1,026 research outputs found

    Weighted Logics for Nested Words and Algebraic Formal Power Series

    Full text link
    Nested words, a model for recursive programs proposed by Alur and Madhusudan, have recently gained much interest. In this paper we introduce quantitative extensions and study nested word series which assign to nested words elements of a semiring. We show that regular nested word series coincide with series definable in weighted logics as introduced by Droste and Gastin. For this we establish a connection between nested words and the free bisemigroup. Applying our result, we obtain characterizations of algebraic formal power series in terms of weighted logics. This generalizes results of Lautemann, Schwentick and Therien on context-free languages

    MSO definable string transductions and two-way finite state transducers

    Full text link
    String transductions that are definable in monadic second-order (mso) logic (without the use of parameters) are exactly those realized by deterministic two-way finite state transducers. Nondeterministic mso definable string transductions (i.e., those definable with the use of parameters) correspond to compositions of two nondeterministic two-way finite state transducers that have the finite visit property. Both families of mso definable string transductions are characterized in terms of Hennie machines, i.e., two-way finite state transducers with the finite visit property that are allowed to rewrite their input tape.Comment: 63 pages, LaTeX2e. Extended abstract presented at 26-th ICALP, 199

    Complete Axiomatizations of Fragments of Monadic Second-Order Logic on Finite Trees

    Full text link
    We consider a specific class of tree structures that can represent basic structures in linguistics and computer science such as XML documents, parse trees, and treebanks, namely, finite node-labeled sibling-ordered trees. We present axiomatizations of the monadic second-order logic (MSO), monadic transitive closure logic (FO(TC1)) and monadic least fixed-point logic (FO(LFP1)) theories of this class of structures. These logics can express important properties such as reachability. Using model-theoretic techniques, we show by a uniform argument that these axiomatizations are complete, i.e., each formula that is valid on all finite trees is provable using our axioms. As a backdrop to our positive results, on arbitrary structures, the logics that we study are known to be non-recursively axiomatizable

    Playing Games in the Baire Space

    Full text link
    We solve a generalized version of Church's Synthesis Problem where a play is given by a sequence of natural numbers rather than a sequence of bits; so a play is an element of the Baire space rather than of the Cantor space. Two players Input and Output choose natural numbers in alternation to generate a play. We present a natural model of automata ("N-memory automata") equipped with the parity acceptance condition, and we introduce also the corresponding model of "N-memory transducers". We show that solvability of games specified by N-memory automata (i.e., existence of a winning strategy for player Output) is decidable, and that in this case an N-memory transducer can be constructed that implements a winning strategy for player Output.Comment: In Proceedings Cassting'16/SynCoP'16, arXiv:1608.0017

    Tarski's influence on computer science

    Full text link
    The influence of Alfred Tarski on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is the work of Tarski on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, modeltheoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up

    Two-Way Visibly Pushdown Automata and Transducers

    Full text link
    Automata-logic connections are pillars of the theory of regular languages. Such connections are harder to obtain for transducers, but important results have been obtained recently for word-to-word transformations, showing that the three following models are equivalent: deterministic two-way transducers, monadic second-order (MSO) transducers, and deterministic one-way automata equipped with a finite number of registers. Nested words are words with a nesting structure, allowing to model unranked trees as their depth-first-search linearisations. In this paper, we consider transformations from nested words to words, allowing in particular to produce unranked trees if output words have a nesting structure. The model of visibly pushdown transducers allows to describe such transformations, and we propose a simple deterministic extension of this model with two-way moves that has the following properties: i) it is a simple computational model, that naturally has a good evaluation complexity; ii) it is expressive: it subsumes nested word-to-word MSO transducers, and the exact expressiveness of MSO transducers is recovered using a simple syntactic restriction; iii) it has good algorithmic/closure properties: the model is closed under composition with a unambiguous one-way letter-to-letter transducer which gives closure under regular look-around, and has a decidable equivalence problem
    • …
    corecore