534 research outputs found

    Beyond English text: Multilingual and multimedia information retrieval.

    Get PDF
    Non

    Embedding Web-based Statistical Translation Models in Cross-Language Information Retrieval

    Get PDF
    Although more and more language pairs are covered by machine translation services, there are still many pairs that lack translation resources. Cross-language information retrieval (CLIR) is an application which needs translation functionality of a relatively low level of sophistication since current models for information retrieval (IR) are still based on a bag-of-words. The Web provides a vast resource for the automatic construction of parallel corpora which can be used to train statistical translation models automatically. The resulting translation models can be embedded in several ways in a retrieval model. In this paper, we will investigate the problem of automatically mining parallel texts from the Web and different ways of integrating the translation models within the retrieval process. Our experiments on standard test collections for CLIR show that the Web-based translation models can surpass commercial MT systems in CLIR tasks. These results open the perspective of constructing a fully automatic query translation device for CLIR at a very low cost.Comment: 37 page

    Cross-language Wikipedia Editing of Okinawa, Japan

    Full text link
    This article analyzes users who edit Wikipedia articles about Okinawa, Japan, in English and Japanese. It finds these users are among the most active and dedicated users in their primary languages, where they make many large, high-quality edits. However, when these users edit in their non-primary languages, they tend to make edits of a different type that are overall smaller in size and more often restricted to the narrow set of articles that exist in both languages. Design changes to motivate wider contributions from users in their non-primary languages and to encourage multilingual users to transfer more information across language divides are presented.Comment: In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2015. AC

    Modular and Parameter-efficient Fine-tuning of Language Models

    Get PDF
    Transfer learning has recently become the dominant paradigm of natural language processing. Models pre-trained on unlabeled data can be fine-tuned for downstream tasks based on only a handful of examples. A long-term goal is to develop models that acquire new information at scale without incurring negative transfer and that generalize systematically to new settings. Modular deep learning has emerged as a promising solution to these challenges, by updating parameter-efficient units of computation locally and asynchronously. These units are often implemented as modules that are interlaid between layers, interpolated with pre-trained parameters, or concatenated to the inputs. Conditioned on tasks or examples, information is routed to multiple modules through a fixed or learned function, followed by an aggregation of their outputs. This property enables compositional generalization, by disentangling knowledge and recombining it in new ways. In this thesis, we provide a unified view of modularity in natural language processing, spanning across four dimensions; specifically, we disentangle modularity into computation functions, routing functions, aggregation functions, and the training setting. Along those axes, we propose multiple contributions: a research framework which encompasses all dimensions; a novel attention-based aggregation function which combines the knowledge stored within different modules; routing mechanisms for out of distribution generalization in cross-lingual transfer scenarios; a dataset and modular training strategies for multimodal and multilingual transfer learning; a modular pre-training strategy to tackle catastrophic interference of heterogeneous data
    corecore