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Operational safety and health monitoring are critical matters for autonomous plan­
etary rovers operating on remote and challenging terrain. This paper describes rover 
safety issues and presents an approximate reasoning approach to maintaining vehicle 
safety in a navigational context. The proposed rover safety module is composed of 
two distinct behaviors: safe attitude (pitch and roll) management and safe traction 
management. Fuzzy logic implementations of these behaviors on outdoor terrain is 
presented. Sensing of vehicle safety coupled with visual neural network-based per­
ception of terrain quality are used to infer safe speeds during rover traversal. In 
addition, approximate reasoning for self-regulation of internal operating conditions 
is briefly discussed. The core theoretical foundations of the applied soft computing 
techniques is presented and supported by descriptions of field tests and laboratory 
experimental results. For autonomous rovers, the approach provides intrinsic safety 
cognizance and a capacity for reactive mitigation of navigation risks. 
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1 Introduction 

To explore the surface of planet Mars, NASA uses mobile robots that are 
designed to rove across the surface in search of clues and evidence about the 
history of the planet. These planetary rovers have mobility characteristics 
that are sufficient for traversing rough and rugged terrain containing hazards 
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such as extreme slopes, sand or dust-covered pits, ditches, cliffs and otherwise 
impassable surfaces. To consistently avoid these mobility hazards and when 
necessary, negotiate challenging terrain, they must continuously assess the 
safety of traversal and take autonomous reactive measures to maintain vehicle 
safety and nominal operation. 

Many existing autonomous mobility systems focus on strategic navigation 
goals and disregard intrinsic vehicle safety and health monitoring [1,2J. These 
issues are often treated as secondary research concerns relative to the more 
popular problems of motion control, navigation, mapping, and planning. Ve­
hicle health and safety are primary concerns, however, in field mobile robot 
research for remote applications. In rover systems that do incorporate some 
level of health monitoring [3,4], the common practice is to consider basic mon­
itoring of individual hardware components for proper operation, without in­
corporating explicit autonomous reaction or counter-action by the rover. Few 
field mobile robot systems have been reported in the literature that feature 
efficient implementation of active countermeasures for both vehicle health and 
safety in a comprehensive fashion. Ultimately, such comprehensive systems are 
desired to increase rover survivability. Before this can be achieved a number 
of challenges must be addressed. 

Complete observability of all relevant states, events, and terrain features that 
affect rover safety is rare in practice. New strategies must be considered that 
are effective in situations of limited observability and uncertain information. 
In addition, space flight missions require the use of space flight-qualified or 
radiation-hardened electronics that will survive and operate in the harsh tem­
perature and radiation extremes of outer space and at planets with thin at­
mospheres. These constraints on rover computing hardware cannot be met by 
most commercially available electronics. The computers that are available for 
space systems are typically limited in speed, processing power, and memory ca­
pacity relative to today's generic desktop computers. Hence, the solution space 
is restricted to efficient and compact embedded applications. This situation 
intensifies the need for innovative rover computing solutions. New strategies 
are needed that enable the necessary on-board autonomy in compliance with 
the practical limitations and constraints. 

In the face of these challenges, we have concentrated on developing new strate­
gies for using approximate reasoning to implement intuitively simple solutions 
to safe mobility. The solutions incorporate fuzzy logic techniques that enable 
intelligent control with modest computational overhead. The utility of fuzzy 
logic techniques has been proven for solving aspects of the popular mobility 
problems [2J. We show that the same underlying fuzzy logic and control tech­
niques used for strategic navigation can also be applied to provide capabilities 
for robot health monitoring and safety. Approximate reasoning is adopted to 
address this problem due to the necessity to process uncertain environmental 

2 



information and to compensate for sensing and perception limitations of the 
rover. The tolerance of fuzzy logic to imprecision and uncertainties in sensory 
data is particularly appealing for outdoor rover navigation because of the in­
evitable inaccuracies in measuring physical quantities using low-power sensors, 
and interpreting sensory data using modest processing power. At the control 
level, interpolation properties of fuzzy sets and logical inference are exploited 
to realize smooth reactions to unsafe vehicle configurations. In addition to 
efficiency in computing and control robustness, our strategy is motivated by 
a desire to emulate human judgment and reasoning as derived from off-road 
driving heuristics [5]. Fuzzy logic is a convenient choice for endowing a com­
puting system with human-like algorithmic reasoning capabilities. 

This paper describes hybrid soft computing solutions aimed at providing built­
in safety and survivability behaviors for planetary rovers. Fuzzy logic tech­
niques and neural networks are employed to construct intelligent safety behav­
iors that enable safe and reliable autonomous navigation in remote challeng­
ing terrain. We provide descriptions of these techniques, as well as the visual 
perception algorithms that complement the approximate reasoning approach. 
The following sections provide a brief overview of the navigation system sup­
ported by the safety module, and describe relevant rover safety and health 
issues. Next, a fuzzy logic approach to vehicle safety reasoning is presented 
that provides intrinsic safety cognizance and a capacity for reactive mitigation 
of navigation risks. Field test and experimental results are also presented. 

