
Scientific workflow orchestration interoperating

HTC and HPC Resources

Luis Cabellos, Isabel Campos, Enol Fernández-del-Castillo

{cabellos, iscampos, enolfc}@ifca.unican.es
Department of Advanced Computation and e-Science

Institute of Physics of Cantabria, CSIC

39005, Santander, Spain

Michal Owsiak, Bartek Palak, Marcin P lóciennik

{michalo, bartek, marcinp}@man.poznan.pl
Poznan Supercomputing and Networking Center

Institute of Bioorganic Chemistry PAS 61-704 Poznań, Poland

Abstract

In this work we describe our developments towards the provision of a unified
access method to different types of computing infrastructures at the interop-
eration level. For that, we have developed a middleware suite which bridges
not interoperable middleware stacks used for building distributed computing
infrastructues, UNICORE and gLite. Our solution allows to transparently
access and operate on HPC and HTC resources from a single interface. Using
Kepler as workflow manager, we provide users with the needed integration of
codes to create scientific workflows accessing both types of infrastructures.

Keywords: Scientific Workflows, Grid, High Performance Computing, High
Throughput Computing

1. Introduction

Research infrastructures dedicated to computing have grown and diversi-
fied in the scientific world substantially over the last decade. The ecosystem
of computing resources ranges from local resources at departmental and re-
search center level, either in the form of workstations or computer clusters,
up to national and international facilities run by Supercomputer Centers, or
High Performance Computers (HPC).

Preprint submitted to Computer Physics Communications September 24, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36051416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1: The structure of available computing infrastructures described as a pyramid
with high-demanding computing facilities at the cusp

From the point of view of size and utilization of resources, they can be
described with a pyramidal organization (see Figure 1). The bottom of the
pyramid forms workstations and PCs that mainly support the everyday work
of the user. Clusters (the middle layer) owned by particular institutions are
usually deployed to improve performance and/or availability over that of a
single computer, while typically being much more cost-effective than single
computers of comparable speed or availability [1]. The most powerful but
also the most expensive - HPC machines dedicated for performing massive
computation - resides on the top of the structure.

A global trend, which could be seen over the last years, is to combine
existing resources to ensure on the one hand their effective usage, on the other
hand their permanent availibility. Good example can be grid infrastructures
- constructed by assembling together the clusters of a number of research
centers interested in data and/or resource sharing for a particular research
project(s)[2].

Scientific communities have nowadays the possibility of accessing a large
variety of computing resources. HPC systems, Grid-infrastrutcures and clus-
ters are also from the conceptual, architectural and policies point of view very
different infrastructures, with its own administration and accessing mecha-
nism. The situation has evolved very heterogeneously, in such a way that it

2



is frequently the case that scientist do not have a problem with lack of re-
sources, in terms of the total amount of CPU and storage resources at their
disposal, but rather with utilization of these resources in an effective way.

A typical use case consists of a sequence of related applications process-
ing data and transferring results from one step to another, constituting so
called workflow. The flow of input/output between the different parts of the
workflow job(s) need to be automatized. This automatization is in no way
trivial when different computing infrastructures are being used at the differ-
ent stages. It is often the case that parts of the workflow need to be run, or
can be run in smaller facilities like local clusters, or distributed over HTC
resources, while other parts of the workflow need to perform an intensive
simulation involving many processes in a HPC system.

In this work, we address the joint usage of different computing infras-
tructures. For that, we have developed a middleware suite which allows
to transparently access resources based on different middlewares, in a se-
cure and controlled way, to construct workflows that facilitate the work of
researchers. The usage of this middleware allows job submission and data
access in mixed infrastructures using the UNICORE gate [4] or based on
gLite [9] and derivated middlewares. In our previous example a job would be
submitted to the Supercomputer, and after completion, output data would
be copied onto Grid storage elements or cluster facilities, for analysis, in a
complete automatized way in a different set of resources. Furthermore the
well-stablished data management tools on Grid infrastructures can be used
by all the members of the collaboration if necessary to perform a distributed
analysis.

