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Rob van der Mei en René Bekker. Ik wil jullie graag bedanken voor het feit dat ik met
problemen altijd bij jullie terecht kon en voor jullie enthousiasme, waarmee ik altijd
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Chapter 1

Introduction

In this thesis we study multi-class queueing models. In general, queueing models
provide a natural means to describe the phenomenon of congestion, and find many
applications in everyday life. Examples of such applications range from systems with
visible congestion where people are waiting in line (e.g., grocery stores, amusement
parks, road networks) to systems with queueing at a more abstract level (e.g., call
centers, communication networks, manufacturing, computer systems). The main en-
tities in queueing models are nodes, which consist of one or more shared servers, some
amount of buffer space (finite or infinite), and customers (or jobs) that arrive at no-
des and require some amount of service. We will use the terms customers and jobs
interchangeably. Queueing models typically describe the arrival process of customers
at each node, the service-time distributions, the routing of customers and servers be-
tween the nodes, and the service process, describing the way the server capacity is
shared among the customers present at a node.

In a multi-class queueing model the customers can be of different types. Each type of
customers typically has its own arrival process, routing scheme and service process.
Figure 1.1 gives a representation of a basic, single-node, single-server, multi-class
queueing model. Different customer classes may be treated differently by the server.

..
.

Arrivals

Server

Service process

Figure 1.1: A basic single-node multi-class queue.
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FCFS First-Come-First-Served serves jobs in the order of arrival.
LCFS Last-Come-First-Served serves the job that arrived most recently,

without preemption.
LCFS-PR Last-Come-First-Served with preemptive resume serves the job that

arrived most recently preempting the job currently in service.
ROS Random Order of Service randomly selects a job from the jobs that

are waiting.
PS Processor Sharing serves all jobs simultaneously at the same rate.
DPS Discriminatory Processor Sharing serves all jobs simultaneously,

but at different rates per class.
NPRIOR n-class priority regime serves jobs within the highest priority class

first, continuing with other priority classes as long as no jobs with
higher priority are present. Jobs within the same priority class are
served in the order of arrival.

NPRIOR-PR n-class priority regime with preemptive resume serves jobs with
higher priority first, preempting jobs with lower priority which are
already in service, jobs within the same priority class are served
FCFS.

SJF Shortest-Job-First non-preemptively serves the job in the system
with the smallest original service time.

SRPT Shortest-Remaining-Processing-Time preemptively serves the job
with the shortest remaining processing time.

Table 1.1: A brief description of the scheduling policies discussed in this thesis.

For example, customers within a ‘high’ class might have (relative) priority over custo-
mers of ‘lower’ classes. It is also possible that a server needs some amount of (possibly
zero) switch-over time to be set up for a different class. The server serves one class
of customers at a time and switches between the classes.

There are many types of multi-class queues and they have received much attention in
the literature. In this thesis we study a variety of multi-class queueing models. We are
primarily interested in gaining fundamental understanding of the intrinsic behavior of
these queues; some of the multi-class queues that we study are inspired by a specific
application.

In the remainder of this chapter, we describe the most common multi-class queues
and give some background and motivation specific to the models appearing in this
thesis. We will conclude the chapter with an overview of this thesis.
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1.1 Types of multi-class queues

Multi-class queueing models arise in modeling processes that involve congestion in
many application areas. In general, anything that separates the jobs into groups
leads to different job types. This separation could be based on job lengths, arrival
rates, priorities, ability of the server to serve the jobs, or a combination of those. The
most suitable type of queueing model to use is mainly defined by the way the different
job types are handled. Possible ways to handle different job types are:

� Ignore the job types and serve jobs one by one (regular queue).

� Ignore the job types and serve all jobs simultaneously, giving all of them an
equal share of the server’s capacity (Processor Sharing queue).

� If there are precedence relations, always serve jobs with the highest priority first
(priority queue).

� Prioritize based on job lengths, typically shorter jobs get priority (Shortest-Job-
First queue).

� Serve all jobs simultaneously, giving more of the server’s capacity to certain job
types (Generalized/Discriminatory Processor Sharing queue).

� Only serve jobs of one type for a while, then move to the next type (polling
model).

Below we describe how these decisions lead to different multi-class queueing mo-
dels.

Queueing notation We consider a single-node, single-server queueing model with
infinite queue size and N different customer classes (see Figure 1.1). Most chapters in
this thesis are based on this setting. The arrival process of type-i jobs is typically a
Poisson process with rate λi, i = 1, . . . , N . The service-time distribution of type-i jobs
is general, with (finite) mean E[Bi], i = 1, . . . , N . The scheduling policy prescribes in
what order the arriving jobs are served. Possible scheduling policies are described in
Table 1.1. The scheduling policies partly specify the type of multi-class queue. The
first four policies do not consider job types, while the last four lead to priority queues.
Processor Sharing types of queues are discussed separately.