2 Overview of navigation system 

Rough and rugged outdoor terrain can be difficult to traverse even for a human 
driver of an off-road vehicle. The difficulty of the problem increases by orders of 
magnitude for an autonomous rover. Nonetheless, human driver performance 
is a worthy goal to strive for in the design of a rover navigation system. In part, 
we have sought to develop fuzzy inference systems that emulate the judgment 
and reasoning of a cautious human driver. The resulting safe navigation system 
is comprised of the various modules and components shown in Fig. 1. With 
the exception of the low-level rover motion control system, each component 
is implemented using soft computing techniques - primarily fuzzy reasoning 
and control along with artificial neural networks, embedded within a behavior­
based structure. The system consists primarily of modules dedicated to rover 
safety reasoning and strategic navigation control. These are accompanied by 
associated perception and actuation functionality. The strategic navigation 
module handles mission and goal-directed motion from place to place. The 
safety reasoning module, which is the focus of this paper, ensures vehicle 
survivability and operational health. 
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Fig. 1. Organization of navigation system. 

We have adopted a fuzzy behavior-based approach [6] to implement knowledge­
based reasoning and control components. For this work each safety component, 
or behavior, represents a mapping from perceptions to actions aimed at achiev­
ing a given desired objective. Safety behaviors are encoded as fuzzy rule-bases 
that perform mappings from different subsets of the available sensor suite to 
set-points for common actuators. If X and U are input and output universes 
of discourse of a safety behavior with a rule-base of size n, the fuzzy IF-THEN 
rule takes the following form 

I F x is Ci THEN u is Ai (1) 

where x and u represent input and output fuzzy linguistic variables, respec­
tively, and Ci and Ai (i = 1,2, ... , n) are fuzzy subsets denoting linguistic 
values of x and u, which represent possible conditions and actions. In our 
case, the input x refers to sensory data; u refers to safe rover speed recom­
mendations which serve as set-points for low-level classical PID motor con­
trollers. Equation 1 will be used to emulate a typical rule that expresses the 
actions taken by a cautious human driver based on the prevailing vehicle and 
road conditions. Fuzzy safety behaviors are synthesized as a finite set of such 
rules. In the sequel, we discuss our intuitive approach to reasoning about rover 
safety, followed by implementation details of each safety behavior. 

3 Approximate reasoning for rover safety 

Approximate reasoning facilitates processing of uncertain environmental infor­
mation acquired by sensors on the rover, and thus, compensation for sensing 
and perception limitations of the rover. As an early step toward providing 
basic elements necessary for comprehensive rover health and safety, we con­
sider the chassis attitude and the terrain surface type as prominent factors 
that affect rover survivability. Available power and internal operating temper­
ature are also important as health indicators. We shall first discuss the basic 
approximate reasoning used to self-regulate power and internal temperature, 
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Fig. 2. Fuzzy sets for homeostasis-related measurements. 

and later point out the main safety concerns related to chassis attitude and 
terrain surfaces. 

The amount of power available to a rover system is perhaps the strongest 
indicator of its operational health. While solar energy absorbed by a chassis­
mounted solar panel is the primary power source for planetary rovers, some 
systems have the luxury of a backup battery that is rechargeable via the solar 
panel. This facilitates regulation of available on-board power. Since designing 
space electronic systems in which all key components share common operat­
ing temperature ranges is a non-trivial task, internal temperature regulation 
is often necessary during rover operations. The implementation of homeostatic 
power and temperature regulatory mechanisms is only briefly considered at 
this stage, guided by examples described in [7,8] but implemented using fuzzy 
sets. In particular, we define a health or operational readiness metric, ORM, 
as a fuzzy relational function of battery charge level Battery and internal chas­
sis temperature Temp. This ORM is used as a basis for making intelligent 
decisions about homeostatic regulation. As an example, consider the ORM as 
a linguistic variable represented by fuzzy sets with labels LOW, HIGH. Also, 
consider the fuzzy sets in Fig. 2 defined over appropriate universes of discourse 
for Battery (normalized) and Temp. These fuzzy sets permit formulation of 
decision rules such as: IF Battery is HIGH AND Temp is NOMINAL, THEN 
ORM is HIGH. Status conditions for which the consequent proposition of 
this rule does not apply, i.e., 0 RM is LOW, signal a need to execute ac­
tivities such as temperature regulation and/or battery charging. In this way, 
intelligent self-regulation decisions can be made based on the imprecise states 
of relevant linguistic variables. Examples of the most basic homeostasis activ­
ities/ decisions are: 

• IF Battery is LOW, stop vehicle motion to recharge batteries via the solar panel. 
• IF Temp is TOO-HIGH, stop vehicle motion to cool down, or turn on internal fans. 
• IF Temp is TOO-LOW, turn on internal heater(s). 

In addition to active maintenance of internal health, it is necessary to au­
tonomously react to the external effects caused by physical interactions be­
tween the rover and rugged terrain. The attitude (pitch and roll) of the vehicle 
chassis with respect to an inertial reference frame can be monitored in order to 
avoid instabilities associated with ascent/descent of slopes, traversal of rocky 
terrain, and turning subject to vehicle curvature constraints. The type and 
condition of the terrain surface also provides clues for safety assessment. Hu­
man automobile drivers are able to perceive certain road conditions (e.g., oil 
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slicks, potholes, and ice patches) as measures of safety, and react to them in 
order to reduce the risk of potential accidents. In a similar manner, rover po­
tential safety can be inferred and reacted to based on knowledge of the terrain 
type or surface condition. 