We present a solution that provides the needed integration of the codes
using a workflow engine that is able to access the different available com-
puting infrastructures. Our solution leverages and integrates various already
existing middleware components: the Kepler [5] workflow engine provides
the framework for the integration of codes in a single and traceable workflow
that access the infrastructure using the Roaming Access Server (RAS) [6]
extended with the use of the Vine Toolkit [7]. RAS provides access to the
underlying infrastructures using gLite-based and UNICORE middlewares.
Interactive access to the resources is achieved using the i2glogin [8] applica-
tion. All these tools and their interdependencies are detailed later in this
article.

The article organizations goes as follows. We first analyze the users re-
quirements and state of the art, afterwards we describe our methodology

3



to create an interoperable access layer for computing resources, and finally
we apply the methodology and software developed to two examples in two
different research areas: Lattice QCD and Nuclear Fusion.

2. Requirements

Scientists face complex problems that require using a number and variety
of analysis tools, each of them designed for specific computing platforms, that
consume data from diverse sources, which may need conversions. This set
of heterogeneous scientific computations and data sources can be integrated
and coupled into a scientific workflow, providing researchers a traceable and
reproducible tool for solving their scientific challenges.

Researchers need a workflow management tool that facilitates this inte-
gration and provides a framework for the execution of the actions needed
to solve their problems. This tool should also permit performing additional
tasks such as computational steering and interactive monitoring or control,
that are especially useful in the early stages of the workflow design, while at
the same time the tool should allow long-living workflows to run unattended
for weeks or even months.

The workflow management tool should provide seamless access to the dis-
tributed resources and services used for the execution of the applications and
storage of data. Ideally, the different types of resources should be accessed
in a similar way from the tool and new resource types should be easily added
without major changes in the tools or the workflow definition process. The
access to the resources must be accomplished using the existing middleware
implementations that are already deployed in several computing infrastruc-
tures, namely gLite and UNICORE.

3. State of the art

Over the last few years, several Grid middleware initiatives have con-
tributed to the deployment and support distributed computing infrastruc-
tures. Midleware solutions Globus-based (like gLite [9], ARC [10] and i2g
[11]) and UNICORE-based provide the basis for the construction of environ-
ments that researchers can use for their computational needs.

However, the lack of standards or their implementations and the limited
support of each of the middlewares to very specific platforms and architec-
tures have reduced the possibility of seamless interoperation between the

4



different existing environments. Interaction between the user and target in-
frastructures is carried out using the different client tools provided by each
middleware. These tools are not interoperable between them and range from
Command Line Interfaces (CLIs) to rich graphical applications that hide the
underlying complexity of the systems (see Figure 2).

Most of the Grid resources available in Europe use the gLite middleware
or one of its extensions. gLite is a middleware developed and deployed by the
EGEE 1 project and it is focused on providing a HTC infrastructure for the
support of distributed processing of very large data volumes with sequential
batch jobs, common in High Energy Physics analysis. Initiatives like i2g,
have extented the functionality of gLite with the support for parallel and
interactive execution on the resources.

Although access to HPC systems is typically accomplished using direct
ssh login, several HPC centers in Europe use UNICORE for exposing their
resources to external users. UNICORE is a middleware that implements
some of the available standards for Grid systems in order to provide secure
and seamless access to the HPC resources.

Standard protocols of Grid middleware, which define the content and se-
quence of message exchanges used to request remote operations, have emerged
as an important and essential means of achieving the interoperability upon
which Grid systems depend. However, the support for such standards is
still limited in some of the current middleware implementations. Moreover,
the existing standards for accessing computing resources (like BES [14] and
JSDL [15]) cover basic functionality and do not provide direct support for
workflow execution.

Coupling different computational modules and applications requires co-
ordination, structures data management and resource scheduling to be per-
formed efficiently. It is precisely at this level where the problems of lack on
interoperability among different infrastructures becomes more evident.

We have analyzed the state of the art concerning existing workflow man-
agement systems in order to choose one that fits the mixed environment
needs best. After preliminary analysis of available workflow systems, three
of them were choosen for further research: Salome [12], Cactus [13], and Ke-
pler [5]. Each of them has advantages and dissadvantages that have impact
on application’s requirements.

