x4e-2t 

and the transformation in Laplace space becomes 

2 um -1 
(2 + x2) x4 O 2ým = 

a 
(A2lm, - up) + 2um-1Üm --+1+2+A 

In all three cases we stop the iteration when the predetermined tolerance, 

E, is satisfied 
max(abs(um-1 - um)) 

max(abs(um-1 + Um)) 
<E 

We use 32 boundary and 9 internal nodes, M=8 for the Stehfest in- 

version parameter and the augmented thin plate spline for the radial basis 

function in the dual reciprocity method. We choose E=0.001 for the lin- 

earisation and consider times t=0.1,0.2,.. ., 2.0. In Figure 9.2 we show 

the three approximations together with the analytic solution at the internal 

node (0.2,0.2) for the problem in Example 9.1. 

We see that all three iteration methods are in good agreement with the 

analytic solution. 

In Table 9.1 we show the percentage errors for the three methods from 

the analytic solution. We see that the Taylor iteration method gives the 

best results and where appropriate we would use this method. However the 

results for all three methods are sufficiently good for practical purposes, so 

we can use any method with confidence. 
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u(¬ 2,0.2, t) 

0 

0 

0 

-*- direct 
o semi-direct 

-A- Taylor 
analytic 

t 

Figure 9.2: Time development of the solution for Example 9.1 

Table 9.1: Percentage errors for the three methods for Example 9.1 
Time Direct Semi-direct Taylor 

0.1 0.09 1.21 0.14 
0.2 0.64 3.73 0.13 
0.3 4.44 2.53 0.21 
0.4 4.23 2.94 0.29 
0.5 3.47 3.88 0.07 
0.6 3.89 3.41 0.17 
0.7 4.93 1.67 0.36 
0.8 4.20 2.81 0.10 
0.9 2.76 3.12 0.10 
1.0 2.39 1.26 0.22 
1.1 1.78 0.78 0.20 
1.2 2.91 1.16 0.04 
1.3 1.57 2.13 0.11 
1.4 2.55 2.25 0.04 
1.5 4.64 4.73 0.17 
1.6 1.11 0.62 0.11 
1.7 0.46 0.07 0.04 
1.8 3.49 1.60 0.29 
1.9 3.03 2.90 0.42 
2.0 0.32 2.71 0.18 
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Example 9.2 

This example has the same geometry, see Figure 9.1 and analytic solution 

u= x2e-t as Example 9.1 but with a au/äx term as follows: 

°2u = ät +u äx +h (9.2) 

with 

h= (2 + x2)e-t - 2x3e-2t 

We can do a direct linearisation on equation (9.2) in two different ways. We 

can linearise the u term as follows: 

au au 02 Um = at + Um-1 ax + (2 + x2)e-t - 2xse-2t 

so that in Laplace space we have 

2 öÜm (2 + x2) 2x3 O 26m = (A 
m- 2G0) + Um-1 

öx +1 
+A 2+_ 

and use the radial basis function f=1+R. 

Alternatively we can linearise the au/äx term 

__ 
Oum au v2U 

at + Um ax 
1+ (2 + x2)e-t - 2xse-2t 

so that in Laplace space we have 

22G 
OUm-1 (2 + x2) 2x3 

Dm- ýiý26m 
- 26pý -I- Um ax 

+1+A2+ 

and use the augmented thin plate spline in the dual reciprocity approach. 

We solve the problem as before and consider the solution at the three 

internal points (0.2,0.2), (0.5,0.5), (0.8,0.8), see Figure 9.3 for both iteration 

approaches. We see that both approaches show very good agreement to the 

analytic solution and approach the steady-state solution correctly. 

We show in Tables 9.2,9.3 and 9.4 the numerical solutions for the two ap- 

proaches in Example 9.2. For both approaches the smaller time values show 
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u(a y, t) 
0.7- 

0.5- 

0.4 

y) 
0.3 

(X, y) = (0.5, (15) 

0.2 A 

(X, y)_(0.90. 
0. i 

0 0 0.5 1 1.5 2 2.5 

-- LT approx. (a) 
LT approx. (b) 
analytic 

3V 

Figure 9.3: Time development of the solution for Example 9.2 (a) u linear, 
(b) äu/äx linear 

the largest errors and the first approach, linearising the u term has max- 

imum error of eight percent. The second approach, linearising the äu/ax 

term, is slightly less accurate even though it uses the augmented thin plate 

spline. 
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Table 9.2: Numerical solution and percentage errors for the two iterative 
approaches for Example 9.2 for the node (0.2,0.2) 

time 
solution 
analytic 

solution 
u linear 

solution 
au/ax linear 

errors 
u linear 

errors 
Sul i9x linear 

0.2 0.032749 0.034490 0.039071 5.32 19.30 
0.4 0.026813 0.028335 0.032381 5.68 20.77 
0.6 0.021952 0.023637 0.026007 7.67 18.47 
0.8 0.017973 0.019317 0.020729 7.48 15.33 
1.0 0.014715 0.015429 0.017098 4.85 16.19 
1.2 0.012048 0.012742 0.013395 5.76 11.18 
1.4 0.009864 0.010337 0.010805 4.80 9.54 
1.6 0.008076 0.008301 0.008593 2.79 6.40 
1.8 0.006612 0.006940 0.007009 4.96 6.00 
2.0 0.005413 0.005683 0.005785 4.98 6.86 

Table 9.3: Numerical solution and percentage errors for the two iterative 
approaches for Example 9.2 for the node (0.5,0.5) 

time 
solution 
analytic 

solution 
u linear 

solution 
au/äx linear 

errors 
u linear 

errors 
äu/äx linear 

0.2 0.204683 0.209050 0.224503 2.13 8.83 
0.4 0.167580 0.170873 0.184066 1.97 8.96 
0.6 0.137203 0.139974 0.148334 2.02 7.50 
0.8 0.112332 0.113768 0.119867 1.28 6.29 
1.0 0.091970 0.093526 0.097139 1.69 5.32 
1.2 0.075299 0.076161 0.078781 1.15 4.42 
1.4 0.061649 0.062231 0.064045 0.94 3.74 
1.6 0.050474 0.051419 0.052223 1.87 3.35 
1.8 0.041325 0.041857 0.042345 1.29 2.41 
2.0 0.033834 0.034765 0.035577 2.75 4.90 

Example 9.3 

We now consider a problem with a different non-linear term, e-'. The 

geometry and analytic solution are as in Examples 9.1 and 9.2. The problem 

is stated as follows: 

V2 u= 
9 

+e-"+h (9.3) 

with 

h= (2 + x2)e-t - exp(-x2 e-t) 

156 



Table 9.4: Numerical solution and percentage errors for the two iterative 
approaches for Example 9.2 for the node (0.8,0.8) 

time 
solution 
analytic 

solution 
u linear 

solution 
8u/äxlinear 

errors 
u linear 

errors 
öu/äxlinear 

0.2 0.523988 0.528426 0.551200 0.85 4.94 
0.4 0.429005 0.432554 0.449832 0.83 4.63 
0.6 0.351239 0.355285 0.364780 1.15 3.71 
0.8 0.287571 0.290422 0.296735 0.99 3.09 
1.0 0.235443 0.237568 0.239403 0.90 1.65 
1.2 0.192764 0.193683 0.198082 0.48 2.68 
1.4 0.157822 0.159482 0.160290 1.05 1.54 
1.6 0.129214 0.131251 0.131059 1.58 1.41 
1.8 0.105791 0.106295 0.107511 0.48 1.60 
2.0 0.086615 0.088230 0.089285 1.87 2.99 

We use direct linearisation to give 

p2'Um = 
at 

+ e-um-1 + (2 + x2)e-t - exp(-x2e-t) (9.4) 

However, when we take the Laplace transform we have a problem with the 

exp(-x2e-t) term so we use our experience from Section 5.3.3 and develop 

the Maclaurin series expansion for the exponential as follows: 

x4e-2t xse-3t x8e-4t 
exp(-x2e-t) =1- x2e-t + 

2! - 3! 
+ 

4! 

and we are able to take the Laplace transform of equation (9.4), stopping 

the exponential expansion after the fifth term. 