Priority queue The priority queue is a common way to model systems with diffe-
rent types of jobs that differ in priority. Jobs belonging to a class with higher priority
get served before jobs belonging to a lower priority class. This can be done preempti-
vely and non-preemptively. With preemptive priority, an arriving higher priority job
can interrupt a lower priority job, and the higher priority job is taken into service
immediately. With non-preemptive priority, the service of a job in process is always
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finished first, before a new job is taken into service. We note that SJF and SRPT can
also be interpreted as priority queues, where priority is based on the (remaining) job
size.

Polling model In a polling model, the different customer types are considered to
arrive in different queues. The server only serves one queue at a time and switches
between the queues to serve all customers. Such a model arises, e.g., when the server
needs to be set up before it can serve a certain job type. Modeling decisions are when
to switch to the next queue, which queue to serve next, and the order of service within
each queue (as in Table 1.1).

Processor Sharing queue In a Processor Sharing (PS) queue, all job types are
served simultaneously, instead of only serving one job type at the same time (as in e.g.
priority queues). In a classical PS queue, all jobs that are present at a node fairly share
the available amount of service capacity; this is referred to as Egalitarian Processor
Sharing (EPS). Processor Sharing is advantageous for the overall system performance
since short jobs will not be extremely delayed by long jobs and long jobs will also
be served continuously (in contrast to SJF and SRPT). Just like with the priority
queue, we can assign priorities to the different classes. Depending on its type, a job
could receive more or less of the server’s capacity than another job. Important jobs
will receive more server capacity and consequently will be served (relatively) faster.
Dividing the server’s capacity between the different jobs can be done in different ways.
The first way is referred to as Discriminatory Processor Sharing (DPS), where each
job gets a share of the server capacity based on its type and the total number of jobs
in the system. Another possibility is giving each job type a share of the capacity
based on the total number of types in the system. Within each type, the available
capacity is either divided equally between the jobs of that type, or only one job per
type gets served. This is referred to as Generalized Processor Sharing (GPS). We refer
to [142] and references therein for an overview and literature on this topic.

1.2 Background and motivation

In this section we discuss three relevant classes of multi-class queueing models that
are directly related to the models in this thesis. For each class of models, we give a
description, some applications and some references to relevant literature.

1.2.1 Polling model

The basic polling model is a single-server, multi-queue system, where the server visits
the queues in some order to serve customers pending at the queues. This is depicted in
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Figure 1.2: A basic polling model.

Figure 1.2. We note that multi-server polling models are also possible, but are much
more challenging to analyze [33; 137], so we restrict ourselves to single-server models.
The most important features of a polling model are the possibility to serve a single
type of job, while ‘ignoring’ the other types, and the switch-over times. These features
distinguish the polling model from the other multi-class queueing models.

There are three decisions that need to be made about the service of the customers
present in the system. The routing policy describes the order in which the queues are
visited by the server. The most commonly used routing policy is cyclic routing, where
all queues are visited once and in the same order every cycle. A natural generalization
of cyclic routing is periodic routing, where the server visits the queues periodically
according to a routing table (of finite length). This way some queues can be visited
more frequently than others. Other routing policies are probabilistic routing (proceed
to queue j with probability pj), Markovian routing (proceed from queue i to queue j
with probability pij) and dynamic, state-dependent routing policies (e.g., serve longest
queue).

The service discipline specifies the duration of a visit of the server to a queue. Com-
monly used examples of service disciplines are:

� Exhaustive: Serve the queue until it is empty.

� Gated: Serve all jobs that were present in the queue at the ‘polling instant’,
i.e., the beginning of a visit of the server to a queue.
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� Globally gated: During a cycle, serve all jobs that were present in the system
at the ‘polling instant’ of the first queue.

� K-limited: Serve at most K jobs or until the queue is empty (whichever occurs
first).

� Time-limited: Serve at most t time units or until the queue is empty (whiche-
ver occurs first).

We would like to point out, that both the K-limited policy and the time-limited
policy are hard to analyze, because they do not satisfy the branching property [69;
121]. Polling models using these policies can be analyzed using heuristics or iterative
methods (see, e.g., [4; 68; 143]).

Finally, each queue can have its own local scheduling policy that determines the order
in which the jobs at the queues are served (see Table 1.1 for an overview).

Polling models find many applications in areas like computer-communication systems,
production systems, manufacturing systems, inventory systems and robotics (see [32]
for an extensive overview). The classical application is the machine repairman model
[107; 108], where the repairman visits a fixed number of machines in cyclic order,
checks them and repairs them if necessary. Other examples of applications are Blu-
etooth and 802.11 protocols, scheduling policies at routers, and I/O subsystems in
web servers [81; 138].

Motivated by their wide applicability, polling models have been extensively studied
over the past few decades; see [151] for an overview of the state-of-the-art. We refer to
[28; 144] and references therein for more recent publications on polling models.