1See http://www.eu-egee.eu

5



Figure 2: Job submission to different infrastructures

Cactus is an open source, modular, portable, programming environment
for collaborative HPC computing. It allows to develop code in F77, F90, C,
C++ and runs on a wide range of architectures and operating systems. It
is quite efficient in terms of performance, however it was ruled out due to
limited capabilities in terms of workflow building.

Salome is open source software as well. It provides strong basis for nu-
merical computations and provides a generic user-friendly interface. It allows
to integrate new components on heterogenous systems and pass computation
into external solvers using CORBA. However, CORBA is not widely used in
some of the scientific communities, limiting the possible adoption of Salome
as a generic tool. Additionaly, there is no support for accessing any grid
middleware in the current version.

Kepler is a Java based workflow system. It allows user to build and
execute scientific workflows. It provides users with efficient and user-friendly
interface, is easy to learn and allows to build complicated workflows that
include complex data flow structures. Thank’s to Java based development
it can be executed virtually anywhere - as long as a Java Virtual Machine
is available for the given architecture and/or system. Another benefit of the
Kepler engine is that it can execute a previously defined workflow in batch
mode, allowing to perform long-term executions without user interaction.

After evaluation and analysis of the workflow management systems Ke-
pler was choosen as the platform for workflow management to work on for
developing our interoperability developments.

6



Figure 3: Overall architecture of RAS/Vine/Kepler

4. Proposed Framework

The objective of our framework is to provide researchers with a user
friendly environment that allows the definition and execution of scientific
workflows where the different tasks must be able to access different resources
(both HTC and HPC) for application execution and data access without
exposing details of the middleware that drive those resources.

Figure 3 shows the overall architecture of our solution. It consists of
a client-server framework with clear separation of the different middleware
layers that allows hiding the various infrastructure behind a common and
single API. Users are presented with a Graphical User Interface (GUI) com-
posed by the Migrating Desktop [16] and the Kepler workflow engine. Both
use the Roaming Access Server (RAS) as a common access layer to the un-
derlying resources and their different midleware implementations. All these
components will be described in the following subsections.

7



4.1. A Unified Access Layer for Resources

The RAS intermediates between the client desktop applications and the
computing infrastructure with a set of well defined web services for the man-
agement of jobs and files in computing resources. RAS has a modular archi-
tecture where the access to different infrastructures is provided by specific
middleware plugins that implement the low level details of each type of re-
sources.

Access to gLite based resources is provided by two different middleware
plugins: gLite and i2g. The gLite plugin uses the gLite User Interface (UI)
commands to submit sequential and parametric jobs to resources based on
that middleware. The i2g plugin provides advanced capabilities on top of
gLite based resources. This plugin makes use of the specific int.eu.grid com-
mand line tools which access the CrossBroker [17] metascheduler for execu-
tion of parallel jobs and fast startup of prioritized applications. Furthermore,
the i2g plugin enables interactive access to Grid jobs during their execution
by integrating i2glogin into the architecture. i2glogin is a tool that is ca-
pable of creating communication channels between the application and the
user. Using i2glogin only requires outbound connectivity in the host where
the application runs. i2glogin uses the globus security features to create
a secure bi-directional data exchange channel during runtime without any
modification to the user application.

In order to provide access to HPC resources, we have developed a new
Vine Toolikit plugin. Vine Toolkit is a Java framework based on several
Open Grid Forum (OGF) 2 standards, and originally designed to work within
Web Applications containers. The production version provides support for
UNICORE 6 and Globus GT4 middlewares using a proxy based security
model. This allows the RAS to support the middleware implementations
without changing the security infrastructure of the system. The developed
plugin exposes the Vine Toolkit API through the already existing RAS Web
Services API. RAS clients in the upper layers are able to access the new types
of resources without major changes in their code, freeing the developers of
this clients from encapsulating the JSP/Servlet container that Vine Toolkit
requires or changing the security model that the UNICORE client requires.