2 
ättm e-um-1 (2 + x2) 

_ 0 tim = at + iý +1+A 

1 x2 x4 x6 x8 

1+A + 2! (2 +A) 3! (3+A) + 4! (4+A) 

We solve the problem with f=1+R for the radial basis function in the 

dual reciprocity formulation, a tolerance of 0.001 in the iteration process and 

compare our approximation with the analytic solution for t=0.1... , 
3.0, 

see Figure 9.4. 

Once again, the analytic and approximate solutions in the graph are 

indistinguishable and we look at the numerical results in Table 9.5 and we 
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u(x, Y, t) 
0.7 

0.6- 

0.5- 

0.4- 
(X, y) = (G8,0.8) 

0.3 

y) = (Q5,0.5) 

0.2- 

(4 y)=(0.2,0. ' 
0.1 

0 0.5 1 1.5 2 2.5 

-- LT approx 
analytic 

3v 

Figure 9.4: Time development of the solution for Example 9.3 

see that the approximate solutions compare with the analytic values very 

well as before. 

Table 9.5: Numerical solution for Example 9.3 

Time (0.2,0.2) 

analytic 

(0.2,0.2) 

approx 

(0.5,0.5) 

analytic 

(0.5,0.5) 

approx 

(0.8,0.8) 

analytic 

(0.8,0.8) 

approx 
0.20 0.0327 0.0326 0.2047 0.2041 0.5240 0.5252 
0.40 0.0268 0.0263 0.1676 0.1673 0.4290 0.4299 
0.60 0.0220 0.0214 0.1372 0.1365 0.3512 0.3511 
0.80 0.0180 0.0176 0.1123 0.1115 0.2876 0.2878 
1.00 0.0147 0.0143 0.0920 0.0913 0.2354 0.2363 
1.20 0.0120 0.0115 0.0753 0.0748 0.1928 0.1921 
1.40 0.0099 0.0094 0.0616 0.0610 0.1578 0.1571 
1.60 0.0081 0.0078 0.0505 0.0498 0.1292 0.1286 
1.80 0.0066 0.0063 0.0413 0.0416 0.1058 0.1065 
2.00 0.0054 0.0053 0.0338 0.0339 0.0866 0.0881 

However, of more interest, perhaps, are the percentage errors for the 

three internal nodes as shown in Table 9.6 together with the number of 

iterations needed for the iterative process of linearisation. 

We see that the maximum percentage errors are five percent for the 
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Table 9.6: Percentage errors for Example 9.3 with number of iterations 
time 11 (0.2,0.2) (0.5,0.5) (0.8,0.8) 11 iterations 
0.2 0.54 0.29 0.24 5 
0.4 2.06 0.17 0.21 4 
0.6 2.50 0.48 0.04 4 
0.8 2.18 0.75 0.08 3 
1.0 2.97 0.77 0.35 5 
1.2 4.52 0.61 0.32 7 
1.4 4.92 1.04 0.46 6 
1.6 3.12 1.41 0.44 4 
1.8 5.22 0.62 0.67 5 
2.0 2.58 0.17 1.73 5 

internal node (0.2,0.2) and mostly less than one percent for the other two 

nodes. The average number of iterations needed for the linearisation process 

is 5 iterations. These are very promising results; we are using the basic direct 

iteration method, a simple radial basis function of f=1+R, an additional 

approximation for the exponential term and we get good results. There is 

plenty of scope for the further investigation of more complicated problems 

using more accurate methods. 
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Example 9.4 

Consider the transient heat problem defined by the partial differential equa- 

tion given by 

17. (k(u)Vu) = 
ýt(pcu) 

(9.5) 

Writing 

V. (k(u)Vu) = k(u)V2u + Vk. Vu 

and taking p and c to be 1, we have 

Now 

-Vk. Vu 
I( au 

, 72u -ku at 

Ok = 
dVu u 

therefore 
I( ou 

v2U _u ät - kF(u)1Vu12 (9.6) 

We linearise equation (9.6) 

V2Um =1 

a_ 

-l' 
(Um-1) I Dunn, 

-1 
I2 (9.7) 

k(um-1) at 

so that we can take the Laplace transform to obtain 

1 k' (um-1) IV um-112 
O22Um = k(um-1) . \2m - up -A (9.8) 

Chen and Lin (1991) describe a transient heat conduction problem in a 

one-dimensional slab with 

V. (k(u)Vu) = 
au (9.9) 

and 

k(u)=1+ßu 

subject to boundary conditions 

=1 onx=1 
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q=0onx=0, y=0, y=1 

and initial condition 

UO =0 

We consider the same problem posed in two dimensions for which the solu- 

tion is independent of y, see Figure 9.5. 

V 

9= 

x 

Figure 9.5: Boundary and initial conditions for Example 9.4 

Chen and Lin choose 0= -0.3 and use the Laplace transform with the 

FDM to solve the elliptic equation with eleven x-values, x=0,0.1... , 1.0 

and invert back from Laplace space using a complex numerical inversion 

process. We use eleven nodes on each of the boundaries y=0 and y=1, 

f=1+R for the dual reciprocity interpolating function, and find the 

solution at the nodes along y=0.5. 

Our solutions are shown in Figure 9.6 with those reported by Chen and 

Lin for t=0.2 and t=1.0. Our numerical values are shown in Tables 9.7. 

We see that our solutions are comparable with the approximations re- 

ported by Chen and Lin and we conclude that our process is a suitable 

approach for non-linear heat conduction problems. 
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0.5, t) 

-*- LT-BEM 

-o- Chen & Lin 

Figure 9.6: Space solution for Example 9.4 at t=0.2 and t=1.0 

Table 9.7: Numerical solution for Example 9.4 at t=0.2 and t=1.0 
LTBEM 

approx 

Chen & Lin 

approx 

LTBEM 

approx 

Chen & Lin 

approx 
x t=0.2 t=0.2 t=1.0 t=1.0 

0.0 0.1618 0.1823 0.7978 0.8329 
0.1 0.1706 0.1901 0.7994 0.8349 
0.2 0.1954 0.2134 0.8070 0.8408 
0.3 0.2370 0.2527 0.8191 0.8507 
0.4 0.2966 0.3084 0.8350 0.8644 
0.5 0.3736 0.3810 0.8556 0.8809 
0.6 0.4678 0.4710 0.8796 0.9007 
0.7 0.5787 0.5784 0.9044 0.9231 
0.8 0.7061 0.7032 0.9363 0.9474 
0.9 0.8473 0.8444 0.9676 0.9733 
1.0 1.0000 1.0000 1.0000 1.0000 

9.3 A coupled non-linear problem 

There are many situations in applied science and engineering where materi- 

als are heated electrically via the ohmic heating, or Joule heating, process. 