The safety module employs concise fuzzy control behaviors that provide ap­
proximate reasoning to facilitate maintenance of stable vehicle attitude and 
wheel traction on rough terrain that is very local to the rover. Note that the 
strategic navigation module (via the traverse-terrain behavior, Fig. 1) handles 
the more forward-looking function of ensuring that the rover does not attempt 
to traverse terrain regions perceived to have excessive roughness and/or slope 
[9J. Off-road driving heuristics are used by the safety module to facilitate avoid­
ance of hazardous vehicle configurations and excessive wheel slippage. In each 
case, the system is designed to produce safe speed recommendations associ­
ated with the current perception of the physical safety status of the rover. The 
result is a rover safety and survival subsystem composed of two fuzzy safety 
behaviors: attitude management and traction management. These subsystems 
are discussed in the ensuing sections. 

4 Safe attitude behavior 

Relative to the indoor mobile robot case, mobility and navigation problems for 
outdoor rough terrain vehicles are characterized by significantly higher levels 
of difficulty and increased measurement uncertainty. This is due to the fact 
that complex motions outside of the ground plane occur quite frequently as the 
vehicle traverses undulated terrain, encountering multi-directional impulsive 
and resistive forces throughout. In addition, common mobility and navigation 
sensors often inadequately handle the tremendous variability of surface fea­
tures and properties of outdoor terrain. Despite these complications, sufficient 
measures must be taken to maintain upright stability of the vehicle. 

For monitoring chassis attitude, a two-axis inclinometer/tilt sensor can be 
used to measure pitch and roll angles relative to a Cartesian reference frame 
that is aligned with the rover chassis coordinate frame when the vehicle rests 
on a level surface. With such a sensor, perhaps the simplest approach is to stop 
rover motion when either axis senses tilt beyond a critical threshold. In a few 
instances this "wait and see" binary approach may be sufficient. More often 
than not, however, dynamic effects such as momentum will quickly defeat the 
simplest approach and cause the rover to reach marginal stability (a point 
at which the vehicle begins to tip over), or worse yet, to actually tip-over. 
Even though planetary rovers typically drive at low speeds (e.g., maximum 
average speed of ~ 0.3 m/ s), more sophistication is required beyond binary 
threshold reactions. Instead of allowing the vehicle to wait for the roll or 
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Table 1 
Speed Control Heuristics for Off-Road Driving 

Vehicle or driving condition Recommended speed 

Vehicle pitch/roll Proportional to pitch/roll 

Vehicle maximum pitch/roll reached Zero (or very slow) 

Driving uphill with high traction Slow 

Driving uphill with low traction Moderate (to avoid irrecoverable wheel slippage) 

Driving downhill Moderate (to avoid wheel sliding) 

Driving with low traction (on slippery terrain) Very slow (to minimize wheel slippage) 

pitch to build up to a dangerous threshold before reacting, we have elected to 
formulate a safety strategy in which the recommended safe speed for the rover 
is gradually modulated in reaction to changes in attitude. When the rover 
travels on a relatively level surface, a maximum safe speed is recommended. 
As pitch and/or roll approaches extremes near marginal stability, gradual 
red uctions in safe speed are recommended (culminating at halted motion). At 
attitudes between these extremes, recommended safe speeds are computed by 
interpolation via fuzzy sets and logical inference. 

By considering various off-road driving heuristics as a knowledge base for 
traversing rock-fields, and hills (up-, down-, and side-hill) [5], a set of fuzzy 
logic rules is formulated to maintain stable rover attitudes for safe navigation. 
Table 4 lists some of the heuristics for off-road speed control that are reflected 
in the fuzzy control rules for attitude management and traction management 
(discussed later). The allowable ranges of pitch and roll are partitioned (based 
on subjective assessment of the problem and the vehicle specifications) by 
fuzzy sets to express the approximate nature of the measurements. 

The fuzzy set membership functions and fuzzy logic rule base for the stable 
attitude control behavior are shown in Fig. 3, where the rover speed v is 
the output and the rover pitch q; and roll p are the inputs. In the figure, 
positive and negative are abbreviated by "NEG" and "POS", respectively. 
Vehicle pitch is represented by five fuzzy sets, while roll is partitioned using 
three fuzzy sets. Finer granularity of fuzzy subset partitions is used for pitch 
since the wheelbase (front-rear wheel distance) of our test vehicle is smaller 
than its track (left-right wheel distance) and therefore, the vehicle is more 
sensitive to pitch than to roll. Pitch and roll states are used to infer rover 
speed, which is represented by three fuzzy sets as shown in Fig. 3. Bounds on 
the allowable ranges for attitude measurements are chosen in accordance with 
the rover stability constraints and the level of acceptable risk. A static stability 
analysis of a low-speed vehicle yields the critical attitude angles corresponding 
to the maximum slopes (longitudinal and lateral) that the vehicle could stand 
on without tipping over. These are the actual critical pitch/roll angles that 
correspond to marginal stability. As an added safety measure, they are scaled 
down using scalar safety factors to determine the bounds (q;max and pmax in 
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Fig. 3. Safe attitude membership functions and rules. 

