137 research outputs found

    Moments of Conditional Sojourn Times in Finite Capacity M/M/1/N-PS Processor Sharing Queues

    Get PDF
    Cataloged from PDF version of article.Moments of sojourn times conditioned on the length of an admitted job are derived for a finite capacity M/M/1/NPS processor sharing queue. The mean conditional sojourn time is given in closed form whereas an expression is provided for the conditional variance in such systems involving matrix-vector operations

    Decomposing the queue length distribution of processor-sharing models into queue lengths of permanent customer queues

    Get PDF
    We obtain a decomposition result for the steady state queue length distribution in egalitarian processor-sharing (PS) models. In particular, for an egalitarian PS queue with KK customer classes, we show that the marginal queue length distribution for class kk factorizes over the number of other customer types. The factorizing coefficients equal the queue length probabilities of a PS queue for type kk in isolation, in which the customers of the other types reside \textit{ permanently} in the system. Similarly, the (conditional) mean sojourn time for class kk can be obtained by conditioning on the number of permanent customers of the other types. The decomposition result implies linear relations between the marginal queue length probabilities, which also hold for other PS models such as the egalitarian processor-sharing models with state-dependent system capacity that only depends on the total number of customers in the system. Based on the exact decomposition result for egalitarian PS queues, we propose a similar decomposition for discriminatory processor-sharing (DPS) models, and numerically show that the approximation is accurate for moderate differences in service weights. \u

    On Sojourn Times in the Finite Capacity M/M/1M/M/1 Queue with Processor Sharing

    Full text link
    We consider a processor shared M/M/1M/M/1 queue that can accommodate at most a finite number KK of customers. We give an exact expression for the sojourn time distribution in the finite capacity model, in terms of a Laplace transform. We then give the tail behavior, for the limit KK\to\infty, by locating the dominant singularity of the Laplace transform.Comment: 10 page
    corecore