286 research outputs found

    Machine learning to empower electrohydrodynamic processing

    Get PDF
    Electrohydrodynamic (EHD) processes are promising healthcare fabrication technologies, as evidenced by the number of commercialised and food-and-drug administration (FDA)-approved products produced by these processes. Their ability to produce both rapidly and precisely nano-sized products provides them with a unique set of qualities that cannot be matched by other fabrication technologies. Consequently, this has stimulated the development of EHD processing to tackle other healthcare challenges. However, as with most technologies, time and resources will be needed to realise fully the potential EHD processes can offer. To address this bottleneck, researchers are adopting machine learning (ML), a subset of artificial intelligence, into their workflow. ML has already made ground-breaking advancements in the healthcare sector, and it is anticipated to do the same in the materials domain. Presently, the application of ML in fabrication technologies lags behind other sectors. To that end, this review showcases the progress made by ML for EHD workflows, demonstrating how the latter can benefit greatly from the former. In addition, we provide an introduction to the ML pipeline, to help encourage the use of ML for other EHD researchers. As discussed, the merger of ML with EHD has the potential to expedite novel discoveries and to automate the EHD workflow

    An Efficient 1 Iteration Learning Algorithm for Gaussian Mixture Model And Gaussian Mixture Embedding For Neural Network

    Full text link
    We propose an Gaussian Mixture Model (GMM) learning algorithm, based on our previous work of GMM expansion idea. The new algorithm brings more robustness and simplicity than classic Expectation Maximization (EM) algorithm. It also improves the accuracy and only take 1 iteration for learning. We theoretically proof that this new algorithm is guarantee to converge regardless the parameters initialisation. We compare our GMM expansion method with classic probability layers in neural network leads to demonstrably better capability to overcome data uncertainty and inverse problem. Finally, we test GMM based generator which shows a potential to build further application that able to utilized distribution random sampling for stochastic variation as well as variation control

    Machine Learning for Enhanced Maritime Situation Awareness: Leveraging Historical AIS Data for Ship Trajectory Prediction

    Get PDF
    In this thesis, methods to support high level situation awareness in ship navigators through appropriate automation are investigated. Situation awareness relates to the perception of the environment (level 1), comprehension of the situation (level 2), and projection of future dynamics (level 3). Ship navigators likely conduct mental simulations of future ship traffic (level 3 projections), that facilitate proactive collision avoidance actions. Such actions may include minor speed and/or heading alterations that can prevent future close-encounter situations from arising, enhancing the overall safety of maritime operations. Currently, there is limited automation support for level 3 projections, where the most common approaches utilize linear predictions based on constant speed and course values. Such approaches, however, are not capable of predicting more complex ship behavior. Ship navigators likely facilitate such predictions by developing models for level 3 situation awareness through experience. It is, therefore, suggested in this thesis to develop methods that emulate the development of high level human situation awareness. This is facilitated by leveraging machine learning, where navigational experience is artificially represented by historical AIS data. First, methods are developed to emulate human situation awareness by developing categorization functions. In this manner, historical ship behavior is categorized to reflect distinct patterns. To facilitate this, machine learning is leveraged to generate meaningful representations of historical AIS trajectories, and discover clusters of specific behavior. Second, methods are developed to facilitate pattern matching of an observed trajectory segment to clusters of historical ship behavior. Finally, the research in this thesis presents methods to predict future ship behavior with respect to a given cluster. Such predictions are, furthermore, on a scale intended to support proactive collision avoidance actions. Two main approaches are used to facilitate these functions. The first utilizes eigendecomposition-based approaches via locally extracted AIS trajectory segments. Anomaly detection is also facilitated via this approach in support of the outlined functions. The second utilizes deep learning-based approaches applied to regionally extracted trajectories. Both approaches are found to be successful in discovering clusters of specific ship behavior in relevant data sets, classifying a trajectory segment to a given cluster or clusters, as well as predicting the future behavior. Furthermore, the local ship behavior techniques can be trained to facilitate live predictions. The deep learning-based techniques, however, require significantly more training time. These models will, therefore, need to be pre-trained. Once trained, however, the deep learning models will facilitate almost instantaneous predictions

    Machine-learning-based condition assessment of gas turbine: a review

    Get PDF
    Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machinelearning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment.This research was funded by Siemens Energy.Peer ReviewedPostprint (published version

    Degradation Vector Fields with Uncertainty Considerations

    Get PDF
    The focus of this work is on capturing uncertainty in remaining useful life (RUL) estimates for machinery and constructing some latent dynamics that aid in interpreting those results. This is primarily achieved through sequential deep generative models known as Dynamical Variational Autoencoders (DVAEs). These allow for the construction of latent dynamics related to the RUL estimates while being a probabilistic model that can quantify the uncertainties of the estimates

    Fault Detection and Diagnosis of Electric Drives Using Intelligent Machine Learning Approaches

    Get PDF
    Electric motor condition monitoring can detect anomalies in the motor performance which have the potential to result in unexpected failure and financial loss. This study examines different fault detection and diagnosis approaches in induction motors and is presented in six chapters. First, an anomaly technique or outlier detection is applied to increase the accuracy of detecting broken rotor bars. It is shown how the proposed method can significantly improve network reliability by using one-class classification technique. Then, ensemble-based anomaly detection is utilized to compare different methods in ensemble learning in detection of broken rotor bars. Finally, a deep neural network is developed to extract significant features to be used as input parameters of the network. Deep autoencoder is then employed to build an advanced model to make predictions of broken rotor bars and bearing faults occurring in induction motors with a high accuracy

    Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial

    Full text link
    On top of machine learning models, uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making by enabling sound risk assessment and management. The safety and reliability improvement of ML models empowered by UQ has the potential to significantly facilitate the broad adoption of ML solutions in high-stakes decision settings, such as healthcare, manufacturing, and aviation, to name a few. In this tutorial, we aim to provide a holistic lens on emerging UQ methods for ML models with a particular focus on neural networks and the applications of these UQ methods in tackling engineering design as well as prognostics and health management problems. Toward this goal, we start with a comprehensive classification of uncertainty types, sources, and causes pertaining to UQ of ML models. Next, we provide a tutorial-style description of several state-of-the-art UQ methods: Gaussian process regression, Bayesian neural network, neural network ensemble, and deterministic UQ methods focusing on spectral-normalized neural Gaussian process. Established upon the mathematical formulations, we subsequently examine the soundness of these UQ methods quantitatively and qualitatively (by a toy regression example) to examine their strengths and shortcomings from different dimensions. Then, we review quantitative metrics commonly used to assess the quality of predictive uncertainty in classification and regression problems. Afterward, we discuss the increasingly important role of UQ of ML models in solving challenging problems in engineering design and health prognostics. Two case studies with source codes available on GitHub are used to demonstrate these UQ methods and compare their performance in the life prediction of lithium-ion batteries at the early stage and the remaining useful life prediction of turbofan engines
    • …
    corecore