Fig. 3) that constrain the universe of discourse. The maximum allowable speed 
Vmax is specified according to the application. This design results in a safe 
attitude behavior that responds early to pitch/roll extremes before marginal 
stability is reached. The rules in Fig. 3 were derived from interpretation of the 
off-road driving heuristics of Table 4. In addition to these rules, a crisp rule 
is applied to set rover speed to zero in the extreme cases when near-marginal 
stability is reached and the safest reaction is to stop its motion. However, 
in contrast to the binary threshold scheme mentioned earlier, as marginal 
stability is approached the rover speed is smoothly decreased to near zero due 
to the interpolation provided by the fuzzy logic rules. 

5 Safe traction behavior 

In the absence of some measure of control, wheeled vehicles are prone to loss 
of traction under certain terrain conditions. On dry paved roads, traction per­
formance is maximal for most wheeled vehicles due to the high coefficient of 
friction/adhesion between the road and the tread. On off-road terrain, how­
ever, a variety of surface types are encountered on which rover wheels are 
susceptible to slippage. Loss of traction due to excessive wheel slippage can 
lead to wheel sinkage and ultimately vehicle entrapment. Frequent loss of trac­
tion during a traverse from one place to another will also detract significantly 
from the ability to maintain good position estimates. To improve rover per­
formance, a mechanism for regulating or mitigating wheel slippage is highly 
desirable. 

5.1 Sensing and perception issues 

Traction control is a common problem in automobile and general transporta­
tion vehicle design with a variety of effective solutions. Solutions are often 
derived from analyses based on the following equation for wheel slip ratio, As, 
which is defined non-dimensionally as a percentage of vehicle forward speed, 
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v [10]: 

As = (1 - _v_) x 100 
rwww 

(2) 

Here, r w is the wheel radius and Ww is the wheel rotational speed. Equation 2 
expresses the normalized difference between vehicle and wheel speeds. When 
this difference is non-zero, wheel slip occurs. The objective of traction control 
is to regulate As to maximize traction. This is a relatively straightforward reg­
ulation task if v and Ww are both observable. The wheel rotational speed Ww 

is typically available from shaft encoders or tachometers. However, it is often 
difficult to measure the actual over-the-ground speed v for off-road wheeled 
vehicles. Nonlinearities and time-varying uncertainties due to wheel-ground in­
teractions further complicate the problem. Effective solutions have been found 
for automotive applications. In fact, fuzzy logic is a common tool for anti-lock 
(deceleration) and anti-slip (acceleration) control as demonstrated in recent 
work [11~13]. In these cases, measurement of v is facilitated by the even sur­
face on which the vehicle travels, or by special sensing arrangements. In [11], 
an accelerometer is used to measure vehicle speed and the slip ratio is esti­
mated based on deceleration of the four wheels. In [12], the measurement of 
vehicle speed is facilitated by the use of magnetic markers alongside the road 
in an intelligent highway automation system. In this case, the vehicle speed 
is measured according to travel time between markers. For application to an 
electrically driven locomotive, the solution in [13] makes use of a model of 
the friction-slip relationship, which is fixed for the wheel-rail interaction. On 
outdoor terrain, the friction-slip relationship varies with surface type. In large 
part, the available solutions are not directly transferable to off-road vehicle 
applications in which the terrain is uneven as opposed to being relatively fiat, 
as is the case for automobiles and locomotives. 

The use of an accelerometer to measure off-road vehicle speed is problem­
atic since the gravity effects of traversing longitudinal and lateral slopes will 
interfere with the measurement. For an accelerometer used to measure hori­
zontal acceleration, any off-horizontal vehicle tilt will be sensed as a change 
in acceleration; as a result, the integrated velocity will be in error. This is 
realized in [14] where an alternative traction control concept for rovers is con­
sidered. In that case, a non-driven "free wheel" is proposed for measuring 
actual over-the-ground vehicle speed. Alternative ground speed sensors in­
clude laser and microwave Doppler effect velocimeters, which can be oriented 
toward the ground ahead of the vehicle. These have yet to be evaluated by the 
authors for compliance with the various practical rover constraints on power 
and mass, as well as the characteristics of errors caused by frequent wheel 
reactions to rough terrain. Another promising solution is proposed for rovers 
with an articulated chassis, which enables active control of the vehicle center 
of gravity. For those vehicles, the use of accelerometers in conjunction with 
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rate gyroscopes is suggested [15]. 

In our work, we have elected to take a simple linguistic approach that does 
not rely on accurate sensing of over-the-ground vehicle speed. Instead, vi­
sual perception of terrain texture is used to infer an appropriate speed of 
traversal. Results from traction tests performed on the actual rover are used 
to determine appropriate speeds for a variety of potential surface types. In 
particular, the rover is tested on different terrain surfaces (e.g., sand, gravel, 
densely packed soil, etc.) to determine the maximum speeds achieved before 
the onset of wheel slippage. These tractive speeds are designated by fuzzy 
linguistic labels CAUTIOUS, SUBDUED, NOMINAL to be discussed later. 
Given this information, commanded vehicle speed can be modulated during 
traversal based on visual classification of the terrain surface type in front of 
the rover. This is analogous to the perception-action process that takes place 
when a human driver notices an icy road surface ahead and decelerates to 
maintain traction. For a rover, such speed modulation allows management of 
traction by mitigating the risk of wheel slippage. The approach is similar in 
spirit to other fuzzy logic and dynamic feedback control methods [16,17] pro­
posed for appropriately distributing wheel motor torques to improve traction, 
albeit, after the onset of wheel slip. 

