1,990 research outputs found

    Review of modern numerical methods for a simple vanilla option pricing problem

    Get PDF
    Option pricing is a very attractive issue of financial engineering and optimization. The problem of determining the fair price of an option arises from the assumptions made under a given financial market model. The increasing complexity of these market assumptions contributes to the popularity of the numerical treatment of option valuation. Therefore, the pricing and hedging of plain vanilla options under the Black–Scholes model usually serve as a bench-mark for the development of new numerical pricing approaches and methods designed for advanced option pricing models. The objective of the paper is to present and compare the methodological concepts for the valuation of simple vanilla options using the relatively modern numerical techniques in this issue which arise from the discontinuous Galerkin method, the wavelet approach and the fuzzy transform technique. A theoretical comparison is accompanied by an empirical study based on the numerical verification of simple vanilla option prices. The resulting numerical schemes represent a particularly effective option pricing tool that enables some features of options that are depend-ent on the discretization of the computational domain as well as the order of the polynomial approximation to be captured better

    A Method of Computing Functions of Trapezoidal Fuzzy Variable and Its Application to Fuzzy Calculus

    Get PDF
    This paper introduces a method of computing functions of trapezoidal fuzzy variable. The method is based on the implementation of an unconstrained optimisation technique over the α -cut of fuzzy interval. To show the effectiveness of the proposed method, we provide several numerical examples in computing the solutions of linear and non-linear fuzzy differential equations. The final results showed that the proposed method is capable to generate convex fuzzy solutions on time domain

    A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

    Full text link
    We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Applied Mathematics', ISSN: 0377-0427. Submitted 17-July-2017; Revised 18-Sept-2017; Accepted for publication 20-Sept-2017. arXiv admin note: text overlap with arXiv:1504.0515

    Some aspects of variational inequalities

    Get PDF
    AbstractIn this paper we provide an account of some of the fundamental aspects of variational inequalities with major emphasis on the theory of existence, uniqueness, computational properties, various generalizations, sensitivity analysis and their applications. We also propose some open problems with sufficient information and references, so that someone may attempt solution(s) in his/her area of special interest. We also include some new results, which we have recently obtained
    corecore