In this process the heating occurs throughout the volume as compared with 

surface heating in conventional processes. The technique is frequently used 

as a method of food sterilisation in the food processing industry. It is im- 

portant to know both that the food material itself is not degraded and that 
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the temperatures reached are sufficient to kill bacteria. These problems ex- 
hibit significant non-linearities since, for food materials, the electrical and 
thermal properties are dependent on the temperature. When this happens 

the resulting model of the ohmic heating process comprises a pair of coupled 

non-linear partial differential equations. 

Problems of heat generation with coupled non-linear partial differential 

equations have been solved using a finite difference approach by Please et 

al. (1995) and a finite element solution is described by de Alwis and Fryer 

(1990) and Elliot and Larsson (1995). We shall use the Laplace transform 

boundary element with dual reciprocity and linearisation as described in the 

previous section (Crann et al. 2005). 

We shall consider problems in a two-dimensional region, D, bounded by 

the closed curve C= Cl + C2. The underlying equations are described by 

Please et al. (1995): 

1. The reactive convection-diffusion equation describing heat flow in D 

V. (kVu) = 
at (Pcu) + v. V(Pcu) - ýývýý2 X9.10) 

2. The generalised Laplace equation describing the electric potential in 

D 

V. (Q0q) =0 (9.11) 

where k= k(u) and o, = Q(u), together with suitable boundary conditions 

on C 

u= ui (x, y, t) and 0= q1(x, y, t) on Ci (9.12) 

q an = q2 (x, y, t) and = 
ýn 

= zb2 (x, y, t) on C2 (9.13) 

and initial conditions 

u(x, y, 0) = uo(x, y) and 0(x, y, 0) = 00 (x, y) in D (9.14) 

163 



At any point (x, y) and time t, the dependent variables are the temper- 

ature u and the electric potential 0. Once again the material parameters 

are the thermal conductivity k, electrical conductivity a, the density p, the 

specific heat c and the velocity of convection v. 

We shall assume that p and c are constant and that k and a depend on 

x, y and u. We re-write equations (9.21) and (9.22): 

ý2u = 
(_Vk. 

Vu + pcv. Vu - aI0O12 + pc 
at 

(9.15) 

V20 =1 (-0cr. 04) (9.16) 
or 

which allows us to use the fundamental solution, - 
2ý In R, for the Laplacian 

operator. 

Before we can use the Laplace transform we must linearise equations 

(9.15) and (9.16) for an iterative approach. Since the examples in the pre- 

vious section show that there is little to choose between the methods, we 

use the most simple method, the so-called direct iteration method. In order 

to simplify notation we use the symbols ü and 0 to denote values from the 

previous iteration and re-write the equations as 

1 
V2u = 

(_Vk(ü). 
Vu + pcv. Vu + pc 

OU 
(9.17) 

k () 

V20 = 
1N 

(-OQ(iý). 0ý) (9.18) 
Q(u) 

In Laplace space the initial boundary-value problem defined by equations 

(9.17), (9.18), (9.12), (9.13) and (9.14) becomes 

v2u =1+ pcv. 0ü - 
10, 

(ü)IVýI2 + Pc(Aü - uo) k(ü) 
(9.19) 

p2 =1 (-Va(ic). V ) (9.20) 
Q(ü) 
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Example 9.5 

In problems in the food processing industry a good model for the ther- 

mophysical properties is that the heat capacity, pc, is constant and both 

conductivities are linear with temperature. 

Consequently we shall consider the following model problem (Crann et 

al. 2005), where we choose the functions hl (x, y, t) and h2 (x) y, t) so that 

we have known analytic solutions u= (x - 
2x2)(2 - e-t) and 

0=x+ (X - x2)e-t 
We seek the solution to the initial boundary-value problem 

V. (kVu) =a (pcu) + v. V (pcu) - alV I2 (9.21) 

V. (QVq) =0 (9.22) 

with pc = 1, v=i, k(u) =1+u, a(u) =1+u, 

in the region {(x, y) :0<x<1,0 <y< 1} subject to the boundary 

conditions, see Figure 9.7, 

y q=0 

V/ =0 
1 

u=0 uo=x-zC2 q=0 
¢=0 0o=2x-x' 0=1 

q=0 

V/=0 

x 

Figure 9.7: Boundary and initial conditions for Example 9.5 

u=Oonx=O, q=Oonx=1, y=0, y=1, 

q5=Oonx=0,5=1onx=1, =aý=Oony=0, y=1, 
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and the initial conditions 

1 
u(x, y, 0) =x- 2x2 and q(x, y, 0) = 2x - x2 

hi (x, y, t) and h2 (x, y, t) are given by 

hi (x, y, t) = (1 - 10x + 6x2) + (6x - 
11 

x2)e-t + (2 - 7x +2 x2)e-2t 

h2(x, y, t) = (2 - 2x) + (-1 -9+ 6x2)e-t + (-1 + 5x - 3x2)e-2t 

In the dual reciprocity form for equations (9.21) and (9.22) we use 
f=1+R. Details can be found in Crann et al. (2005). For the numerical 

solution we choose 32 boundary points and 9 internal points and M=8 

for the Stehfest inversion parameter. We use a tolerance c=0.001 for the 

direct linearisation iteration method. 

The space distributions for time values t=0.1,0.5,1 and 5 are shown in 

Figures 9.8 and 9.9 and the time developments for values x=0.2,0.5 and 0.8 

are shown in Figures 9.10 and 9.11. We note that the solution is independent 

of y. 

We see that the approximate solution compares very well with the ana- 

lytic values, typical errors being of the order of about three percent for 0 and 

about four percent for u. Typically we need approximately four iterations 

to achieve convergence within tolerance for both iterative cycles. 
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Figure 9.8: Space distribution of q5(x, y, t) for Example 9.5 

u(x, 0.5, t) 
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Figure 9.9: Space distribution of u(x, y, t) for Example 9.5 

167 

0 0.2 0.4 0.6 0.8 



0(x, a5, t) 
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0.6- 
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Figure 9.10: Time development of 0(x, y, t) for Example 9.5 

u(x, 0.5, t) 

U. S 
0 0.5 1 1.5 

LT approx 
analytic 

t 2 

Figure 9.11: Time development of u(x, y, t) for Example 9.5 

Toutip (2001) considered this problem using an explicit finite difference 

method in time together with the dual reciprocity method. Our results are 

comparable with his. However, to ensure stability he used a time-step of 

At = 0.01 requiring a significant amount of computation time. 
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9.4 Summary of Chapter 9 

In this chapter we have shown that the Laplace transform boundary element 

method with dual reciprocity for non-homogeneous terms provides a suitable 
technique for solving non-linear Poisson-type problems. However, there is 

the necessity to find a suitable linearisation which leads to a convergent 

solution in the transform domain. No such linearisation is needed with 
finite differences and finite elements but a solution of a non-linear system 

of equations is required at each stage. A feature for future work will be to 

consider a detailed comparison of the different solution schemes. 