Given the results of actual traction tests, the formulation of fuzzy logic rules to 
achieve speed modulation is relatively straightforward. The success of the trac­
tion management approach depends more heavily on the ability to perceive and 
classify the various terrain surface types. The problem of off-road surface type 
identification is formidable for systems equipped with only proximity sensors, 
range-finders, and/or tactile probes. However, visual image-based classifica­
tion has been found to be particularly promising [18]. We will now describe an 
artificial neural network solution to this problem that provides qualitative in­
formation about the expected surface traction of terrain immediately in front 
of the rover. This information is used to infer tractive rover speeds via fuzzy 
inference. 

5.2 Visual traction classification 

Distinct terrain surfaces reflect different textures in visual imagery. The abil­
ity to associate image textures to terrain surface properties such as traction, 
hardness, or bearing strength has clear benefits for safe autonomous naviga­
tion. To provide this capability, we make use of an on-board camera pointed 
such that its field-of-view (FOV) covers the ground area in front of the rover 
as illustrated in Fig. 4. The automated method of classifying terrain surface 
type is based on a texture analysis approach using an artificial neural network 
(ANN) - "a computational structure inspired by the study of biological neu-
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Fig. 4. Camera mounted on rover. 

ral processing." With appropriate training, ANNs can be used to represent 
arbitrary input-output relationships. Based on typical surfaces that the rover 
may encounter, three different texture prototypes are selected to train a neural 
network: sand, gravel, and compacted soil. The method involves identifying 
the different textures by implementing the following strategy: 

• Extract a set of 40 X 40 image blocks from imagery data. 
• Reduce image data dimensionality using orthogonal sub-space projection. 
• Train a neural network classifier on a set of texture prototypes projected on the eigenvector set. 
• During run-time, feed projected texture images to trained neural network. 
• Extract texture prototype output from network and classify ground surface type. 

Assuming the section of the image just ahead of the front wheels is free of 
obstacles, a set of 40 x 40 pixel image blocks is randomly selected from a 
camera image of size 320 x 280 pixels. To reduce the large data dimensionality 
inherent in typical vision-based applications, a filtering step is performed using 
a standard technique called Principal Component Analysis (PCA) [19]. PCA 
is a linear optimal method for reducing data dimensionality by identifying the 
axis about which the desired feature set varies the most. This orthogonal sub­
space projection of the image subset permits effective extraction of features 
embedded in the surface image data set in real time. This technique reduces 
the dimensionality of the image set while preserving as much of the signal as 
possible. PCA computes a set of orthonormal eigenvectors (filters) of a data set 
that captures the greatest correlation between features. The filters associated 
with a given feature set are derived from the distribution of potential dynamic 
features embedded in the images. To characterize the distribution of these 
features, the covariance matrix, R, is found for image subsets containing the 
desired dynamic features. The following eigenvector problem is solved to derive 
the set of filters, w, used in our algorithm to maximize the greatest correlation 
between features: 

Rw = AW (3) 

A total of 30 eigenvectors are used to reduce the 40 x 40 image block (1600 
pixel values) to a pattern set of 30 values (Fig. 5). This reduced data set is 
then used to train an ANN (Fig. 6) to associate texture with several surface 
types. For our algorithm, the network output provides the qualitative infor­
mation needed to make any necessary adjustments to wheel speed in order 
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Fig. 5. Texture prototype eigenvectors. Fig. 6. ANN for surface classification. 

Fig. 7. Terrain surface images classified by the ANN. 

to maintain traction on the classified surface. After training the network on 
typical image data representing different surface prototypes, we utilize it to 
classify the surface types during run-time. Fig. 7 shows several images of real 
terrain data properly classified by the trained ANN; these images were not 
included in the data set used to train the ANN. 

5.3 Speed control for traction management 

The ANN is trained to provide texture prototype outputs in the unit interval 
[0, 1], with 0 corresponding to surfaces of very low traction (e.g., ice) and 1 
corresponding to surfaces of very high traction (e.g., dry cement). This is a 
design decision motivated by a desire to establish some intuitive correlation 
to actual wheel-terrain coefficients of friction. In this way, we can make a 
qualitative association between output of neural networks and expected terrain 
traction in front of the rover. We will refer to the texture prototype output as 
the traction coefficient, denoted by Ct. 

Wheel-terrain friction coefficients for a variety of tread and surface types are 
widely published in the literature on vehicle mechanics. However, published 
friction coefficients for identical tread and surface types vary from source to 
source. This is due to the fact that measured values depend heavily on the 
variety of tests and test conditions from which they are generated. Neverthe­
less, common ranges of friction coefficients for given tread and surface types 
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Fig. 8. Fuzzy sets for traction coefficient. 

are widely agreed upon. The following are typical estimates of the friction 
coefficients for rubber tires on various surfaces [10,20]: icy road/snow (0.1), 
sand (0.3), slippery/wet road (0.4), hard unpaved road (0.65), grass (0.7), dry 
paved road (0.8-1.0). 

Given the uncertainty in associating exact friction coefficients with certain 
terrain surface types, and the loose correlation provided by the traction co­
efficient using neural networks, we elect to reason about traction using fuzzy 
logic. The range of traction coefficients, [0,1], obtained from the ANN is par­
titioned using three fuzzy sets as shown in Fig. 8. Based on these definitions, 
the following simple fuzzy logic rules are applied to manage rover traction on 
varied terrain: 

• IF Ct is LO\tV, THEN v is CAUTIOUS. 
• IF Ct is MEDIUM, THEN v is SUBDUED. 
• IF Ct is HIGH, THEN v is NOMINAL. 