All the middleware plugins can access common RAS features like central
repository for job management, up-to-date job status, user management,

2See http://www.ogf.org/

8



plugin management, VOMS [19] proxy management and access to LFC [20]
file catalogues. These common utilities and the uniform and well defined
services provides clients with a unified layer for submitting both serial and
parallel jobs into different types of resources.

RAS is developed in Java and uses Apache Tomcat 3 as Web Application
Server. However, the use of the gLite and int.eu.grid plugins require the
clients of those middlewares to be installed in the machine hosting the service.
Currently only Scientific Linux 4 or 5 versions of the gLite middleware are
available. A single RAS installation can handle several users from different
VOs, although the typical deployment uses one RAS per VO.

4.2. Client Tools
Users have different client tools for interacting the reosources. The Ke-

pler engine allows them to define and run their workflows, while Migrating
Desktop provides an advanced environment that hides the Grid middleware
complexity and makes the access to the resources easy and transparent.

In the Kepler workflow engine each action is represented by an actor. The
development of new actors or composite actors (blocks that can represent
whole workflows and having ability to be incorporated into another workflow
as regular actor) can be accomplished using Kepler extension mechanisms
and its Kepler Archive files (KAR). We have developed a set of actors and
composite actors that allow Kepler to access distributed infrastructures using
the RAS. These actors and a helper library with common functionality are
bundled together in a package that can be easily added to an existing Kepler
installation.

The developed actors provide the needed functionality for dealing with
the distributed infrastructure. Using those actors and a set of predefined
templates common cases, users can create complex workflows that access
HTC and HPC resources in various execution modes. The actors provided
by our package can be classified in the following areas:

Security Actors for generating proxies with or without VOMS extensions
that will be later used by the other actors to enable secure access to
resources

Job Generation These actors create the appropriate description in the
JSDL or JDL language for submitting the jobs to the resources from

3See http://tomcat.apache.org/

9



a set of basic parameters from the user (e.g. executable, arguments,
input and output files). Advanced users with deep knowledge of the
submission languages may not use the job generation actors and create
directly the descriptions.

Job Submission The job submission actors take a job description and a
user proxy and contact the RAS for the submission of the job to a
remote resource and return a unique identifier that can be used later in
other actors. Various execution modes (serial, parallel and parametric)
are supported by the job submission mechanisms.

Job Monitoring Taking a previously submitted job identifier, these actors
check the status of the job or wait until a particular state has been
reached (e.g. job is done or is aborted). They also provide the possi-
bility of resubmit the jobs if any failure is detected.

Job Output Retrieval Actors for retrieving the output and error files of
jobs previously submitted.

Remote File Access These are a set of actors that allows user to manage
files in remote locations using file catalogues (LFC).

Besides the Kepler engine, users may access RAS functionality with the
Migrating Desktop. Oriented to job based functionality, it complements the
workflow oriented Kepler with a powerful and flexible user interface that
gives easy access to resources and network file systems independently of the
system version and hardware. It allows the user to run applications and tools,
manage data files, and store personal settings independently of the location
or the terminal type. The idea of the Migrating Desktop usage is to have the
platform to start remotely and monitor different predefined Kepler workflow
scenarios.

Both Kepler and Migrating Desktop are Java applications that can be
executed in almost every system with a Java Virtual Machine. The definition
and control of the workflows is performed at the user’s desktop, while the
execution and file management is handled by the RAS on the distributed
resources on behalf of the user.

5. Workflow Scenarios

This section presents a generic scenario for mixed workflows showing the
possibilities of our proposed solution by using both HTC and HPC resources.

10



Input	
  Data	
  
upload	
  to	
  

HPC	
  

HPC	
  
Execu3on	
  

Output	
  Data	
  
upload	
  to	
  
storage	
  

Genera3on	
  of	
  
analysis	
  jobs	
  

Download	
  of	
  
analysis	
  
output	
  

HTC	
  
Execu3on	
  

HTC	
  
Execu3on	
  

HTC	
  
Execu3on	
  

HTC	
  
Execu3on	
  

Figure 4: Generic Mixed Workflow

The application use cases described in the next section take this scenario as
basis for building the workflows used by the researchers.