1.2.2 Processor Sharing queue

Originally, the PS queue was introduced as an idealized round robin system, i.e., a
system where all jobs present are served cyclically one by one for a small amount
of time. In the limit, when the amount of time that each job receives service goes
to zero, this leads to a PS system. By adding weights (i.e., weighted round robin),
the resulting system can be modeled with a DPS queue. A DPS model is a multi-
class queueing model where all the customers are served simultaneously. Customers of
classes with higher weights get a larger fraction of the server’s capacity than customers
of classes with lower weights. It is not guaranteed that high priority jobs will finish
before low priority jobs, since this is also influenced by the length of the jobs and the
total number of jobs present. For this reason, we have relative priority, instead of
strict priority. The advantage over strict priority is that low priority jobs will receive
service even when many high priority jobs are present. DPS queues are introduced by
Kleinrock [96], who compares it with First-Come-First-Served disciplines. A graphical
representation of a DPS queue is given in Figure 1.3.
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Type 1 

Type 2 

Type 3 

Type N 

. . . 

. . . 

Figure 1.3: A DPS queue.

In a PS queue, the distribution of the queue length is geometric and depends only
on the load and is insensitive to the distribution of the service time beyond its mean.
In a DPS queue, the queue-length distribution depends on the complete service-time
distribution, making the DPS model substantially more difficult to analyze. Analysis
of DPS models with general service requirements are hardly found in the literature,
and always make use of some limiting regime (e.g., time-scale decomposition, over-
load).

Applications of DPS models are mainly found in, communication networks and com-
puters. In communication networks, the feedback mechanism in the TCP protocol
causes the system to behave like a (D)PS queue, since the acknowledgments are more
delayed if there are more jobs in the network. (D)PS models are also frequently used
to model the behavior of the CPU in computers, where threads with different prio-
rity levels compete for access to the shared processing unit. Applications of DPS in
communication networks are also discussed in [6; 46; 48; 76; 83]. Surveys of results
on DPS queues are given in [7; 35]. We refer to [63; 112] and references therein for
an overview of results and applications for PS queues.

1.2.3 Priority queues

In a pioneering paper, Cobham [49] introduced a queue with multiple priority classes
that arrive according to a Poisson process. In case of a single server, the service time
distribution is general, but for multiple servers, the service times are exponentially
distributed. The result is the mean waiting time for each priority type. The higher
the priority of the jobs, the lower their waiting time. Priority queues are hard to
analyze in general. Cohen [53, Chapter III.3] uses transforms to analyze some special
cases of M/G/1 priority queues, including two-class priority queues with preemptive
resume and preemptive repeat and general priority queues with preemptive resume.
In this subsection, we describe two special cases of priority queues that are motivated
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..
.

Figure 1.4: A blended system with two classes, the second class has infinite supply.

by applications in call centers and health care. For these models, we are specifically
interested in the tail probabilities of the waiting time.

Blended systems The first type of priority queue is a blended system. We con-
sider a system with two job types requiring different service levels (i.e., performance
measures); type-1 jobs need to be handled as soon as possible after their arrival,
while type-2 jobs need to be handled within a reasonable, but much longer, time
frame. Such a differentiation in service levels for the two classes can be achieved in
multiple ways. On the one hand, the system can be decoupled such that specialized
or dedicated servers handle a single type of traffic. On the other hand, (part of the)
servers can be cross-trained or multi-functional to handle both types; this is known
as blending. The advantage of the latter is that the system may benefit from server
flexibility. The benefits of such blended systems are discussed in [116]. Note that the
decoupled approach can be analyzed as multiple single-class systems.

The blended model is motivated by call centers. Nowadays, call centers (or, more
accurately, contact centers) are facing different sources of customer contacts, such as
contacts by phone, email, call backs, and chats. An example of type-1, or ‘urgent’,
jobs are inbound calls. Type-2 (‘best effort’) jobs could, for example, be emails or
outbound calls. We assume that type-1 jobs arrive according to an arrival process,
while we assume that there is an infinite supply of type-2 jobs for tractability of the
analysis. This model is depicted in Figure 1.4.

Although the blended queueing model is largely motivated by call and contact cen-
ters, we envisage that mixing urgent and best effort traffic plays a prominent role in
other domains. Within the health care domain, specifically in hospitals, two types of
patients are typically distinguished: acute and scheduled (or elective) patients. Acute
patients should be treated as soon as possible, whereas scheduled patients can wait
for some amount of time and can be classified as best effort (the literature is exten-
sive by now, but see the papers in [59; 79] for an impression). A similar distinction
applies to the activity level of patients: when patients are in need of care, a swift re-
sponse is required [57]. However, many activities have a less time-pressing character,
including scheduled care activities and administrative duties. In the nursing home
setting, this is referred to as ‘care on demand’ which is activated by pressing a button
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< L
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Figure 1.5: A level-dependent queue with two classes, the second class has infinite
supply.

and ‘care by appointment’, including activities as ‘giving medicine’ and ‘help with
getting out of bed’ [139]. We note that differentiation in service levels are also key in
domains such as manufacturing and communication networks. As such, the required
capacity and control of servers using a blended system is widely applicable in service
systems.

