712 research outputs found

    Quantifiers on languages and codensity monads

    Full text link
    This paper contributes to the techniques of topo-algebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a corresponding Reutenauer-type theorem. Our main tools are codensity monads and duality theory. Our construction hinges on a measure-theoretic characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.Comment: 30 pages. Presentation improved and details of several proofs added. The main results are unchange

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Thin MSO with a Probabilistic Path Quantifier

    Get PDF
    This paper is about a variant of MSO on infinite trees where: - there is a quantifier "zero probability of choosing a path pi in 2^{omega} which makes omega(pi) true"; - the monadic quantifiers range over sets with countable topological closure. We introduce an automaton model, and show that it captures the logic

    Quantum monadic algebras

    Full text link
    We introduce quantum monadic and quantum cylindric algebras. These are adaptations to the quantum setting of the monadic algebras of Halmos, and cylindric algebras of Henkin, Monk and Tarski, that are used in algebraic treatments of classical and intuitionistic predicate logic. Primary examples in the quantum setting come from von Neumann algebras and subfactors. Here we develop the basic properties of these quantum monadic and cylindric algebras and relate them to quantum predicate logic
    corecore