Problems in the food processing industry with coupled non-linear Poisson- 

type equations are of particular interest and have been shown to be suitable 

for a solution by our method. However real problems are likely to have sig- 

nificantly more complicated geometry and food products frequently contain 

multi-phase materials. The geometry should cause little difficulty because 

the boundary element method is ideally suited to handling complex geom- 

etry. Multi-phase problems offer a more significant challenge but domain 

decomposition approaches (Davies and Mushtaq 1997, Popov and Power 

1999) offer a possible way forward. 
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Chapter 10 

Conclusions and further 

work 

10.1 Summary of thesis 

This chapter outlines the main contributions of the research programme; 

what has been done, the difficulties encountered, decisions made and how 

results from examples have demonstrated these findings. This chapter also 

outlines the research objectives stated in Chapter 1 and shows how these 

objectives have been met and how they have led to further ideas and work. 

The main feature of this work is the implementation of sequential and 

parallel code to use the Laplace transform boundary element method for 

the solution of initial boundary-value problems. The thesis begins in the 

early chapters with the classification of partial differential equations and 

describes ways in which they may be solved. The boundary element method 

(BEM) is chosen for the basis of this particular research work and its history 

and development is described with an explanation of the theory behind the 

method. 

The Laplace transform method (LTM) is a valuable tool in the imple- 

mentation of time-dependent problems and this is introduced with its early 
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background and applications. The LTM can transform a parabolic problem 
from a time and space domain into a space-only domain, thereby reducing 
the problem by one variable. The transformed problem can be solved us- 
ing one of a number of solution processes and then inverted back into the 

time domain. There are various inversion processes and two real-variable 

methods are investigated for accuracy and efficiency. A number of problems 

are solved by the Laplace transform method using sequential and parallel 
implementations very successfully. 

The LTM with the BEM (LTBEM) has been found to be accurate, ef- 
ficient and useful for many parabolic problems with boundary and initial 

conditions where the initial condition is zero and thereby resulting in a so- 

lution of a homogeneous elliptic equation. 

However when the elliptic equation is non-homogeneous a further re- 

finement to the solution process needs to be made and the dual reciprocity 

method is used to handle the non-zero right-hand side. Thus the LTBEM 

with dual reciprocity has been thoroughly investigated on a variety of prob- 

lems. Linear and non-linear problems have been solved. Problems with 

discontinuous or periodic boundary conditions have been considered. Fi- 

nally a coupled non-linear system of equations has been solved successfully. 

10.1.1 Difficulties encountered 

One of the problems encountered in the BEM is the evaluation of singular in- 

tegrals which occur when the integration and source points coincide. Chap- 

ter 4 concentrates on a number of methods of handling this non-singularity. 

A new idea using automatic differentiation was developed and thoroughly 

investigated. Accuracy was very good when compared with conventional 

methods and convergence criteria were introduced to aid use. However effi- 

ciency when using current LTBEM code, compared with some other meth- 

ods, was not as good and it was decided not to use the new method at this 
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time. Teiles method was considered the most suitable and this was used 
throughout the investigation of problems using the LTBEM. However when 
Toutip's sub-routine for the dual reciprocity was used the singular integrals 

were evaluated using Log-Gauss. 

Problem The evaluation of singular integrals. 

Decision The use of Teiles method for the LTBEM or Log-Gauss for the 
LTBEM with dual reciprocity. 

A problem with the Laplace transform method is the choice of an inver- 

sion process which is accurate, efficient and tracks the solution to the initial 

boundary-value problem. When the parabolic problem and its conditions 

are continuous and non-oscillatory in time two straight-forward, easy-to-use 

inversion methods using real variables, Stehfest's inversion method and a 

method based on shifted Legendre polynomials, were found to be suitable. 

Both methods were investigated and found to be robust and accurate for 

various parameters, but Stehfest's method was easier to implement. 

Problem The choice of inversion method. 

Decision Stehfest's inversion method with parameter M=8. 

However for other problems, either with discontinuities or oscillatory 

solutions, the inversion methods do not track the solution process. A new 

idea, the Step LT formulation, was considered and implemented and results 

were extremely good. This idea was used sequentially and in parallel to 

solve a variety of ordinary and partial differential equations. 

Problem Poor solution of problems with non-monotonic boundary condi- 
tions. 

Decision The Step LT formulation of the LTBEM. 

The dual reciprocity method is a technique by which the domain integral 

is transferred to an equivalent boundary integral using a suitable interpo- 

lation function. Various interpolation functions can be used and often a 
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function from the series f=1+R+ R2 + R3 + ... + Rm, where R is 

the distance function used in the definition of the fundamental solution, is 

considered. The simple function with m=1, f=1+R, is often used. 
Alternatively the augmented thin plate spline, f= R2 In R+a+ bx + cy 
has been found to be useful and, in general, the augmented thin plate spline 

gives the more accurate results. Since we use Toutip's sub-routine, both 

functions are available and we use them as stated in Chapter 7. 

Problem The choice of interpolation function in the dual reciprocity method. 

Decision Either f=1+R or augmented thin plate spline according to the 
problem being solved. 

There are two possible difficulties which occur when using the dual reci- 

procity method, the size of the geometry of the domain and the number of 

internal nodes within the domain. 

In Chapter 7 we considered the size of the geometry of the problem 

domain and found that, particularly when using the augmented thin plate 

spline as interpolating function, the size of the domain was crucial to whether 

the solution was possible. If the geometry was suitably scaled, see Examples 

7.1 and 7.8, the solution was very good. 

Problem Poor results if the size of the geometry of the problem is large. 

Decision Suitable scaling down to give accurate results. 

When using the dual reciprocity method, various authors mention that 

the number of internal nodes should be greater than half the number of 

boundary nodes to obtain good results and have given experimental results 

supporting this. However, our results have not found this to be a problem. 

Most of our examples use 32 boundary nodes and 9 internal nodes with good 

results. When comparing our method with methods from other authors we 

have sometimes used more boundary nodes to compare our results, like for 

like. However we haven't found it necessary in any of our examples. 
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Problem The choice of the number of internal nodes compared with the 
number of boundary nodes. 

Decision This hasn't been a problem. 

The LTBEM is considered a suitable method for the solution of linear 

parabolic problems, since the Laplace transform is a linear operator. How- 

ever, we develop an iterative process for use in non-linear problems in which 

the equation is linearised so that the Laplace transform can be used at each 

iterative step. We consider three simple iterative processes and report good 

results with each of them. 

Problem The solution of non-linear problems. 

Decision The development of three linear iterative processes. 

