171 research outputs found

    Global Grids and Software Toolkits: A Study of Four Grid Middleware Technologies

    Full text link
    Grid is an infrastructure that involves the integrated and collaborative use of computers, networks, databases and scientific instruments owned and managed by multiple organizations. Grid applications often involve large amounts of data and/or computing resources that require secure resource sharing across organizational boundaries. This makes Grid application management and deployment a complex undertaking. Grid middlewares provide users with seamless computing ability and uniform access to resources in the heterogeneous Grid environment. Several software toolkits and systems have been developed, most of which are results of academic research projects, all over the world. This chapter will focus on four of these middlewares--UNICORE, Globus, Legion and Gridbus. It also presents our implementation of a resource broker for UNICORE as this functionality was not supported in it. A comparison of these systems on the basis of the architecture, implementation model and several other features is included.Comment: 19 pages, 10 figure

    Scientific workflow orchestration interoperating HTC and HPC resources

    Get PDF
    8 páginas, 7 figuras.-- El Pdf del artículo es la versión pre-print.In this work we describe our developments towards the provision of a unified access method to different types of computing infrastructures at the interop- eration level. For that, we have developed a middleware suite which bridges not interoperable middleware stacks used for building distributed computing infrastructues, UNICORE and gLite. Our solution allows to transparently access and operate on HPC and HTC resources from a single interface. Using Kepler as workflow manager, we provide users with the needed integration of codes to create scientific workflows accessing both types of infrastructures.Peer reviewe

    Scientific workflow orchestration interoperating HTC and HPC resources

    Get PDF
    8 páginas, 7 figuras.-- El Pdf del artículo es la versión pre-print.In this work we describe our developments towards the provision of a unified access method to different types of computing infrastructures at the interop- eration level. For that, we have developed a middleware suite which bridges not interoperable middleware stacks used for building distributed computing infrastructues, UNICORE and gLite. Our solution allows to transparently access and operate on HPC and HTC resources from a single interface. Using Kepler as workflow manager, we provide users with the needed integration of codes to create scientific workflows accessing both types of infrastructures.Peer reviewe

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Towards a lightweight generic computational grid framework for biological research

    Get PDF
    Background: An increasing number of scientific research projects require access to large-scale computational resources. This is particularly true in the biological field, whether to facilitate the analysis of large high-throughput data sets, or to perform large numbers of complex simulations – a characteristic of the emerging field of systems biology. Results: In this paper we present a lightweight generic framework for combining disparate computational resources at multiple sites (ranging from local computers and clusters to established national Grid services). A detailed guide describing how to set up the framework is available from the following URL: http://igrid-ext.cryst.bbk.ac.uk/portal_guide/. Conclusion: This approach is particularly (but not exclusively) appropriate for large-scale biology projects with multiple collaborators working at different national or international sites. The framework is relatively easy to set up, hides the complexity of Grid middleware from the user, and provides access to resources through a single, uniform interface. It has been developed as part of the European ImmunoGrid project
    corecore