A use case common to several scientific areas involves the analysis of
big amounts of data that is generated by a preceding simulation. Problems
related to complex fluid dynamics, meteorology, plasma physics, quantum
chromodynamics fall clearly into this category. While the generation phase
usually requires large computing power only found in HPC systems, the
analysis phase can be performed by independent tasks that handle different
chunks of data in HTC resources.

Figure 4 shows the main actions in this mixed workflow scenario. The
first step consist in the upload of any required input data to the HPC system
that will be used for the simulation. Once this data is available, the simula-
tion application can be run according to the user defined requirements (e.g.
number of cores to use, estimated memory usage or estimated duration of the
execution). The execution can last for several days or weeks and produces
the data to be analyzed at later stages of the workflow.

Once data is produced, it is transfered to a storage system accessible to
all resources involved in the execution. This data transfer may be performed
concurrently to the execution of the simulation thus allowing to start follow-
ing steps of the workflow as soon as partial simulation results are available.
The amount of data and the characteristics of the analysis application de-
termines the number of analysis jobs that will be executed. An intermediate
step between the data transfer and the actual execution of analysis contains

11



the logic that creates the appropriate description for the jobs: either as a set
of individial jobs or as single parametric job that will spawn into different
subjobs. The details of the execution of these jobs are described in the next
section. As the HTC jobs generate the final output data, it is fetched and
stored in a accessible place by the last action of the workflow.

5.1. Execution in HTC resources

The analysis phase of the workflow is normally executed as a set of in-
dependent HTC jobs that run simultaneously using the available resources.
Each of these HTC jobs may be a stand-alone application or a complex
task composed of several interdependent steps described as a subworkflow.
Stand-alone applications range from sequential codes which use a single CPU
to parallel applications using MPI than can spawn over multiple sites.

Subworkflows are useful for complex analysis that require the execution
of different codes that depend one on each other. Researchers define the
subworkflow in their desktop by using the Kepler engine GUI and state the
number of CPUs required for its execution. This subworkflow is submitted
to the resources as a single job requesting the number of CPUs requested by
the user.

In order to manage the group of computing nodes available for the job, the
subworkflow uses the MPI-Start [18] tool. MPI-Start is a middleware layer
for starting and parallel jobs in a uniform way in heterogenous resources. It
detects the allocated machines for the job and allows the Kepler engine to
use those machines for the execution of the different tasks that comprise the
subworklow. Figure 5 shows the execution flow for the subworkflows. The job
is submitted from the RAS and it is executed on a set of worker nodes (from
WN0 to WNn). At the master node (WN0), MPI-Start constructs a list of
machines, depicted by arrow (1), and copies any input files from this WN0
to the rest of the nodes using the most appropriate method available. An
special version of Kepler without GUI (Kepler GL) is started by MPI-Start
as shown by arrow (2). This Kepler engine runs the subworkflow defined
by the researcher making use of the available machines for the execution of
different analysis applications as depicted by arrows (3).

Both types (stand-alone and subworkflows) of jobs running in gLite in-
frastructure can use the interactive features of RAS and i2glogin, allowing
the researcher to steer the behavior of the application while its running. This
might be useful for adjusting analysis parameters to reach a desired solution.
The i2glogin tool creates an interactive channel that forwards I/O from the

12



Kepler	
  GL	
  

MPI-­‐Start	
  
List	
  of	
  

machines	
  

(1) 

(2) 
Analysis	
  

Applica:on	
  

WN2 

Analysis	
  
Applica:on	
  

WN1 

Analysis	
  
Applica:on	
  

WNn 

(3) 

WN0 (“master node”) 

RAS	
  
job 

submission 

Figure 5: Execution of subworkflows in remote resources.

user desktop to the hosts where the application is executed and viceversa.
i2glogin can be used with legacy appications that read and write their tuning
options by the standard input and output streams or can be integrated in
the application logic in order to gain much better control of the execution.