10.2 Research objectives 

Our objectives at the beginning of this research programme were, from 

Chapter 1: 

1. To investigate the LTBEM for accuracy when considering numerical 

inversion methods, 

2. To investigate the LTBEM for accuracy when considering non-monotonic 

boundary conditions, 

3. To investigate the LTBEM on a distributed memory architecture for 

efficiency of computation. 

We now consider each objective and demonstrate that they have been 

suitably addressed. 
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10.2.1 To investigate the LTBEM for accuracy when consid- 

ering numerical inversion methods 

There are many inversion processes for Laplace transforms. Davies and 
Martin (1979) give a very good account of a number of them, most con- 

taining complex variables, and they report that no one inversion method 

is suitable for all transforms in consideration of accuracy, efficiency and 

ease of implementation. They suggest that a method should be used ac- 

cording to the functional behaviour and if this is unknown then verification 

sought from a different method. However for this research we have consid- 

ered known solution behaviour and sought to choose a straight-forward to 

use and implement inversion process. In Chapter 5 two inversion processes 

were considered and investigated. Both methods used real variables for the 

inversion and these were found to give accurate solutions under certain con- 

ditions. Test Laplace inversions were evaluated for accuracy and the results 

reported are very good. 

10.2.2 To investigate the LTBEM for accuracy when consid- 

ering non-monotonic boundary conditions 

The conditions under which the chosen inversion process, Stehfest's method, 

gave accurate results was for problems requiring continuous boundary con- 

ditions and/or solutions and non-sinusoidal solutions, and these have been 

well documented by previous authors. However this research has developed 

methods to overcome these problems, using Step LT solutions, enabling the 

LTBEM to be used for problems not previously considered. 

10.2.3 To investigate the LTBEM on a distributed memory 

architecture for efficiency of computation 

In Chapter 6 we demonstrate the use of parallel computation. The Laplace 

transform method was used for the solution of a simple parabolic prob- 
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lem and the resulting elliptic problem solved using five different methods, 
then inverted using Stehfest's inversion method. Computation times on four 

processors of a transputer network were reported and speed-up, defined by 

the computing time of one processor divided by the total computing time 

, was found to be linear i. e. doubling the number of processors halves the 

computing time. 

The same problem was solved using the LTBEM to investigate the speed- 

up using a second parallel network of eight processors on a SUN cluster but 

this time using different Stehfest M-parameters in the inversion process. 

Again the speed-up for the four processors was linear but for the SUN clus- 

ter the results showed some degradation in performance from two to four 

processors. The problem was assumed to be from the PVM message passing 

protocol rather than the machine. 

The problem was again solved on a sixty-four processor nCube ma- 

chine and there was once again almost perfect linear speed-up. This work 

has shown that the numerical Laplace transform using Stehfest's inversion 

process is ideally suited to implementation on a distributed memory archi- 

tecture. 

10.2.4 Further work also developed 

Whilst in the development of this research other ideas have been proposed 

and followed up although not within our initial objectives. The work under- 

taken on singular integrals was a significant achievement and has produced 

ideas which can be taken further in a number of ways. The use of Tay- 

lor polynomials to programme complete code for various solution processes 

rather than only for small subroutines within a large programme might be 

more efficient. Certainly as far as accuracy is concerned the process is ac- 

ceptable. 

The use of the dual reciprocity method has enabled non-homogeneous 
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problems to be considered and new work has been completed with the solu- 
tion of non-linear problems and coupled problems. 

Although this doesn't seem to have been reported by other authors, 

we have sometimes found that our numerical Laplace transform inversion 

method yields poor results for small values of time. If small values of time 

are the only thing of interest then it would be best to use the FDM approach 

which would require only a small number of time steps. If, however, the 

solution was required for a larger time value then the Laplace transform 

approach offers a very attractive alternative to the FDM. 

10.2.5 Published work 

We list here the publications which have come from this research and briefly 

highlight the content referring to the relevant section. 

1. Crann D (2005) Numerical studies using the Laplace transform, Uni- 
versity of Hertfordshire Department of Physics, Astronomy and Math- 
ematics Technical Report, 91. 
Technical report reporting the examples and their numerical results 
from this thesis. 
Section 1.2 

2. Davies AJ and Crann D (2000) Alternative methods for the numerical 
solution of partial differential equations: the method of fundamental 

solutions and the multiquadric method, University of Hertfordshire 
Mathematics Department Technical Report, 57. 
Report and results on the use of mesh-free methods for the solution of 
partial differential equations. 
Section 2.2.4 

3. Davies AJ and Crann D (1998) The boundary element method on a 
spreadsheet, Int. J. Math. Educ. Sci. Technol., 29,851-865. 
Paper on the numerical implementation of the BEM. 
Section 3.3 

4. Crann D, Christianson D B, Davies AJ and Brown SA (1997) Au- 
tomatic differentiation for the evaluation of singular integrals in two- 
dimensional boundary element computations, Boundary Elements XIX, 

eds. Marchetti M, Brebbia CA and Aliabadi M H, 677-686, Compu- 
tational Mechanics Publications. 
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Paper on the AD Taylor polynomial method for the evaluation of sin- 
gular integrals, for Laplace's equation. 
Section 4.5,4.8 

5. Crann D, Christianson D B, Davies AJ and Brown SA (1998) Au- 
tomatic differentiation for the evaluation of singular integrals in two- 
dimensional boundary element computations, University of Hertford- 
shire Mathematics Department Technical Report, 41. 
Report on the AD Taylor polynomial method for the evaluation of 
singular integrals, for Laplace's equation and Helmholtz equation with 
results. 
Section 4.6,4.7,4.8 

6. Crann D, Davies AJ and Christianson DB ((2003) Evaluation of log- 

arithmic integrals in two-dimensional boundary element computation, 
Advances in Boundary Element Techniques IV, eds. Gallego R and 
Aliabadi M H, 321-326, Queen Mary, University of London. 
Paper on the comparison of four methods of evaluating singular inte- 

grals for accuracy and efficiency. 
Section 4.9 

7. Crann D, Davies A J, Lai C-H and Leong SH (1998) Time domain 
decomposition for European options in financial modelling, Domain 
Decomposition Methods 10, eds. Mandel, Farhat and Cai, 486-491, 
John Wiley and Sons Ltd. 
Paper using the Laplace transform in financial modelling. 
Section 5.1 

8. Davies AJ and Crann D (2004) A handbook of essential mathematical 
formulae, University of Hertfordshire Press. 
An extensive table of Laplace transforms. 
Section 5.1,5.4 

9. Lai C-H, Crann D and Davies AJ (2005) On a Parallel Time-domain 
Method for the non-linear Black-Scholes Equation, to appear in Do- 

main Decomposition Methods 16. 
Paper on the parallel investigation of Stehfest's Laplace transform in- 

version parameter during the solution process of the non-linear Black- 
Scholes equation. 
Section 5.1 

10. Crann D (1996) The Laplace transform: numerical inversion of com- 
putational methods, University of Hertfordshire Mathematics Depart- 

ment Technical Report, 21. 
Investigation into the optimal parameter in Stehfest's Laplace trans- 
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form inversion method. 
Section 5.3.1,5.3.3,5.6 

