382 research outputs found

    Optimal Morphs of Convex Drawings

    Get PDF
    We give an algorithm to compute a morph between any two convex drawings of the same plane graph. The morph preserves the convexity of the drawing at any time instant and moves each vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically optimal in the worst case.Comment: To appear in SoCG 201

    Counting Carambolas

    Full text link
    We give upper and lower bounds on the maximum and minimum number of geometric configurations of various kinds present (as subgraphs) in a triangulation of nn points in the plane. Configurations of interest include \emph{convex polygons}, \emph{star-shaped polygons} and \emph{monotone paths}. We also consider related problems for \emph{directed} planar straight-line graphs.Comment: update reflects journal version, to appear in Graphs and Combinatorics; 18 pages, 13 figure

    Fiber polytopes for the projections between cyclic polytopes

    Full text link
    The cyclic polytope C(n,d)C(n,d) is the convex hull of any nn points on the moment curve (t,t2,...,td):t∈R{(t,t^2,...,t^d):t \in \reals} in Rd\reals^d. For d′>dd' >d, we consider the fiber polytope (in the sense of Billera and Sturmfels) associated to the natural projection of cyclic polytopes π:C(n,d′)→C(n,d)\pi: C(n,d') \to C(n,d) which "forgets" the last d′−dd'-d coordinates. It is known that this fiber polytope has face lattice indexed by the coherent polytopal subdivisions of C(n,d)C(n,d) which are induced by the map π\pi. Our main result characterizes the triples (n,d,d′)(n,d,d') for which the fiber polytope is canonical in either of the following two senses: - all polytopal subdivisions induced by π\pi are coherent, - the structure of the fiber polytope does not depend upon the choice of points on the moment curve. We also discuss a new instance with a positive answer to the Generalized Baues Problem, namely that of a projection π:P→Q\pi:P\to Q where QQ has only regular subdivisions and PP has two more vertices than its dimension.Comment: 28 pages with 1 postscript figur

    Parallel Transitive Closure and Point Location in Planar Structures

    Get PDF
    AMS(MOS) subject classifications. 68E05, 68C05, 68C25Parallel algorithms for several graph and geometric problems are presented, including transitive closure and topological sorting in planar st-graphs, preprocessing planar subdivisions for point location queries, and construction of visibility representations and drawings of planar graphs. Most of these algorithms achieve optimal O(logn) running time using n/logn processors in the EREW PRAM model, n being the number of vertices
    • …
    corecore