6. Application Use Cases

In this section we will describe two use cases applied to two different
research areas, Lattice QCD and Nuclear Fusion.

6.1. Numerical Simulations in Lattice QCD

QCD is the theory describing the interactions between elementary par-
ticles, quarks and gluon fields. The implementation of QCD on a computer
goes by defining a space-time lattice, with side L, and spacing a, and per-
forming Monte Carlo sampling over the space of configurations defined by
the model path integral. Physical quantities are obtained by extrapolating
the results measured in the simulation to the limit a → 0

In Lattice QCD quantitative results are obtained by performing numeri-
cal simulations. The implementation of QCD on the Lattice is the only well
defined implementation of QCD in a mathematical sense, beyond perturba-
tion theory. In this sense it would produce exact results, just like if we were
able to do the calculations by hand, provided infinite computer time could
be obtained.

13



Figure 6: Kepler workflow construction for the Lattice QCD use case

Numerical investigations in Lattice QCD have traditionally been, and still
are, very expensive computationally speaking, even for the scale of modern
supercomputers. The situation is specially complicated if we want to include
the effects of the sea quarks, or light quarks, which on the other hand is the
most interesting case to simulate, since it means simulating the real world.

Experience suggests that for the example system of QCD with two flavours
the lattice spacing should not larger than 0.1 fermi and the mass of the pion
should be between 200MeV and 500Mev at most. In order to keep system-
atic errors under control this constraint implies to simulate physical lattices
larger than 3fm [21]

As an example, simulating a lattice with a = 0.05, L=3,2 fm and a Pion
mass of Mpion = 200 MeV, implies to simulate a lattice of size L=64 in
lattice spacing units, which requires a sustained computing power of about
10 sustained Teraflop/s per year. This means that the simulation of Lattice
QCD with light quarks is reserved to Supercomputers in a classical definition.

However, when it comes to storing the results, the necessities of such
simulations need to be carefully analyzed as well. Each single gauge field
configuration would require 20 GB, and the quark propagator would need
about 70 GB. One typically needs hundreds of these configurations, at dif-
ferent values of L, and also different values of the mass of the Pion, lattice
spacing a, etc... therefore ending-up with several Terabytes to handle is a
common situation in Lattice simulations.

The obtention of results with phenomenological implications is one of

14



main research lines in Lattice Gauge Theory. In this context the commu-
nity has gathered in collaborations in order to asemble enough human and
computational resources to tackle lattice phenomenology. Indeed, these in-
vestigations require being able to simulate with enough statistics for those
values of the parameters with phenomenological interest, which also happen
to be to more expensive numerically. Data analysis is therefore a collabora-
tive work, in which the members of the collaboration need to have access to
the output to analyze different properties of the gauge field configurations.

In the use case we present in figure 6, the main simulation producing the
configurations is performed in a Supercomputer. The system periodically
writes the output to a storage element, Grid-enabled, where all the members
of the collaboration have been granted access-rights. Data analysis codes,
usually serial codes, are executed using the HTC infrastructure.

We would like to remark that for those Lattice QCD problems which can
be solved using serial runs, a gLite based infrastrcuture offer by itself a good
solution, as has been shown recently [22].

6.2. Plasma Physics applied to Nuclear Fusion

The design of ITER4 requires from the Fusion simulation community
substantial effort in physics modelling and simulation, covering both a wide
range of timescales and spatial ordering which are generally very demanding
from a computational point of view.

The complete simulation of a fusion device requires the coupling of several
codes in a complex workflow. In general one considers a selection of codes
covering both edge and core physics in the fusion reactor. The requirements
of the components of the workflow are in general different, some codes, special
those related to the computation of the plasma evolution need to run on HPC
systems, others, more related with the evaluation of the properties of the
plasma are well suited for serial simulations in distributed HTC resources.

The provision of an integrated environment for fusion modelling on dis-
tributed and HPC infrastructures using a common and user friendly interface
is a very challenging problem which is receiving increasing attention (see re-
lated work in [23]).