11. Crann D, Davies AJ and Mushtaq J (1998) Parallel Laplace transform 
boundary element methods for diffusion problems, Boundary Elements 
XX, eds. Kassab A, Brebbia CA and Chopra M, 259-268, Computa- 
tional Mechanics Publications. 
Paper using LTBEM in parallel to compare the inversion methods by 
Stehfest and the SLP. 
Section 5.3.3,6.6 

12. Davies AJ and Crann D (1999) The solution of differential equations 
using numerical Laplace transforms, Int. J. Math. Educ. Sci. Tech- 
nol., 30,65-79. 
Paper on the Laplace transform FDM for ordinary differential equa- 
tions, including a discontinuous forcing term. 
Section 5.4 

13. Davies A J, Crann D and Mushtaq J (1996) A parallel implementa- 
tion of the Laplace transform BEM, Boundary Elements XVIII, eds. 
Brebbia C A, Martins J B, Aliabadi MH and Haie N, 213-222, Com- 

putational Mechanics Publications. 
Paper on a parallel implementation of the LTBEM using four trans- 
puters and eight SUN workstations. 
Section 6.6 

14. Davies A J, Mushtaq J, Radford LE and Crann D (1997) The nu- 
merical Laplace transform solution method on a distributed memory 
architecture, Applications of High Performance Computing V, 245- 
254. 
Paper on the parallel implementation of the Laplace transform method 
with five different solvers. 
Section 6.6 

15. Davies A J, Crann D and Mushtaq J (2000) A parallel Laplace trans- 
form method for diffusion problems with discontinuous boundary con- 
ditions, Applications of High Performance Computing in Engineering 
VI, eds. Ingber M, Power H and Brebbia C A, 3-10, WIT press. 
Paper using a parallel implementation of the Laplace transform and 
FDM for the solution of a diffusion problem with a discontinuous 
boundary condition. 
Section 6.6 

16. Davies AJ and Crann D (2001) Parallel Laplace transform methods 
for boundary element solutions of diffusion-type problems, Advances 
in Boundary Element Techniques II, 183-190, Hoggar. 
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Paper on the parallel implementation of the LTBEM on a 64 processor 
nCube machine. 
Section 6.6 

17. Crann D and Davies AJ (2004a) The Laplace transform boundary 
element method for diffusion problems with discontinuous boundary 
conditions, Advances in Boundary Element Techniques V, 249-254. 
Paper on the LTBEM for discontinuous boundary conditions. 
Section 8.2 

18. Crann D and Davies AJ (2004b) The Laplace transform boundary 
element method for diffusion problems with periodic boundary condi- 
tions, Boundary Elements XXVI, 393-402. 
Paper on the LTBEM for problems with periodic boundary conditions. 
Section 8.3 

19. Crann D, Davies AJ and Christianson DB (2005) The Laplace trans- 
form dual reciprocity boundary element method for electromagnetic 
heating problems - to appear in Advances in Boundary Element Tech- 
niques VI. 
Paper on the LTBEM for a non-linear coupled problem. 
Section 9.3 

10.3 Future research work 

Some features of this research have an obvious initial improvement and work 

is already being started to refine these features, such as updating the present 

code to enable the augmented thin plate spline to be used for the solution 

of the first derivative in the dual reciprocity method and to see if the use 

of Telles method for singular and non-singular integrals is computationally 

more efficient. 

The research objectives have been completed and the following new ideas 

await to be addressed: 

1. Can we use automatic differentiation for near-singular integrals and 

the whole solution processes? 

2. What are the convergence criteria for Stehfest's method and what is 

the behaviour of the errors? 
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3. Can we explain why for problems with sinusoidal boundary conditions 

the time step needs to be one quarter of the time period? 

4. Which interpolation functions can be used in the dual reciprocity 

method to enable us to solve problems containing a second derivative 

on the right-hand side? 

5. Although the Laplace transform method doesn't always give accurate 

results for small time-steps, how does the Laplace transform with the 

BEM compare with the Laplace transform and other solution processes 

for accuracy and efficiency in general? 

6. Can we use more efficient iterative schemes in the solution of non-linear 

problems? 

7. Can we use our method yet to solve other real-life problems, in the 

financial sector or the food processing industry? Are there other prac- 

tical uses for our solution process? 
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Appendix A 

Automatic Differentiation 
fortran90 constructs 

In this appendix we present the fortran9O module for evaluating Taylor 
polynomials. The module shows how we develop the processes of addi- 
tion, subtraction, multiplication, division, square root and log, together with 
procedures for performing differentiation, integration and evaluation of the 
Bessel function. 

module taylormod 
implicit double precision(a-h, o-z) 

For Taylorprog, taylor-degree is 6 or 20 
For Taylor-Bess, taylor-degree is 13 or 21 

integer, private :: taylor. degree= 20; 
integer:: numadd, nummult, numother 

! put taylor-degree integer into type(taylor) as well as above 
type taylor 

real series(20) 
end type taylor 

type (taylor):: sumA 

interface operator(+) 
module procedure plus. tt 
end interface 

interface operator(-) 
module procedure minus. tt 
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end interface 

interface operator(*) 
module procedure times. tt 
end interface 

interface mult 
module procedure mult. tt 
end interface 

interface div 

module procedure div. tt 
end interface 

interface recip 
module procedure recip. t 
end interface 

interface tsqrt 
module procedure tsgrt. t 
end interface 

interface tlog 
module procedure tlog. t 
end interface 

interface shleft 
module procedure shleft. t 
end interface 

interface shright 
module procedure shright. t 

end interface 

interface deriv 

module procedure deriv. t 

end interface 

interface tint 

module procedure tint. t 
end interface 

interface Jlinteg 
module procedure Jlinteg. t 
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end interface 

interface Jlloginteg 
module procedure Jlloginteg. t 
end interface 

interface J2integ 
module procedure J2integ. t 
end interface 

interface J2loginteg 

module procedure J2loginteg. t 
end interface 

interface J3integ 

module procedure J3integ. t 
end interface 

interface J3loginteg 
module procedure J3loginteg. t 
end interface 

interface bessk 
module procedure bessk. t 
end interface 

CONTAINS 

subroutine init. taylor(tl) ! initialises taylor series to zero 
type(taylor), intent (inout):: tl 

tl %series=0.0 

end subroutine init. taylor 

subroutine set. taylor(tl, value, n) ! initialises taylor series with 
type(taylor), intent (inout):: t 1! values in position n 
real, intent (in) :: value 
integer, intent (in) :: n 
t1 %series (n) =value 
end subroutine set. taylor 

function plus. tt(tl, t2) ! adds two taylor series together 
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type(taylor), intent(in):: tl, t2 
type (taylor):: plus. tt 
plus. tt%series=t 1 %series+t2%series 

numadd=numadd+1 
end function plus. tt 

function minus. tt(tl, t2) ! finds the difference of two taylor 
type (taylor), intent (in):: t l, t2 ! series, tl-t2 
type (t aylor):: minus. tt 

