309 research outputs found

    Monoid presentations of groups by finite special string-rewriting systems

    Get PDF
    We show that the class of groups which have monoid presentations by means of finite special [λ]-confluent string-rewriting systems strictly contains the class of plain groups (the groups which are free products of a finitely generated free group and finitely many finite groups), and that any group which has an infinite cyclic central subgroup can be presented by such a string-rewriting system if and only if it is the direct product of an infinite cyclic group and a finite cyclic group

    String rewriting for Double Coset Systems

    Full text link
    In this paper we show how string rewriting methods can be applied to give a new method of computing double cosets. Previous methods for double cosets were enumerative and thus restricted to finite examples. Our rewriting methods do not suffer this restriction and we present some examples of infinite double coset systems which can now easily be solved using our approach. Even when both enumerative and rewriting techniques are present, our rewriting methods will be competitive because they i) do not require the preliminary calculation of cosets; and ii) as with single coset problems, there are many examples for which rewriting is more effective than enumeration. Automata provide the means for identifying expressions for normal forms in infinite situations and we show how they may be constructed in this setting. Further, related results on logged string rewriting for monoid presentations are exploited to show how witnesses for the computations can be provided and how information about the subgroups and the relations between them can be extracted. Finally, we discuss how the double coset problem is a special case of the problem of computing induced actions of categories which demonstrates that our rewriting methods are applicable to a much wider class of problems than just the double coset problem.Comment: accepted for publication by the Journal of Symbolic Computatio

    Decidability and Independence of Conjugacy Problems in Finitely Presented Monoids

    Full text link
    There have been several attempts to extend the notion of conjugacy from groups to monoids. The aim of this paper is study the decidability and independence of conjugacy problems for three of these notions (which we will denote by ∼p\sim_p, ∼o\sim_o, and ∼c\sim_c) in certain classes of finitely presented monoids. We will show that in the class of polycyclic monoids, pp-conjugacy is "almost" transitive, ∼c\sim_c is strictly included in ∼p\sim_p, and the pp- and cc-conjugacy problems are decidable with linear compexity. For other classes of monoids, the situation is more complicated. We show that there exists a monoid MM defined by a finite complete presentation such that the cc-conjugacy problem for MM is undecidable, and that for finitely presented monoids, the cc-conjugacy problem and the word problem are independent, as are the cc-conjugacy and pp-conjugacy problems.Comment: 12 pages. arXiv admin note: text overlap with arXiv:1503.0091

    Markov semigroups, monoids, and groups

    Full text link
    A group is Markov if it admits a prefix-closed regular language of unique representatives with respect to some generating set, and strongly Markov if it admits such a language of unique minimal-length representatives over every generating set. This paper considers the natural generalizations of these concepts to semigroups and monoids. Two distinct potential generalizations to monoids are shown to be equivalent. Various interesting examples are presented, including an example of a non-Markov monoid that nevertheless admits a regular language of unique representatives over any generating set. It is shown that all finitely generated commutative semigroups are strongly Markov, but that finitely generated subsemigroups of virtually abelian or polycyclic groups need not be. Potential connections with word-hyperbolic semigroups are investigated. A study is made of the interaction of the classes of Markov and strongly Markov semigroups with direct products, free products, and finite-index subsemigroups and extensions. Several questions are posed.Comment: 40 pages; 3 figure

    Towards 3-Dimensional Rewriting Theory

    Full text link
    String rewriting systems have proved very useful to study monoids. In good cases, they give finite presentations of monoids, allowing computations on those and their manipulation by a computer. Even better, when the presentation is confluent and terminating, they provide one with a notion of canonical representative of the elements of the presented monoid. Polygraphs are a higher-dimensional generalization of this notion of presentation, from the setting of monoids to the much more general setting of n-categories. One of the main purposes of this article is to give a progressive introduction to the notion of higher-dimensional rewriting system provided by polygraphs, and describe its links with classical rewriting theory, string and term rewriting systems in particular. After introducing the general setting, we will be interested in proving local confluence for polygraphs presenting 2-categories and introduce a framework in which a finite 3-dimensional rewriting system admits a finite number of critical pairs

    Topological finiteness properties of monoids. Part 1: Foundations

    Full text link
    We initiate the study of higher dimensional topological finiteness properties of monoids. This is done by developing the theory of monoids acting on CW complexes. For this we establish the foundations of MM-equivariant homotopy theory where MM is a discrete monoid. For projective MM-CW complexes we prove several fundamental results such as the homotopy extension and lifting property, which we use to prove the MM-equivariant Whitehead theorems. We define a left equivariant classifying space as a contractible projective MM-CW complex. We prove that such a space is unique up to MM-homotopy equivalence and give a canonical model for such a space via the nerve of the right Cayley graph category of the monoid. The topological finiteness conditions left-Fn\mathrm{F}_n and left geometric dimension are then defined for monoids in terms of existence of a left equivariant classifying space satisfying appropriate finiteness properties. We also introduce the bilateral notion of MM-equivariant classifying space, proving uniqueness and giving a canonical model via the nerve of the two-sided Cayley graph category, and we define the associated finiteness properties bi-Fn\mathrm{F}_n and geometric dimension. We explore the connections between all of the these topological finiteness properties and several well-studied homological finiteness properties of monoids which are important in the theory of string rewriting systems, including FPn\mathrm{FP}_n, cohomological dimension, and Hochschild cohomological dimension. We also develop the corresponding theory of MM-equivariant collapsing schemes (that is, MM-equivariant discrete Morse theory), and among other things apply it to give topological proofs of results of Anick, Squier and Kobayashi that monoids which admit presentations by complete rewriting systems are left-, right- and bi-FP∞\mathrm{FP}_\infty.Comment: 59 pages, 1 figur

    Rewriting systems and biautomatic structures for Chinese, hypoplactic, and sylvester monoids

    Get PDF
    This paper studies complete rewriting systems and biautomaticity for three interesting classes of finite-rank homogeneous monoids: Chinese monoids, hypoplactic monoids, and sylvester monoids. For Chinese monoids, we first give new presentations via finite complete rewriting systems, using more lucid constructions and proofs than those given independently by Chen & Qui and Güzel Karpuz; we then construct biautomatic structures. For hypoplactic monoids, we construct finite complete rewriting systems and biautomatic structures. For sylvester monoids, which are not finitely presented, we prove that the standard presentation is an infinite complete rewriting system, and construct biautomatic structures. Consequently, the monoid algebras corresponding to monoids of these classes are automaton algebras in the sense of Ufnarovskij
    • …
    corecore