Thus, this design dictates modulation of safe speeds in proportion to expected 
terrain traction in front ofthe rover. While the membership functions for CAU­
TIOUS, SUBDUED, NOMINAL are defined on the same universe of discourse 
as SLOW, MODERATE, FAST (see Fig. 3), the supports of these membership 
functions span different subsets of the universal set of rover speeds. However, 
the shapes of the membership functions for the rover speed are similar to those 
shown in Fig. 3. 

It is noted that for traction management, the membership functions for the 
rover speed v are based on results of prior traction tests described in Sec­
tion 5.1. Thus, membership function definitions are vehicle-dependent and 
reflect knowledge derived from non-slip speeds achieved when the vehicle was 
tested on various terrain surfaces. For best results, traction tests should be 
performed on surfaces that represent the expected roughness, hardness, and 
slope variations of the rover operating environment. Indeed, rover attitude on 
sloped terrain influences traction. Relationships between attitude and trac­
tion are evident in the last several heuristics listed in Table 4, and these are 
reflected in the rules of the safety behaviors. Although our solution decouples 
reasoning about attitude and traction, the overall vehicle response is deter­
mined by combining reactions to both as discussed in the next section. Also 
of note is the fact that the neural network could have been trained to map its 
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inputs directly to the actual range of tractive speeds (rather than the range 
of Ct). However, in this approach fuzzy inference serves to account for uncer­
tainties in both the surface classification and the subsequent specification of 
tractive speed. 

6 Coordinating fuzzy safety behaviors 

The rover speed recommendations inferred by the stable attitude and trac­
tion behaviors are used to compute a resultant safe speed recommendation, 
vsafe, which is issued at each control cycle. Individual safety behavior recom­
mendations can be combined using several alternative computations on crisp 
or fuzzy set outputs. We describe two computational formulations employed 
in our work. Perhaps the simplest, most conservative and cautious approach 
is to compare the crisp (defuzzified) outputs of the stable attitude and trac­
tion behaviors, and select the minimum of the two as vsafe. In this way, the 
safety module recommends the slowest rover speed that is expected to mit­
igate wheel slip and maintain a stable attitude. However, by making use of 
defuzzified safety behavior outputs before computing the resultant recommen­
dation, a certain amount of useful information is lost from the control decision 
process. Each rule base produces a resultant fuzzy set from the aggregation 
of individual fuzzy logic rule consequents. The output fuzzy set of each safety 
behavior represents a possibility distribution of preferential safe speeds for 
maintaining either attitude or traction. When defuzzified independently, the 
useful information contained in each possibility distribution is collapsed into 
a single crisp number. The minimum of the crisp outputs then determines the 
preference for achieving the dual objectives of maintaining stable attitude and 
traction for the rover. In some cases this approach may be overly conservative, 
forcing the vehicle to exhibit a timid behavior and traverse terrain at very slow 
speeds in situations where extreme caution is not warranted. This could have 
the effect of trading off reasonable mission/task execution duration for overly 
cautious behavior. It can be argued, as the saying goes, that it is better to 
be safe than sorry. This is true; however, we can do better while still main­
taining acceptable levels of risk. The richer body of information contained in 
each possibility distribution can be fully exploited by fusing the fuzzy behav­
ior outputs using fuzzy set theoretic computations to produce resultant safe 
speed recommendations as formally explained below. 

6.1 Behavior fusion 

Each rover safety behavior is synthesized as a set of n fuzzy rules of the form 
given by Equation 1, where we recall that X and U are the input and output 
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universes of discourse, respectively. Formally, the output of the i-th fuzzy rule 
is represented by a fuzzy relation, Ui E X x U, which is a fuzzy set itself. 
Moreover, the output of the fuzzy rule-base can be characterized as a single 
fuzzy relation, V, which is a union of fuzzy relations Ui, i = 1,2, ... , n. The 
output of a fuzzy behavior then, can also be represented as a fuzzy set, which 
in this case is a possibility distribution of safe speed preferences reflecting the 
point of view of a given safety behavior. 

Let VA and VT represent the fuzzy outputs of the stable attitude and traction 
behaviors, respectively. Each of these fuzzy behavior outputs is represented by 
a possibility distribution, which contains information that is useful for deciding 
what the most appropriate safe speed should be. In order to make full use of 
the information produced by the safety behaviors, we aggregate their fuzzy 
outputs to yield a resultant fuzzy set, Vs = VA U VT. This aggregated fuzzy set 
represents a consensus ofthe preferences of each contributing behavior [21,22]. 
Defuzzification to compute vsaJe is deferred until after the aggregation takes 
place. 