minus. tt %series=t 1 %series-t 2 %series 

numadd=numadd+1 
end function minus. tt 

function mult. tt(tl, t2) ! multiplies two taylor series 
type (taylor), intent (inout):: t1, t2 ! together 
type(taylor) :: mult. tt, total 
integer i, p 
mult. tt%series=0.0 
do p= l, taylor. degree 
do i=1, p 
total%series (i) =t 1 %series (i) *t2%series (p+ 1-i) 

mult. tt%series (p) = mult. tt %series (p) +total% series (i) 

numadd=numadd+3 
nummult=nummult+l 
end do 

end do 
end function mult. tt 

function div. tt(tl, t2) ! divides two taylor series 
type (taylor), intent (inout):: tl, t2 ! div(tl, t2)=t2/tl 
type(taylor) :: div. tt, total, newtotal 
integer i, p 
div. tt%series=0.0 
total%series=0.0 
newtotal%series=0.0 
div. tt%series (1) =t2%series(1) /t l %series (1) 

nummult=nummult+1 
do p=2, taylor. degree 
do i=1, p-1 
total%series (i) =t 1 %series (p+ 1-i) *div. tt %series (i) 

newtotal%series (p) =newtotal%series (p) +total%series (i) 

numadd=numadd+3 
nummult=nummult+l 
end do 
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div. tt%series(p)=(t2%series(p)-newtotal%series(p)) /t 1 %series(1) 
numadd=numadd+l 
nummult=nummult+1 
end do 

end function div. tt 

function recip. t(tl) ! finds the reciprocal of 
type (taylor) 

�intent 
(inout) :t1! a taylor series 

type (taylor) :: recip. t, one 
call init. taylor (one) 

one%series (1) =1.0 
recip. t=div. tt(tl, one) 
end function recip. t 

function times. tt(tl, n) ! multiplies a taylor series 
type (taylor), intent (in):: t1 ! by a scalar 
type(taylor) :: times. tt 
real, intent (in):: n 
times. tt %series=t 1 %series *n 

nummult=nummult+l 
end function times. tt 

function tsqrt. t(tl) ! finds square root of a taylor series 
type (taylor) 

�intent 
(in):: t 1! constant not negative 

type(taylor) :: tsgrt. t, newl, new2 
integer i, j 
tsgrt. t%series (1) =sqrt (t l %series (1) ) 

tsqrt. t%series(2)=t1%series(2) /(2.0*tsgrt. t%series(1)) 

new2%series=0.0 
nummult=nummult+2 
numother=numother+l 
do j=3, taylor. degree 
do i=2, j-1 

newl%series(i)=tsgrt. t%series(i) *tsqrt. t%series(j+l-i) 

newt%series (j) =newt%series (j) +new 1 %series (i) 

tsgrt. t%series(j) = (t 1 %series(j)-new2%series (j)) /& 

&(2.0*tsgrt. t%series(1)) 

numadd=numadd+4 
nummult=nummult+3 
end do 

end do 
end function tsqrt. t 

function tlog. t(tl) ! finds the log of a taylor series 
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type (t aylor), intent (inout) :: t1 
type (taylor) :: tlog. t, next l, next2, next3 
next 1=deriv. t (t 1) 
next2=recip. t(tl) 
next3=mult (next 1, next2) 
tlog. t=tint (next 3) 
tlog. t%series(1)=1og(t1%series(1) ) 

numother=numother+l 
end function tlog. t 

function shleft. t(tl) ! shifts constants to the left 
type (taylor), intent (in):: t1 ! within the taylor series 
type (taylor) :: shleft. t 
integer i 
do i= 1, taylor. degree- 1 
shleft .t 

%series (i) =t 1 %series (i+ 1) 
end do 

end function shleft. t 

function shright. t(tl) ! shifts constants to the right 
type (taylor), intent (in):: t1 ! within the taylor series 
type(taylor) :: shright. t 
integer i 
do i=2, taylor. degree 

shright. t %series (i) =t 1 %series (i-1) 

end do 

shright. t%series (1) =0.0 
end function shright. t 

function deriv. t(tl) ! finds the derivative of a 
type (taylor), intent (in):: t1 ! taylor series 
type (taylor) :: deriv. t 
integer i 
do i=1, taylor. degree-1 
deriv. t%series (i) =i*t 1 %series (i+ 1) 

nummult=nummult+l 
end do 
end function deriv. t 

function tint. t(tl) ! finds the integral of a 
type(taylor) �intent 

(in): :t1! taylor series 
type(taylor):: tint. t ! ***the first term is set to 0.0 

integer i ! ***set this separately when using 
tint. t %series (1) =0.0 
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do i=2 taylor. degree 
tint. t%series (i) =t 1 %series (i- 1) / (i- 1) 
nummult=nummult+1 
end do 

end function tint. t 

function Jlinteg. t(tl) ! finds the integral of a taylor 
type (taylor), intent (in):: t1 ! series between -1 and +1 for J1 
type (taylor):: J1integ. t 
integer i 
do i= 1, taylor. degree 
J1 int eg. t %series (i) =0.0 
Jlinteg. t%series(1)=Jlinteg. t%series(1)+(2* *i) *t 1%series(i) / (i) 
numadd=numadd+l 
nummult=nummult+4 
end do 
end function Jlinteg. t 

function Jlloginteg. t(tl) ! finds the integral of a taylor 
type (taylor), intent (in):: t1 ! series multiplied by the log 
type(taylor):: Jlloginteg. t ! between -1 and +1 for J1 
integer i 
do i= I, taylor. degree 
Jl loginteg. t %series (i) =0.0 
J1 loginteg. t%series (1) =J 1 loginteg. t %series (1) & 
&+((2.0**i)*tl%series(i)/i)*(log(2.0)-(1.0/real(i))) 

numadd=numadd+2 
nummult=nummult+5 
numother=numother+1 
end do 

end function Jlloginteg. t 

function J2integ. t(tl) ! finds the integral of a taylor 
type (taylor), intent (in):: t1 ! series between -1 and +1 for J2 
type(taylor) :: J2integ. t 
integer i 
do i=l, taylor. degree 
J2integ. t %series (i) =0.0 
if (mod(i, 2)==0) then 
J2integ. t%series(i)=0.0 

else 
J2integ. t%series(1)=J2integ. t%series(1)+2*t 1 %series (i) / (i) 

numadd=numadd+l 
nummult=nummult+2 
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end if 

end do 

end function J2integ. t 

function J2loginteg. t(tl) ! finds the integral of a taylor 
type (taylor), intent (in):: t 1! series multiplied by the log 
type(taylor):: J2loginteg. t ! between -1 and +1 for J2 
integer i 
do i= 1, taylor. degree 
J2loginteg. t%series (i) =0.0 
if (mod(i, 2)==0) then 
J2loginteg. t%series(i) =0.0 
else 
J 2logint eg. t %series (1) =J 2logint eg. t %series (1) -2.0* t1 %series (i) & 
&/real(i)**2.0 

