111 research outputs found

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Complete Acyclic Colorings

    Full text link
    We study two parameters that arise from the dichromatic number and the vertex-arboricity in the same way that the achromatic number comes from the chromatic number. The adichromatic number of a digraph is the largest number of colors its vertices can be colored with such that every color induces an acyclic subdigraph but merging any two colors yields a monochromatic directed cycle. Similarly, the a-vertex arboricity of an undirected graph is the largest number of colors that can be used such that every color induces a forest but merging any two yields a monochromatic cycle. We study the relation between these parameters and their behavior with respect to other classical parameters such as degeneracy and most importantly feedback vertex sets.Comment: 17 pages, no figure

    A Survey on Monochromatic Connections of Graphs

    Get PDF
    The concept of monochromatic connection of graphs was introduced by Caro and Yuster in 2011. Recently, a lot of results have been published about it. In this survey, we attempt to bring together all the results that dealt with it. We begin with an introduction, and then classify the results into the following categories: monochromatic connection coloring of edge-version, monochromatic connection coloring of vertex-version, monochromatic index, monochromatic connection coloring of total-version.Comment: 26 pages, 3 figure

    On the number of regular edge labelings

    Get PDF
    We prove that any irreducible triangulation on n vertices has O (4:6807n ) regular edge labeling,s and that there are irreducible triangulations on n vertices with (3:0426n ) regular edge labelings. Our upper bound relies on a novel application of Shearer's entropy lemma. As an example of the wider applicability of this technique, we also improve the upper bound on the number of 2-orientations of a quadrangulation to O (1:87n ). Keywords: Counting; Regular edge labeling; Shearer's entropy lemm
    • …
    corecore