Comprehensive surveys on contact centers can be found in [3; 73; 98]. Since we are
only interested in the waiting time of the type-1 jobs and there is an infinite amount
of type-2 jobs, the call blending model can also be interpreted as a vacation model. In
this case, the server takes a vacation, instead of working on a type-2 job. We refer to
[71] for additional references, also related to multi-server queues with vacations.

Level-dependent systems For the second special priority queue, we consider
again a system with two job types. Type-2 jobs (e.g., administration tasks) are only
taken into service if there are not many type-1 jobs (e.g., treating patients) waiting.
Specifically, if the queue length of type-1 jobs (which we refer to as level) is above L,
more type-1 jobs will be taken into service, and when the level drops below L, less
type-1 jobs will be taken into service (and more type-2 jobs). Depending on the load,
this may cause the queue length of type 1 to fluctuate around L. We assume that
the number of type-2 jobs in the system is infinite, and we only consider the queue
length of type-1 jobs, see Figure 1.5.

This queueing model is motivated by a health care application. In an outpatient
clinic, patients arrive to make an appointment as soon as possible. The capacity to
treat patients is limited, such that patients that cannot be directly seen move to a
virtual waiting list. In our model, the type-1 customers represent the slots filled with
patients on the virtual waiting list. If the waiting time is too long, e.g., more than two
weeks, the number of available slots per day is increased by planning extra patients.
One possibility to create this extra capacity is to perform less other activities, like
administration tasks. Another possibility is to treat patients in overtime.

If more type-2 jobs are taken into service, the available service capacity of type-1 jobs
decreases. Since we are only interested in the waiting time of type-1 jobs, we can get
the same effect by increasing the arrival rate of type-1 jobs. From the perspective
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of class 1, we thus have a level-dependent M/G/1 or MAP/G/1 queue with two
different arrival processes, where the arrival process below level L differs from the
arrival process above level L. In these models, the waiting time is represented by the
number of type-1 jobs.

For this model, and for the blended system, we are only interested in the waiting
time of type-1 jobs. Therefore we analyze both models as one-dimensional systems,
thereby ignoring type-2 jobs.

1.3 Overview of this thesis

The next three chapters of this thesis are about polling models. In Chapter 2, we
consider Poisson driven polling models where a single server visits the queues in a
cyclic order and with general service and switch-over times. In the vast majority of
papers that have appeared on polling models, it is assumed that at each of the queues
the customers are served on a First-Come-First-Served (FCFS) basis. In Chapter 2
we study polling models where the local scheduling policy is not FCFS, but instead,
is varied as Last-Come-First-Served (LCFS), Random Order of Service (ROS), Pro-
cessor Sharing (PS) and Shortest-Job-First (SJF). The service policies are assumed
to be either gated or globally gated. The main result of the chapter is the deriva-
tion of asymptotic closed-form expressions for the Laplace-Stieltjes Transform (LST)
of the scaled waiting-time and sojourn-time distributions under heavy-traffic (HT)
assumptions, i.e., when the system tends to saturate. For FCFS service the asymp-
totic sojourn-time distribution is known to be of the form UΓ, where U and Γ are
uniformly and gamma distributed with known parameters. We show that the asymp-
totic sojourn-time distribution (1) for LCFS is also of the form UΓ, (2) for ROS is
of the form ŨΓ where Ũ has a trapezoidal distribution, and (3) for PS and SJF is of
the form Ũ∗Γ where Ũ∗ has a generalized trapezoidal distribution. These results are
rather intriguing and lead to new fundamental insight in the impact of the local sche-
duling policy on the performance of polling models. As a by-product the heavy-traffic
results suggest simple closed-form approximations for the complete waiting-time and
sojourn-time distributions for stable systems with arbitrary load values. The accu-
racy of the approximations is evaluated by simulations. This chapter is based on
[19].

In Chapter 3, we study the HT asymptotics of the waiting time distribution in cyclic
polling models with exhaustive service at each queue under a variety of local schedu-
ling policies, including FCFS, LCFS, ROS, the multi-class priority scheduling with
and without preemption, SJF and SRPT. For each of these policies, we first express
the waiting-time distributions in terms of intervisit-time distributions. Next, we use
these expressions to derive the asymptotic waiting-time distributions under heavy-
traffic assumptions. The results show that in all cases the asymptotic waiting-time
distribution at queue i is fully characterized and of the form ΘiΓ, with Θi and Γ
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independent, and where Γ is gamma distributed with known parameters (and the
same for all scheduling policies). We derive the distribution of the random variable
Θi which explicitly expresses the impact of the local scheduling policy on the asymp-
totic waiting-time distribution. Note that in the gated case of Chapter 2 we used the
notation U for Θi, because the distribution was uniform, or closely related to uni-
form. When the service policy is exhaustive, this is not the case. With simulations we
evaluate the closed-form approximations for the waiting-time distributions in stable
systems, suggested by the asymptotic results. This chapter is based on [148].

