193 research outputs found

    Towards modular compilers for effects

    Get PDF
    Compilers are traditionally factorised into a number of separate phases, such as parsing, type checking, code generation, etc. However, there is another potential factorisation that has received comparatively little attention: the treatment of separate language features, such as mutable state, input/output, exceptions, concurrency and so forth. In this article we focus on the problem of modular compilation, in which the aim is to develop compilers for separate language features independently, which can then be combined as required. We summarise our progress to date, issues that have arisen, and further wor

    Modular interpreters with implicit context propagation

    Get PDF
    Modular interpreters are a crucial first step towards component-based language development: instead of writing language interpreters from scratch, they can be assembled from reusable, semantic building blocks. Unfortunately, traditional language interpreters can be hard to extend because different language constructs may require different interpreter signatures. For instance, arithmetic interpreters produce a value without any context information, whereas binding constructs require an additional environment.In this paper, we present a practical solution to this problem based on implicit context propagation. By structuring denotational-style interpreters as Object Algebras, base interpreters can be retroactively lifted into new interpreters that have an extended signature. The additional parameters are implicitly propagated behind the scenes, through the evaluation of the base interpreter.Interpreter lifting enables a flexible style of modular and extensible language development. The technique works in mainstream object-oriented languages, does not sacrifice type safety or separate compilation, and can be easily automated, for instance using macros in Scala or dynamic proxies in Java. We illustrate implicit context propagation using a modular definition of Featherweight Java and its extension to support side-effects, and an extensible domain-specific language for state machines. We finally investigate the performance overhead of lifting by running the DeltaBlue benchmark program in Javascript on top of a modular implementation of LambdaJS and a dedicated micro-benchmark. The results show that lifting makes interpreters roughly twice as slow because of additional call overhead. Further research is needed to eliminate this performance penalty

    Program Slicing Based on Monadic Semantics

    Get PDF

    Introducing a Calculus of Effects and Handlers for Natural Language Semantics

    Get PDF
    In compositional model-theoretic semantics, researchers assemble truth-conditions or other kinds of denotations using the lambda calculus. It was previously observed that the lambda terms and/or the denotations studied tend to follow the same pattern: they are instances of a monad. In this paper, we present an extension of the simply-typed lambda calculus that exploits this uniformity using the recently discovered technique of effect handlers. We prove that our calculus exhibits some of the key formal properties of the lambda calculus and we use it to construct a modular semantics for a small fragment that involves multiple distinct semantic phenomena

    Effects and Effect Handlers for Programmable Inference

    Full text link
    Inference algorithms for probabilistic programming are complex imperative programs with many moving parts. Efficient inference often requires customising an algorithm to a particular probabilistic model or problem, sometimes called inference programming. Most inference frameworks are implemented in languages that lack a disciplined approach to side effects, which can result in monolithic implementations where the structure of the algorithms is obscured and inference programming is hard. Functional programming with typed effects offers a more structured and modular foundation for programmable inference, with monad transformers being the primary structuring mechanism explored to date. This paper presents an alternative approach to programmable inference, based on algebraic effects, building on recent work that used algebraic effects to represent probabilistic models. Using effect signatures to specify the key operations of the algorithms, and effect handlers to modularly interpret those operations for specific variants, we develop three abstract algorithms, or inference patterns, representing three important classes of inference: Metropolis-Hastings, particle filtering, and guided optimisation. We show how our approach reveals the algorithms' high-level structure, and makes it easy to tailor and recombine their parts into new variants. We implement the three inference patterns as a Haskell library, and discuss the pros and cons of algebraic effects vis-a-vis monad transformers as a structuring mechanism for modular imperative algorithm design. It should be possible to reimplement our library in any typed functional language able to emulate effects and effect handlers

    Interaction Trees: Representing Recursive and Impure Programs in Coq

    Get PDF
    "Interaction trees" (ITrees) are a general-purpose data structure for representing the behaviors of recursive programs that interact with their environments. A coinductive variant of "free monads," ITrees are built out of uninterpreted events and their continuations. They support compositional construction of interpreters from "event handlers", which give meaning to events by defining their semantics as monadic actions. ITrees are expressive enough to represent impure and potentially nonterminating, mutually recursive computations, while admitting a rich equational theory of equivalence up to weak bisimulation. In contrast to other approaches such as relationally specified operational semantics, ITrees are executable via code extraction, making them suitable for debugging, testing, and implementing software artifacts that are amenable to formal verification. We have implemented ITrees and their associated theory as a Coq library, mechanizing classic domain- and category-theoretic results about program semantics, iteration, monadic structures, and equational reasoning. Although the internals of the library rely heavily on coinductive proofs, the interface hides these details so that clients can use and reason about ITrees without explicit use of Coq's coinduction tactics. To showcase the utility of our theory, we prove the termination-sensitive correctness of a compiler from a simple imperative source language to an assembly-like target whose meanings are given in an ITree-based denotational semantics. Unlike previous results using operational techniques, our bisimulation proof follows straightforwardly by structural induction and elementary rewriting via an equational theory of combinators for control-flow graphs.Comment: 28 pages, 4 pages references, published at POPL 202

    Layer by layer - Combining Monads

    Full text link
    We develop a method to incrementally construct programming languages. Our approach is categorical: each layer of the language is described as a monad. Our method either (i) concretely builds a distributive law between two monads, i.e. layers of the language, which then provides a monad structure to the composition of layers, or (ii) identifies precisely the algebraic obstacles to the existence of a distributive law and gives a best approximant language. The running example will involve three layers: a basic imperative language enriched first by adding non-determinism and then probabilistic choice. The first extension works seamlessly, but the second encounters an obstacle, which results in a best approximant language structurally very similar to the probabilistic network specification language ProbNetKAT
    corecore