Jupvs(u) 
vsaJe = J _ ( ) ; Vu E U 

PVs u 
(4) 

While this fusion of behavior outputs allows control decision-making by con­
sensus, we can also impose a bias towards the preferences of one behavior over 
the other by introducing scalar weights to express relative importance. Since 
we consider the maintenance of stable attitude to be more important than 
traction losses for the rover, we tailor the behavior fusion formulation such 
that the following holds, 

(5) 

with aA > aT. Thus, fuzzy outputs of the safety behaviors are modulated 
according to relative importance in Equation 5 and used to compute recom­
mended safe rover speeds using Equation 4. The fuzzy set union of behavior 
output recommendations often results in an overlapping of portions of and 
VA and VT. When so-called weight counting defuzzification [23] methods are 
employed, membership values in the overlapping region are counted twice 
- once for VA and once for VT. This ensures that all safe speed preferences 
recommended by both behaviors are factored into the control decision, thus 
forming a true consensus. In Equation 5, we elect to aggregate the modulated 
fuzzy outputs using a t-conorm that will preserve the information contributed 
by each behavior. The arithmetic sum t-conorm, and hence, Center-of-Sums 
defuzzification [23], has been chosen for this purpose due to its weight count­
ing property. Mizumoto refers to this fuzzy control reasoning method as the 
product-sum-gravity method, and describes the weight counting concept as 
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an emphatic effect on the fuzzy inference result [24J. The arithmetic sum, as 
an aggregation operator, affords a behavior coordination strategy that retains 
and uses all available information from the individual output fuzzy sets. It is 
argued in [24J that this method produces more intuitive control results than 
the commonly used min-max-gravity method due to Mamdani [25J. Using 
Equations 4 and 5 with fuzzy union by the arithmetic sum, the crisp control 
recommendation issued at each control cycle by the safety module is computed 
as follows. 

(6) 

In this formulation, we have used multiplicative weights to express the rela­
tive importance of the safety behaviors in the aggregated control decision. In 
general, operators other than multiplication can be used to achieve a similar 
effect. Yager [26J refers to such operators as importance transformations and 
suggests a general class of them for both t-norm and t-conorm aggregations. 
Similar ideas have been formally expressed in the more general context of 
multi-attribute decision-making [27J. 

6.2 Navigation system interface 

As mentioned earlier, in the context of the overall navigation system, the 
safety reasoning module focuses on vehicle survivability and health, while the 
strategic navigation module focuses on mission and goal-directed motion from 
place to place [9J. The control interface between the safety module and the 
strategic navigation module is depicted in Fig. 9. The internal structure of 
the safety module is shown as well, where the speed decision block can be 
configured for behavior fusion (Equation 6) or the more conservative minimum 
speed selection described earlier. As shown in the diagram, the overall safe 
speed recommended by the safety module is compared to the strategic speed 
recommendation. The smaller of the two is taken as the safest speed and is 
issued as the commanded set-point v for translational motion control. Note 
that the commanded rotational velocity w of the rover is unaffected by Vsafe 

in the current implementation. 

Determination of Vsafe is independent of the behavior fusion process used to 
compute strategic navigation speeds that result from recommendations issued 
by the navigation behaviors (see Fig. 1) [9J. This is an important feature, as 
it allows recommended safe speeds to override strategic speeds, if necessary, 
to ensure vehicle safety. This effect is achieved by the "min" operation on 
resultant safe speed and resultant navigation speed. The argument presented 
above regarding intra-module loss of information when using the "min" op-
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Fig. 9. Safety and strategic navigation control interface. 

erator on crisp behavior outputs does not hold at the module interface. This 
is due to the fact that behaviors within a given module recommend actions 
toward a shared multi-objective goal- vehicle safety in one case and strategic 
navigation in the other. So while it is possible to fuse fuzzy behavior outputs 
across all modules, such that safety behavior outputs are fused with naviga­
tion behavior outputs, this is not recommended. Such a distribution of speed 
control across all system behaviors makes it difficult to ensure that the inter­
behavioral interactions will yield an overall safe speed of traversal [28]. 

7 Field tests and experimental results 

In this section, we describe two field tests and associated laboratory experi­
ments performed to evaluate the effect of the safe attitude and traction behav­
iors. The first test considers reactions to rover pitch and roll during traversal. 
The second test is concerned with mitigation of wheel slippage. As a test rover, 
we used the Pioneer All-Terrain (AT) mobile robot platform, a commercially 
available robot designed for rough terrain mobility. The rover hardware is 
enhanced with additional on-board computing (Pentium II laptop), a vision 
system for real-time terrain assessment, and a tilt sensor (see Fig. 10). The 
Crossbow Technology, Inc. model CXTA02 inclinometer is used, which has a 
±75° range and 0.05° resolution. The ground-facing camera on the front of 
the rover is mounted 0.3m above the ground, tilted downward 45° with a 45° 
FOV. This camera enables surface traction classification (cameras for strategic 
navigation are mounted on the raised platform). 

1.1 Safe attitude test 

An obstacle-free swath of undulated terrain is chosen to test the safe attitude 
behavior. The rover is commanded to traverse the swath with and without 
the behavior activated. Without active safe attitude management, the rover 
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Fig. 10. Pioneer-AT rover with enhancements. 

Fig. 11. Effect of stable attitude control. 

traverses the terrain at a nominally fast speed recommended by the strategic 
navigation system based on the fact that no significant obstacles are present. 
With active attitude management, the rover traverses the terrain at various 
reduced speeds in response to changes in its pitch and roll according to the 
fuzzy logic rules in Fig. 3. This reactivity reduces the risk of approaching 
marginal tilt stability, which leads to tip-over. It also enhances the ability of 
rigid-suspension vehicles (such as the Pioneer-AT) to maintain wheel contact 
with the ground. A comparative effect of the stable attitude behavior is shown 
in Fig. 11. The left picture corresponds to the test without active attitude 
management; it shows a case where the rover's rear-right wheel loses contact 
with the ground. The right picture shows the rover at the same approximate 
location with all wheels in contact with the ground while actively modulating 
its speed to maintain stable attitude. 