In our example we consider the codes ASTRA[24] and TRUBA[25] to
show how is possible to couple, in a dynamical way, different codes calculating

4See http://www.iter.org

15



Figure 7: Kepler workflow construction for the Plasma Physics use case

different properties of fusion plasmas..
The code ASTRA is a parallel code which computes the evolution of

plasma configurations, while TRUBA computes the heating properties of
those plasma configurations launching of many serial jobs to analyze a par-
ticular plasma configuration. In our example the input/output data for both
codes are stored in a Grid storage element, accessible to both codes

The use case has been depicted in Figure 7. The Kepler workflow manager
is installed in the user desktop together with the user certificate. The user
submits an ASTRA job to the HPC system, where the evolution of the plasma
is being calculated, and the output configurations copied on to a Grid storage
element.

In the mean time the code TRUBA has entered into the workflow engine
as well. TRUBA jobs are submitted via RAS to the gLite infrastructure.
Those jobs read the plasma configuration produced in the HPC system by
ASTRA, and calculate some the heating properties of the plasma configu-
ration by performing a Ray Tracing which translates into the submission of
many serial jobs on the gLite infrastructure.

7. Conclusions

The proposed framework provides researchers a workflow based environ-
ment where multiple tasks can be run in different resources (both HTC and
HPC) from a user friendly interface without changes in the user habits. The

16



workflows that the researchers may execute range from the simplest one that
requires the use of a single CPU at a resource to the most demanding ones
which will need all the available platforms in order to complete the calcula-
tions in a reasonable amount of time.

These developments can be considered as a the implementation of a bridge
between different middleware stacks, namely Globus and UNICORE, to pro-
vide users with a certain unfied view of the infrastructures at the interop-
eration level. One of the main difficulties in doing it has been coping with
the different development state of Globus and UNICORE, specially concern-
ing implementation of standards. For this a number of middleware plugins,
based on standards, have been developed for the RAS, providing support to
scientific workflows via the Kepler workflow manager.

These plugins use common features to provide a unified interface to the
upper layers of the middleware stacks: a central repository for job manage-
ment, up-to-date job status, user management complying with VOMS and
access to Grid storages using different protocols (ftp/sftp/gridFTP/BFT/...).

A particularly challenging aspect has been the handling of the sometimes
complex errors coming from the infrastructure where the applications are
being run. The error messages of the middleware stacks are often too generic,
not giving enough information about the source of the problem. This has
required a very complex debug of the error analysis.

We have applied this solution to two challenging areas: Lattice QCD and
Plasma Physics, where the methodology has been applied to realistic use
cases with success.

Our developments are implemented in the context of the European Grid
Infrastructure 5 and the HPC network initiative DEISA 6. In this context we
are working hand-to-hand with the middleware developers in order to keep
this solution up-to-date with the development of the underlying middleware
stacks.

Acknowledgments

The authors thank the European Commission funding via Grant Contract
RI-211804 (EU For ITER Applications) where the use case presented for
Plasma Physics has been analyzed and Ministry of Science and Innovation of

5See http://www.egi.eu
6See http://www.deisa.eu

17



Spain funding via FPA2008-01732 (Numerical simulations on Lattice QCD
Phenomenology) where the use cases for Lattice QCD have been tested and
worked out.

[1] David A. Bader and Robert Pennington, Cluster Computing: Applica-
tions. The International Journal of High Performance Computing, 15(2),
2001, pp 181-185.

[2] I. Foster and C. Kesselman, The Grid: Blueprint for a new computing
infrastructure, Ed. Springer, 2004

[3] I. Foster, Globus Toolkit Version 4: Software for Service-Oriented Sys-
tems. International Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779, pp 2-13, 2006.

[4] Romberg, M.: The UNICORE Architecture: Seamless Access to Dis-
tributed Resources. In Proceedings of the 8th IEEE International Sym-
posium on High Performace Distributed Computing (HPDC), 1999, pp.
287–293.

[5] McPhillips, T. —Bowers, S.—Zinn, D.—Ludaescher, B.: Scientific work-
flow design for mere mortals. Future Generation Computer Systems, Vol
25, 2008, pp. 541–551.