numadd=numadd+l 
nummult=nummult+4 
end if 

end do 

end function J2loginteg. t 

function J3integ. t(tl) ! finds the integral of a taylor 
type (taylor), intent (in):: tI ! series between -1 and +1 for J3 
type (taylor):: J3integ. t 
integer i 
do i=l, taylor. degree 
J3integ. t%series(i)=0.0 
J3integ. t%series(1) =J3integ. t%series(1)-((-2) **i) *t1 %series(i) / (i) 

numadd=numadd+2 
nummult=nummult+4 
end do 

end function J3integ. t 

function J3loginteg. t(tl) ! finds the integral of a taylor 

type (taylor), intent (in):: t1 ! series multiplied by the log 

type(taylor):: J3loginteg. t ! between -1 and +1 for J3 

integer i 
do i= 1, taylor. degree 
J3loginteg. t%series (i) =0.0 
J3loginteg. t%series (1) =J3loginteg. t%series(1)-& 
&(((_2.0)**i)*tl%series(i)/i)*(log(2.0)-(1.0/i)) 

numadd=numadd+3 
nummult=nummult+5 
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numother=numother+l 
end do 

end function J3loginteg. t 

subroutine tread(tl) ! reads a taylor series from screen 
type (taylor), intent (inout):: t1 

real value 
integer n, i 
print*, 'what is the degree of the taylor series? ' 

read*, n 
print*, 'type in the values' 
do i=1, n 
read*, value 
t1 %series (i) =value 
end do 

end subroutine tread 

subroutine tprint(tl) ! prints a taylor series to screen 
type(taylor), intent(in):: tl 
print *, t1%series 
end subroutine tprint 

subroutine print(tl) ! prints a taylor series as a 
type (taylor), intent (in):: t1 ! real to the screen 
real a 
a=tl%series(1) 
print*, a 
end subroutine print 

function distance(a, b, c, d, e, f) ! finds the Jtest of 3 nodes 
type (taylor), intent(in):: a, b, c, d, e, f 
! real, intent (inout):: distance 

real distance 

real p, q, r, s, t, u, first second 
p=a%series(l) 
q=b%series(1) 
r=c%series(1) 
s=d%series(1) 
t=e%series(1) 
u=f%series (1) 
first=sqrt((q-0.5*(r+p))**2+(t-0.5*(u+s))**2) 

second=0.5*(sqrt((q-p)**2+(t-s)**2)) 
if (first==0) then 

print*, 'jtest is undefined, but a lot' 
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else 
distance=second/first 

end if 
numadd=numadd+8 
nummult=nummult+12 
numother=numother+2 
end function distance 

function bessk. t(Rd, p) ! Modified Bessel function 
! using Ramesh and Lean's formula 
type (t aylor), intent (inout) :: Rd 

real, intent (in) :: p 
type (taylor) :: bessk. t 
type (taylor):: A, A1, B, B1 
type (taylor), dimension(8) :: Rdd, nextA, nextB 
type (taylor) :: sumB, finalA, finalB 
type (taylor) :: first, second, third 
real:: q 
integer:: i, j 

call init. taylor(A) 
A%series (1) =1.0 
A%series(2)=3.5156229 
A%series(3)=3.0899424 
A%series (4) =1.2067492 
A%series (5) =0.2659732 
A%series(6)=0.0360786 
A %series (7) =0.0045813 

call init. taylor(B) 
B%series(1)=-0.57721566 
B%series (2) =0.42278420 
B%series(3)=0.23069756 
B%series (4) =0.03488590 
B%series (5) =0.00262698 
B %series (6) =0.00010750 
B%series (7) =0.00000740 

call init. taylor(A1) 
Al %series (1) =A%series(1) 
do i=2,7 
A1%series(2*i-1)=A%series(i)*((p/3.75)**(2*(i-1))) 

numadd=numadd+2 
nummult=nummult+6 
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end do 
call init. taylor(B1) 
B1 %series (1) =B %series (1) 
do i=2,7 
B1%series(2*i-1)=B%series(i)*((p/2. )**(2*(i-1))) 
numadd=numadd+2 
nummult=nummult+6 
end do 

call init. taylor(sumA) 
call init. taylor(sumB) 
nextA (1) =Rd 
nextB (1) =Rd 
Rdd(2)=Rd 
do j=2,7 

nextA(j)=Rdd(j) 
nextB (j) =Rdd (j ) 
do i=1,2*(j-1) 

nextA (j) =shright (nextA (j) ) 

nextB (j) =shright (nextB (j) ) 

end do 
Rdd(j+l)=mult(Rdd(j), Rd) 

end do 
do j=2,7 

nextA(j)=nextA(j)*A1%series(2*j-1) 
nextB (j) =nextB (j) *B 1 %series (2*j- 1) 

sumA=sumA+nextA(j) 
sumB=sumB+nextB (j ) 

numadd=numadd+2 
end do 

sumA%series (1) =A 1 %series (1) 

sumB%series (1) =B 1 %series (1) 

q=P*P/4. 
first=Rd*q 

second=tlog(first) 
third=second*0.5 
finalA=mult (third, sumA) 
finalB=sumB 
bessk. t=finalB-finalA 

numadd=numadd+l 
nummult=nummult+4 
end function bessk. t 
subroutine get. sumA() ! returns sumA to program 
type (taylor):: sumA 

sumA=sumA 
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! return sumA 
end subroutine get. sumA 

function fact (n) 
integer, intent (in) :: n 
integer:: fact 
integer:: i 
fact=1 
do i=1, n 
fact=fact*i 

nummult=nummult+1 
end do 

end function fact 

function fbit(tl) ! parts of module for newbess 
type (taylor), intent (in):: t1 ! for A&S formula 
type (taylor):: fbit 
type (taylor) 

�dimension 
(taylor. degree):: next 

type(taylor):: qRd, b, c 
real:: a 
integer:: i 

call init. taylor(fbit) 
call init. taylor(next(1)) 
qRd=tl*0.25 
next (1) =shright (qRd) 

next (1) =shright (next (1) ) 

nummult=nummult+l 
do i=2, ((taylor. degree+l)/2) 

a=1.0/(i*i) 
b=shright (next (i-1) ) 

c=shright (b) 

next (i) =mult (c, qRd) 
next (i) =next (i) *a 

nummult=nummult+3 
end do 
do i= 1, taylor. degree 
fbit=fbit+next (i) 

numadd=numadd+l 
end do 

end function fbit 

function bigb(Rd) 

type(taylor) �intent 
(in): : Rd 

type (taylor):: bigb 
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type (taylor) :: first, second 
integer:: i 
call init. taylor(first) 
call init. taylor(bigb) 
do i=1, (Taylor. degree-1)/2 
first %series((2*i)+1)=first %series((2*i)-1)+(1.0/i) 
numadd=numadd+3 
nummult=nummult+4 
end do 

second=fbit (Rd) 
do i=1, taylor. degree 
bigb%series (i) =first %series (i) * second%series (i) 

nummult=nummult+1 
end do 
end function bigb 

function bigi(Rd) 
type (taylor), intent (in):: Rd 
type (taylor):: bigi 
bigi=fbit(Rd) 
bigi%series (1) =bigi%series (1) + 1.0 

numadd=numadd+l 
end function bigi 

end module taylormod 
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