To further illustrate the effect of safe attitude management, we exercise the 
component in a laboratory experiment where the rover traverses a swath of 
terrain for 10 meters. Synthetic attitude measurements are generated by si­
nusoidal functions of random amplitude to emulate changes in pitch and roll 
experienced on a hypothetical undulated and rough terrain. The amplitudes 
are uniformly distributed random numbers bounded by the maximum stable 
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Fig. 12. Speed modulation for attitude management. 

pitch and roll of the rover. It is assumed that the strategic navigation mod­
ule recommends a constant normalized speed of 75% (of maximum allowable 
speed) throughout the traverse. The results of this experiment are shown in 
Fig. 12 in plots of pitch, roll, and vsafe (normalized) versus distance. The 
strategic speed is shown in the speed-distance plot as a dashed line. Observe 
that vsafe is modulated low in response to near-extreme attitudes. This is 
most apparent when both pitch and roll are simultaneously large in magni­
tude. Also observe that vsafe is consistently lower than the strategic speed, 
thus exhibiting the caution of the safety module in reaction to cognizance of 
vehicle safety. 

1.2 Safe traction test 

A similar comparative field test and laboratory experiment is performed to test 
safe traction management. A benign portion of terrain comprising two distinct 
surface types (hard compacted soil and gravel) is chosen on which the rover 
will be susceptible to wheel slippage when traversing the surface transition at 
nominally fast speeds. The scenario is depicted in Fig. 13 where the rover is 
about to transition from a hard compacted soil to gravel surface. The rover 
is commanded to traverse the transition with and without the safe traction 
management behavior activated. Without active traction management, the 
rover traverses the terrain at a nominally fast speed. With active traction 
management, the rover reduces its speed upon encountering a surface of lower 
perceived traction (as classified by the vision-based ANN described earlier) 
according to the fuzzy logic rules presented in Section 5.3. This reactivity 
mitigates the risk of excessive wheel slippage during transitions between, and 
traversal on, surfaces of different traction characteristics. 
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Fig. 13. Rover approaching surface type transition. 

Fig. 14. Speed modulation for traction management. 

To further illustrate the effect of the safe traction management, we exercise the 
component in a laboratory experiment where the rover traverses a 12 meter 
swath of terrain consisting of different surface types for which the traction 
coefficient Ct is 0.5 for 5m, 0.2 for 3m, and 0.9 for 4m. We assume, for the 
sake of discussion, that these values correspond to sand, gravel, and concrete, 
and that the surface texture camera has a ground surface view horizon out to 
0.3m in front of the rover wheels. In this experiment, the strategic navigation 
module recommends a constant normalized speed of 80% throughout the 12m 
traverse. The result is shown in Fig. 14 where the-iIi:1ction coefficient and 
recommended rover speeds are plotted versus distance. The images of the three 
terrain surface types corresponding to distance are inset in the figure as well. 
As expected, changes in perceived traction result in reactive management of 
the safe speed recommended by the safe traction behavior to avoid the risk of 
excessive wheel slippage. Note that our laboratory experiment accounts for a 
reaction delay between classification of the surface type and the actual change 
in set-points for Vsafe. As in the previous example, Vsafe is consistently lower 
than the strategic speed, thus exhibiting the caution of the safety module in 
reaction to cognizance of changing "road" condition. 

8 Discussion and conclusions 

For rover operation over extended time and distance, some capacity for built-in 
safety and health cognizance is required. The necessary capacity must support 
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real-time navigation and the complete system must be realizable in practical 
rover computing hardware. This paper describes how a nominal level of safety 
assurance can be achieved with intuitive fuzzy logic rules for approximate 
reasoning and intelligent control. Basic approximate reasoning is used for self­
regulation of power and internal temperature to actively maintain operational 
health. Safe attitude and traction management behaviors of the safety module 
combine to provide active countermeasures to potential vehicle tip-over and 
excessive wheel slippage. Initial tests in outdoor fields validate the utility of 
the proposed approach. However, additional laboratory and field testing is 
warranted to obtain statistical performance ratings with respect to a larger 
variety of terrain types and field conditions. 

The safety module presented herein is limited in that, currently, it only con­
siders a subset of relevant vehicle health and safety indicators that effect off­
road robotic vehicles. Additional indicators requiring active countermeasures 
include component failures, potential chassis high-centering, wheel sinkage, 
and vehicle dynamic constraints. Closer attention should be paid to dynamic 
stability, particularly when applying the approach for faster vehicles than typ­
ical planetary rovers. The effectiveness of the traction management approach 
depends upon the nominal speed of rover traversal, the perceptual FOV of 
the ground-facing camera, and the speed at which the image processing can 
be done to support the neural network traction classifier. The computational 
speed at which traction classifications can be made must be fast enough to 
allow effective speed control reactions at the rover's nominal speed. Due con­
sideration of these additional effects, within observability constraints of the 
system, should be the focus of future enhancements. 

U sing the proposed approach, the capabilities presented in this paper can be 
combined with appropriate countermeasures to additional health and safety 
conditions. This will lead to survivable rover systems that are of practical use 
for performing long-duration missions involving traversal over challenging and 
high-risk terrain. 
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