[6] M. Kupczyk, R. Lichwaa, N. Meyer, B. Palak, M. Pciennik, M. Stroiski,
P. Wolniewicz, The Migrating Desktop as a GUI Framework for the
”Applications on Demand” Concept M. Bubak et al. (Eds.): ICCS 2004,
LNCS 3036, pp. 91-98, 2004. Springer-Verlag Berlin Heidelberg 2004

[7] Russel, M. —Dziubecki, P. —Wolniewicz, G. et al.: The Vine Toolkit:
A Java Framework for Developing Grid Applications. In Proceedings of
7th Int. Conf. on Parallel Processing and Applied Mathematics (PPAM),
Gdansk, September 2007, pp. 331–340.

[8] Rosmanith, H. —Kranzlmüller, D.: glogin - A Multifunctional, Interac-
tive Tunnel into the Grid. In Proceedings of the 5th IEEE/ACM Inter-
national Workshop on Grid Computing, Pittsburg, November 2004, pp.
266–272.

[9] Laure, E et al.: Programming the Grid with gLite. Computational Meth-
ods in Science and Technology, Vol. 12, 2006, No. 1, pp. 33–45.

18



[10] Ellert, M et al.: Advanced Resource Connector middleware for
lightweight computational Grids. Future Generation Computer Systems,
Vol 23, 2007, No. 2, pp. 219–240.

[11] J. Marco et al. The Interactive European Grid: Project objectives and
achievements, Computing and Informatics, Vol. 27, p161-173 (2008)

[12] Ribes, A. and Caremoli, C.: Salome platform component model for
numerical simulation. In Proceedings of the 31st Computer Software and
Applications Conference (COMPSAC), July 2007, vol.2, pp. 553–564.

[13] Cactus computational toolkit. Available on:
http://www.cactuscode.org/.

[14] Basic Execution Service (BES) Specification, Version 1.0.
November 2008. For a definition of the standard see
http://www.ogf.org/documents/GFD.108.pdf

[15] Global Grid Forum: Job Submission Description Language (JDSL)
Specification, Version 1.0. November 2005.

[16] M.Owsiak, B.Palak, M.P?ciennik , Graphical Framework for Grid Inter-
active and Parallel Applications, Computing and Informatics, Volume
27, pp 223-232 (2008)

[17] E. Fernandez et al. Crossbroker: A Grid Metascheduler for Interactive
and Parallel Jobs Computing and Informatics, Vol. 27, pp 187-199 (2008)

[18] K. Dichev et al. MPI Support on the Grid, Computing and Informatics,
Vol. 27, pp 213-223 (2008)

[19] Alfieri, R; Cecchini, R; Ciaschini, V, et al., From gridmap-file to VOMS:
managing authorization in a Grid environment , Future Generation
Computer Systems Volume: 21, Issue: 4, pp 549-558 (2005)

[20] Baud, JP et al. Performance analysis of a file catalog for the LHC com-
puting Grid 14th IEEE International Symposium on High Performance
Distributed Computing Proceedings Pages: 91-99 Published: 2005

[21] L. Del Debbio, L. Giusti, M. Luescher, R. Petronzio and N. Tantalo
”QCD with light Wilson quarks on fine lattices (I): first experiences and
physics results” JHEP 0702 (2007) 082

19



[22] J.T. Moscicki et al., Lattice QCD thermodynamics on the Grid, Com-
puter Physics Communications (2010), doi:10.1016/j.cpc.2010.06.027

[23] J. Cummings et al. ”EFFIS: An End-to-end Framework for Fusion Inte-
grated Simulation,” pdp, pp.428-434, 2010 18th Euromicro Conference
on Parallel, Distributed and Network-based Processing, 2010

[24] G.V. Pereverzev, P.N. Yushmanov. ”ASTRA-Automated System for
TRansport Analysis”. Max-Plack Institut für Plasmaphysik, IPP-
Report, IPP 5/98 (2002)

[25] M. Tereshchenko et al., 30th EPS Conf., ECA 27 A (2003)

20