In Chapter 4, we consider cyclic polling models with gated or globally gated service,
and study the transient behavior of all cycle lengths. Our aim is to analyze the
dependency structure between the different cycles, as this is an intrinsic property
making polling models challenging to analyze. Transient performance is of great
interest in systems where disruptions or breakdowns may occur, leading to excessive
cycle lengths. The time to recover from such events is a primary performance measure.
For the analysis we assume that the distribution of the first cycle (globally gated) or
N residence times (gated), where N is the number of queues, is known and that the
arrivals are Poisson. The joint LST of all x subsequent cycles (globally gated) or all
x > N subsequent residence times (gated) is expressed in terms of the LST of the
first cycle. From this joint LST, we derive first and second moments and correlation
coefficients between different cycles. Finally, a heavy-tailed first cycle length or the
heavy-traffic regime provides additional insights into the time-dependent behavior.
This chapter is based on [149].

In Chapter 5, we study the performance of Discriminatory Processor Sharing (DPS)
systems, with exponential service times and in which batches of customers of diffe-
rent types may arrive simultaneously according to a Poisson process. In a general
parameter setting, we show the occurrence of a state-space collapse in HT: as the
load ρ goes to 1, the scaled joint queue-length vector (1 − ρ)Q converges in distri-
bution to the product of a known vector and an exponentially distributed random
variable with known mean. The results provide new insight in the behavior of DPS
systems. They show explicitly how the queue-length distribution depends on the sy-
stem parameters, and in particular, on the simultaneity of the arrivals. The results
also suggest simple and fast approximations for the tail probabilities and the mo-
ments of the queue lengths in stable DPS systems, explicitly capturing the impact
of the correlation structure in the arrival processes. Numerical experiments indicate
that the approximations are accurate for medium and heavily loaded systems. This
chapter is based on [150].

In Chapter 6, we consider a level-dependent two-class queue motivated by a health
care application. The two job types represent patients and administration tasks. We
want to model a phenomenon frequently encountered in practice. In ambulatory care
we typically see long access times for making an appointment. Moreover, these access
times are often remarkably stable through time. We propose two queueing models
that may show such behavior. Specifically, to meet target access times, we allow for
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overbookings or flexible capacity by replacing administration tasks by patient care.
We argue that access times for appointment systems with overbooking can naturally
be modeled as level-dependent M/G/1 or MAP/G/1 queues, depending on the va-
riability in the available capacity. Using transforms, we obtain intuitively appealing
results for the distribution of the access time. Based on numerical experiments, we see
that appointment systems may efficiently operate at high load, provided that some
extra flexible capacity is available. This chapter is based on [147].

Finally, in Chapter 7, we consider a blended multi-server queue with impatient custo-
mers that is commonly encountered in call centers. The system receives two types of
customers: urgent and best effort. Urgent customers are delay sensitive and we are
interested in the service level in the form of the tail distribution of the waiting time.
For best effort, we only consider the long-run throughput. Although, such a system
is typically called a call blending model, we see applications in many other service
settings. We derive the probability to abandon and the full waiting time distribution
by considering the waiting time process of the first customer in line, combined with
elements of the system point method. When the urgent and best effort classes have
the same service rate, the waiting time distribution has a similar structure as in the
M/M/s+G queue. For different service rates, the tail of the waiting time distribu-
tion can be iteratively solved and satisfies linear second-order differential equations.
When customers have infinite patience, the waiting-time distribution can be written
as a mixture of exponentials. This chapter is based on [20].



Chapter 2

Gated and globally gated polling systems with non-
FCFS service

2.1 Introduction

A polling model is a multi-class single-server queueing model, as described in the
previous chapter. In the design of a polling system there are a number of design
decisions that have to be made, i.e., cf. Section 1.2.1,

1. The order in which to serve the queues (server routing).

2. How many customers to serve during each visit to a queue (service discipline).

3. The order in which customers within each queue are served (local scheduling
policy).

For the first two decisions a wide variety of policies has been proposed and analyzed
in the literature. The focus of the current chapter is on the third decision. More spe-
cifically, we investigate the influence of the effective local service order on the waiting
times of the customers. As a result, we will limit discussion to the most common
configurations for the first two decisions: cyclic service order and (globally-)gated
service.

It might be natural to assume that the impact of such local scheduling is small, be-
cause it only impacts the system performance locally, leaving the amount of time spent
outside the targeted queue unaffected. However, the results in [153] illustrate that
the impact on the system performance from scheduling within a queue of a polling
system can be significant. In many application areas of polling models, such as Blue-
tooth and 802.11 protocols, scheduling policies at routers and I/O subsystems in web
servers, the workloads are known to have high variability and priority-based schedu-
ling could therefore be beneficial. Outside of computer-communication systems, local
scheduling proved its worth in the domain of production-inventory control. Our goal
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is to explore the impact of the local scheduling in polling systems under heavy traffic
(HT) conditions.

