503 research outputs found

    Learning to Model and Plan for Wheeled Mobility on Vertically Challenging Terrain

    Full text link
    Most autonomous navigation systems assume wheeled robots are rigid bodies and their 2D planar workspaces can be divided into free spaces and obstacles. However, recent wheeled mobility research, showing that wheeled platforms have the potential of moving over vertically challenging terrain (e.g., rocky outcroppings, rugged boulders, and fallen tree trunks), invalidate both assumptions. Navigating off-road vehicle chassis with long suspension travel and low tire pressure in places where the boundary between obstacles and free spaces is blurry requires precise 3D modeling of the interaction between the chassis and the terrain, which is complicated by suspension and tire deformation, varying tire-terrain friction, vehicle weight distribution and momentum, etc. In this paper, we present a learning approach to model wheeled mobility, i.e., in terms of vehicle-terrain forward dynamics, and plan feasible, stable, and efficient motion to drive over vertically challenging terrain without rolling over or getting stuck. We present physical experiments on two wheeled robots and show that planning using our learned model can achieve up to 60% improvement in navigation success rate and 46% reduction in unstable chassis roll and pitch angles.Comment: https://www.youtube.com/watch?v=VzpRoEZeyWk https://cs.gmu.edu/~xiao/Research/Verti-Wheelers

    Desert RHex Technical Report: Jornada and White Sands Trip

    Get PDF
    Researchers in a variety of fields, including aeolian science, biology, and environmental science, have already made use of stationary and mobile remote sensing equipment to increase their variety of data collection opportunities. However, due to mobility challenges, remote sensing opportunities relevant to desert environments and in particular dune fields have been limited to stationary equipment. We describe here an investigative trip to two well-studied experimental deserts in New Mexico with D-RHex, a mobile remote sensing platform oriented towards desert research. D-RHex is the latest iteration of the RHex family of robots, which are six-legged, biologically inspired, small (10kg) platforms with good mobility in a variety of rough terrains, including on inclines and over obstacles of higher than robot hip height. For more information: Kod*La

    Approximate Reasoning for Safety and Survivability of Planetary Rovers

    Get PDF
    © 2003 Elsevier Science B.V.DOI: 10.1016/S0165-0114(02)00228-2Operational safety and health monitoring are critical matters for autonomous planetary rovers operating on remote and challenging terrain. This paper describes rover safety issues and presents an approximate reasoning approach to maintaining vehicle safety in a navigational context. The proposed rover safety module is composed of two distinct behaviors: safe attitude (pitch and roll) management and safe traction management. Fuzzy logic implementations of these behaviors on outdoor terrain is presented. Sensing of vehicle safety coupled with visual neural network-based perception of terrain quality are used to infer safe speeds during rover traversal. In addition, approximate reasoning for self-regulation of internal operating conditions is briefly discussed. The core theoretical foundations of the applied soft computing techniques is presented and supported by descriptions of field tests and laboratory experimental results. For autonomous rovers, the approach provides intrinsic safety cognizance and a capacity for reactive mitigation of navigation risks

    ON TRAVERSABILITY COST EVALUATION FROM PROPRIOCEPTIVE SENSING FOR A CRAWLING ROBOT

    Get PDF
    Traversability characteristics of the robot working environment are crucial in planning an efficient path for a robot operating in rough unstructured areas. In the literature, approaches to wheeled or tracked robots can be found, but a relatively little attention is given to walking multi-legged robots. Moreover, the existing approaches for terrain traversability assessment seem to be focused on gathering key features from a terrain model acquired from range data or camera image and only occasionally supplemented with proprioceptive sensing that expresses the interaction of the robot with the terrain. This paper addresses the problem of traversability cost evaluation based on proprioceptive sensing for a hexapod walking robot while optimizing different criteria. We present several methods of evaluating the robot-terrain interaction that can be used as a cost function for an assessment of the robot motion that can be utilized in high-level path-planning algorithms

    A Near-to-Far Learning Framework for Terrain Characterization Using an Aerial/Ground-Vehicle Team

    Get PDF
    In this thesis, a novel framework for adaptive terrain characterization of untraversed far terrain in a natural outdoor setting is presented. The system learns the association between visual appearance of different terrain and the proprioceptive characteristics of that terrain in a self-supervised framework. The proprioceptive characteristics of the terrain are acquired by inertial sensors recording measurements of one second traversals that are mapped into the frequency domain and later through a clustering technique classified into discrete proprioceptive classes. Later, these labels are used as training inputs to the adaptive visual classifier. The visual classifier uses images captured by an aerial vehicle scouting ahead of the ground vehicle and extracts local and global descriptors from image patches. An incremental SVM is utilized on the set of images and training sets as they are grabbed sequentially. The framework proposed in this thesis has been experimentally validated in an outdoor environment. We compare the results of the adaptive approach with the offline a priori classification approach and yield an average 12% increase in accuracy results on outdoor settings. The adaptive classifier gradually learns the association between characteristics and visual features of new terrain interactions and modifies the decision boundaries

    Systems for Safety and Autonomous Behavior in Cars: The DARPA Grand Challenge Experience

    Get PDF
    corecore