1,051 research outputs found

    Toward Business Integrity Modeling and Analysis Framework for Risk Measurement and Analysis

    Get PDF
    Financialization has contributed to economic growth but has caused scandals, misselling, rogue trading, tax evasion, and market speculation. To a certain extent, it has also created problems in social and economic instability. It is an important aspect of Enterprise Security, Privacy, and Risk (ESPR), particularly in risk research and analysis. In order to minimize the damaging impacts caused by the lack of regulatory compliance, governance, ethical responsibilities, and trust, we propose a Business Integrity Modeling and Analysis (BIMA) framework to unify business integrity with performance using big data predictive analytics and business intelligence. Comprehensive services include modeling risk and asset prices, and consequently, aligning them with business strategies, making our services, according to market trend analysis, both transparent and fair. The BIMA framework uses Monte Carlo simulation, the Black–Scholes–Merton model, and the Heston model for performing financial, operational, and liquidity risk analysis and present outputs in the form of analytics and visualization. Our results and analysis demonstrate supplier bankruptcy modeling, risk pricing, high-frequency pricing simulations, London Interbank Offered Rate (LIBOR) rate simulation, and speculation detection results to provide a variety of critical risk analysis. Our approaches to tackle problems caused by financial services and the operational risk clearly demonstrate that the BIMA framework, as the outputs of our data analytics research, can effectively combine integrity and risk analysis together with overall business performance and can contribute to operational risk research

    To Trust or Not to Trust? Developing Trusted Digital Spaces through Timely Reliable and Personalized Provenance

    Get PDF
    Organizations are increasingly dependent on data stored and processed by distributed, heterogeneous services to make critical, high-value decisions. However, these service-oriented computing environments are dynamic in nature and are becoming ever more complex systems of systems. In such evolving and dynamic eco-system infrastructures, knowing how data was derived is of significant importance in determining its validity and reliability. To address this, a number of advocates and theorists postulate that provenance is critical to building trust in data and the services that generated it as it provides evidence for data consumers to judge the integrity of the results. This paper presents a summary of the STRAPP (trusted digital Spaces through Timely Reliable And Personalised Provenance) project, which is designing and engineering mechanisms to achieve a holistic solution to a number of real-world service-based decision-support systems

    Using the Business Process Execution Language for Managing Scientific Processes

    Get PDF
    This paper describes the use of the Business Process Execution Language for Web Services (BPEL4WS/BPEL) for managing scientific workflows. This work is result of our attempt to adopt Service Oriented Architecture in order to perform Web services – based simulation of metal vapor lasers. Scientific workflows can be more demanding in their requirements than business processes. In the context of addressing these requirements, the features of the BPEL4WS specification are discussed, which is widely regarded as the de-facto standard for orchestrating Web services for business workflows. A typical use case of calculation the electric field potential and intensity distributions is discussed as an example of building a BPEL process to perform distributed simulation constructed by loosely-coupled services

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)
    corecore