The motivation for studying the HT regime is twofold. First of all, it is the most
important and challenging regime from a practical scheduling point of view, i.e. the
proper operation of the system is particularly critical when the system is heavily
loaded. Optimizing the local scheduling is, therefore, an effective mechanism for
improving system performance without purchasing additional resources. Second, an
attractive feature of HT asymptotics is that in many cases they lead to strikingly sim-
ple expressions for the performance measures of interest. This remarkable simplicity
of the HT asymptotics leads to structural insights into the dependence of the perfor-
mance measures on the system parameters and gives fundamental understanding of
the behavior of the system in general. As a result, HT asymptotics form an excellent
basis for developing simple accurate approximations for the performance measures
(distributions, moments, tail probabilities) for stable systems. These closed-form ap-
proximations allow for back-of-the-envelope calculations.

Although an enormous number of papers on both polling systems and scheduling poli-
cies have appeared, the combination of the two has received very little attention. That
is, almost all theoretical studies of scheduling policies are performed in single-queue
settings such as the M/G/1 and G/G/1 queue with only a few exceptions studying
the effect of local scheduling in multi-queue polling systems. By using the Mean Va-
lue Analysis (MVA) framework for polling systems [155], Wierman et al. [153] have
derived the mean delay in cyclic exhaustive and gated polling systems for various sche-
duling disciplines such as First-Come-First-Served (FCFS), Last-Come-First-Served
(LCFS), Foreground-Background (FB), Processor Sharing (PS), Shortest-Job-First
(SJF) and fixed priorities. Building upon these results, Boxma et al. [40] have obtai-
ned the waiting-time distribution in cyclic (globally-)gated polling systems for various
service orders. As indicated by [40], the derivation of the waiting-time distribution
in exhaustive polling systems is much more intricate. Waiting-time distributions in
HT in exhaustive polling systems are the topic of Chapter 3. Boon et al. [30] study
the waiting-time distribution in a two-queue polling model with either the exhaustive,
gated or globally-gated service discipline. The first of these two queues contains cus-
tomers of two priority classes. In [29] these results are generalized to a polling model
with N queues and Ki priority levels in queue i. Moreover, Ayesta et al. [12] derive
the sojourn-time distribution in polling systems with exhaustive service and where
the local scheduling policy is PS. For a general service requirement distribution the
analysis is restricted to the mean sojourn time.

In the current chapter we study Poisson-driven cyclic polling models with general
service-time and switch-over time distributions, and with two types of service policies:
(1) models with gated service at each queue, and (2) models with globally-gated
service. For both types of service policies, we consider the following five scheduling
policies that determine the local order in which the customers at a given queue are
served: FCFS, LCFS, ROS, PS and SJF.
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For each of these models we derive exact closed-form expressions for the LST of the
(scaled) waiting-time and sojourn-time distributions under HT assumptions. Note
that it was shown in [132] that the asymptotic cycle-time distributions converge to
a gamma distribution with known parameters. Using this result, for FCFS service it
is shown in [113] that the asymptotic sojourn-time distribution is a product of the
random variables U and Γ, where U and Γ are uniformly and gamma distributed. In
this chapter, we unify and extend this result by presenting rigorous proofs showing
that the asymptotic sojourn-time distribution is (1) for LCFS also of the form UΓ,
(2) for ROS of the form ŨΓ where Ũ has a trapezoidal distribution, and (3) for PS and
SJF of the form Ũ∗Γ where Ũ∗ has a generalized trapezoidal distribution. We would
like to stress the unearthed dichotomy between the known HT results on FCFS polling
models and our novel asymptotic results for other scheduling disciplines.

These results are rather intriguing and provide new fundamental insight in the impact
of the local scheduling policy on the performance of polling models. Our results lead
not only to unification but also to extension of the literature studying scheduling
policies, polling systems and HT asymptotics. As a by-product the HT results suggest
simple closed-form approximations for the complete waiting-time and sojourn-time
distributions for stable systems with arbitrary load values and general renewal arrival
processes. Numerical results show that these approximations perform well for a wide
range of parameter combinations.

The remainder of the chapter is organized as follows. In Section 2.2, the model is
described and the notation required is introduced. In Section 2.3, we derive the
HT asymptotics for the model with gated service at each queue under various local
scheduling policies. Section 2.4 presents similar results for the case of globally gated
service. Furthermore, Section 2.5 proposes a simple approximation for the sojourn-
time distributions for arbitrary load values and present numerical results to evaluate
the accuracy of the approximations. Section 2.6 contains a number of concluding
remarks.

2.2 Model description

We consider a system of N ≥ 2 infinite-buffer queues, Q1, . . . , QN , and a single
server that visits and serves the queues in cyclic order. Customers arrive at Qi
according to a Poisson process with rate λi. These customers are referred to as type-i
customers. The total arrival rate is denoted by Λ =

∑N
i=1 λi. The service time of

a type-i customer is a random variable Bi, with LST B∗i (·) and finite kth moment

b
(k)
i = E[Bki ], k = 1, 2. The kth moment of the service time of an arbitrary customer

is denoted by b(k) = E[Bk] =
∑N
i=1 λi E[Bki ]/Λ, k = 1, 2. The load offered to Qi is

ρi = λi E[Bi] and the total load offered to the system is equal to ρ =
∑N
i=i ρi. The

switch-over time required by the server to proceed from Qi to Qi+1 is an independent

random variable Si with mean ri := E [Si]. Let S =
∑N
i=1 Si denote the total switch-
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over time in a cycle and let r := E [S] denote its mean. A necessary and sufficient
condition for stability of the system is ρ < 1. Ci denotes the cycle time at queue i,
defined as the time between two successive arrivals of the server at queue i; it is well
known that E [Ci] = r/(1− ρ) for each i (cf. [125, Equation (5.39b)]).

The service policy determines which customers are served during a visit of the server to
a queue. In this chapter we assume two variants: (1) the model with gated service at
each of the queues, and (2) the globally-gated model. For gated service, all customers
are served that were present at polling instant, i.e., at the moment when the server
arrives at the queue. For globally gated, during a cycle, all customers are served
that were present at polling instant of the first queue. The local scheduling policy
determines the order in which the customers are served during a visit period at a
queue. We consider the following five local scheduling policies: FCFS, LCFS, ROS,
PS or SJF. For policy P ∈ {FCFS,LCFS,ROS,PS,SJF}, we denote i ∈ IP if Qi
receives scheduling policy P . For example, IFCFS is the (index) set of queues i that
are served on a FCFS basis, ILCFS is the (index) set of queues i that are served on
a LCFS basis, and so on.

In this chapter we study heavy-traffic limits, i.e., the limiting behavior as ρ approaches
1. The heavy-traffic limits, denoted ρ ↑ 1, taken in this chapter are such that the
arrival rates are increased, while keeping both the service-time distributions and the
ratios between the arrival rates fixed. Light-traffic limits, denoted ρ ↓ 0, are defined
similarly. The notation →d means convergence in distribution. For each variable x
that is a function of ρ, we denote its value evaluated at ρ = 1 by x̂. In particular we
have ρ̂i = ρi

ρ and λ̂i = ρ̂i
E[Bi]

.

Let Wi denote the waiting time of an arbitrary customer at Qi, defined as the time
between the arrival of a customer and the moment at which he enters service. The
sojourn time of an arbitrary customer at Qi, represented by Ti, is defined as the
time between the arrival of a customer and the moment at which he departs from
the system. The LSTs of Wi and Ti are denoted by W ∗i (s) and T ∗i (s), respectively.
When ρ ↑ 1, all queues become unstable, therefore the focus lies on the random
variables (1 − ρ)Wi and (1 − ρ)Ti as ρ ↑ 1, referred to as the scaled waiting times
and sojourn times at Qi, respectively. A summary of the notation with respect to a
random variable X is given in Table 2.1.

A key role is played by the gamma distribution and the uniform distribution. A non-
negative continuous random variable Γ(α, µ) is said to have a gamma distribution
with shape parameter α > 0 and scale parameter µ > 0 if it has the probability
density function

fΓ(x) =
µα

Γ(α)
xα−1e−µx (x > 0), with Γ(α) :=

∫ ∞
0

tα−1e−tdt (2.1)

and LST

Γ∗(s) =

(
µ

µ+ s

)α
(Re(s) > 0). (2.2)



2.3. ANALYSIS OF MODELS WITH GATED SERVICE 17

fX(·) Probability density function (pdf) of X
FX(·) Cumulative distribution function (cdf) of X
X∗(·) Laplace-Stieltjes transform (LST) of X, i.e., X∗(s) = E[e−sX ]
E[X] Expected value of X
E[Xk] kth moment of X
c2X Squared coefficient of variation (SCV) of X
Xres Residual length of X

with E[Xres] = E[X2]
2E[X] and LST E[e−sX

res

] = 1−E[e−sX ]
sE[X]

X Length-biased version of X

with fX(x) = xfX(x)
E[X]

Table 2.1: Notation with respect to a random variable X.

Note that in the definition of the gamma distribution µ is a scaling parameter, and that
Γ(α, µ) has the same distribution as µ−1Γ(α, 1). Moreover, we denote by U [a, b] (a <
b) a random variable that is uniformly distributed over the interval [a, b]. For later
reference note, that the LST of the random variable Γ(α+1, µ)U [a, b], where Γ(α+1, µ)
and U [a, b] are independent, is given by, for Re(s) > 0,

E
[
e−sU [a,b]Γ(α+1,µ)

]
=

µ

αs(b− a)

{(
µ

µ+ sa

)α
−
(

µ

µ+ sb

)α}
. (2.3)

2.3 Analysis of models with gated service

In this section we consider the case of gated service at all queues. In Subsection 2.3.1
we review some known preliminary results for FCFS disciplines to be used for later
reference. In Subsections 2.3.2–2.3.5 we use the results in Subsection 2.3.1 to derive
HT limits for LCFS, ROS, PS and SJF, respectively. In Section 2.5 we use these
results to propose and validate approximations for the distributions of the waiting
times and sojourn times for arbitrary load values and renewal arrivals.

It is easy to see that for FCFS, LCFS and ROS service the sojourn time is simply the
convolution of the waiting time and the service time, i.e., for Re(s) ≥ 0,

T ∗i (s) = W ∗i (s)B∗i (s) (i ∈ IFCFS , ILCFS , IROS). (2.4)

For this reason, in Subsections 2.3.1–2.3.3 we focus on the waiting-time distributions.
The results for the sojourn-time distributions then follow directly from (2.4). Note
that for i ∈ IPS and i ∈ ISJF relation (2.4) is generally not true, because in those
cases the waiting times and the service times are not independent. Relation (2.4) is
used for the approximation in Section 2.5, since sojourn times and waiting times are
equal in HT.
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To start, let us consider the distribution of the cycle time Ci, defined as the time
between two successive arrivals of the server at queue i. A simple but important
observation is that the distribution of Ci is independent of the local scheduling policy
(i.e., FCFS, LCFS, ROS, PS and SJF). To this end, recall that the service policy (e.g.,
gated or globally gated) determines which customers are served during a visit V of the
server to a queue, and that the local scheduling policies determine the order in which
these customers are served during V . For this reason the cycle-time distributions are
the same for all local scheduling policies under consideration, provided that they are
work-conserving.

The following result gives a characterization for the limiting behavior of the cycle-
time distributions, stating that the (scaled) cycle times (1− ρ)Ci in HT converge to
a gamma distribution with known parameters (proven in [132; 136]).

Property 2.1 (Convergence of the cycle times). For the model with gated service at
each queue we have, for i = 1, . . . , N , as ρ ↑ 1,

(1− ρ)Ci →d Γ̃,

where Γ̃ has a gamma distribution with parameters

α :=
rδ

σ2
, µ :=

δ

σ2
, (2.5)

with

σ2 :=
b(2)

b(1)
, and δ :=

N∑
i=1

ρ̂i(1 + ρ̂i). (2.6)

2.3.1 First-Come-First-Served

In this section we review several known results for the case of FCFS service at queue i.
In Subsections 2.3.2–2.3.5 these results are used to derive new results for LCFS, ROS,
PS and SJF, respectively. For FCFS service, the following result gives an expression
for the LST of the waiting time Wi in terms of the distribution of the cycle time Ci
(proven in [40]):

Property 2.2 (Cycle-time expression for the waiting times). For the gated service
model, we have for Re(s) > 0 and ρ < 1,

W ∗i (s) =
C∗i (λi(1−B∗i (s)))− C∗i (s)

E [Ci] (s− λi(1−B∗i (s)))
(i ∈ IFCFS). (2.7)

The following result, which was shown in [132], characterizes the limiting behavior of
the waiting-time distribution in heavy traffic.



2.3. ANALYSIS OF MODELS WITH GATED SERVICE 19

Property 2.3 (Convergence of the waiting times). For the gated service model, we
have for ρ ↑ 1,

(1− ρ)Wi →d UiC̃i (i ∈ IFCFS), (2.8)

where Ui is uniformly distributed on the interval [ρ̂i, 1], and where C̃i has a gamma
distribution with parameters α+ 1 and µ, where α and µ are given in Equation (2.5).
The random variables Ui and C̃i are independent.

Note that here C̃i is the length-biased version of C̃i, a gamma-distributed random
variable with parameters α and µ as in Equation (2.5). It is well known that if a
gamma random variable has parameters α and µ then its length-biased version has
parameters α + 1 and µ. The following result gives an expression for the higher
moments of the waiting times in heavy traffic (proven in [133; 134]):

Property 2.4 (Convergence of moments of the waiting time). For k = 1, 2, . . .,

ω
(k)
i := lim

ρ↑1
(1− ρ)k E

[
W k
i

]
=

1− ρ̂k+1
i

1− ρ̂i

∏k
j=1(α+ j)

(k + 1)µk
(i ∈ IFCFS), (2.9)

assuming that the (k + 1)-st moments of the service-time distributions and the kth
moments of the switch-over time distributions are finite.

2.3.2 Last-Come-First-Served

The LST for the waiting-time distribution for the LCFS service is expressed in terms
of the cycle-time distributions as follows (cf. [40]): For Re(s) > 0 and ρ < 1,

W ∗i (s) =
1− C∗i (s+ λi(1−B∗i (s)))

E [Ci] (s+ λi(1−B∗i (s)))
(i ∈ ILCFS). (2.10)

The following result gives an expression for the asymptotic waiting-time distribution
for LCFS service in heavy traffic.

Theorem 2.1. For ρ ↑ 1,

(1− ρ)Wi →d UiC̃i (i ∈ ILCFS), (2.11)

where Ui is uniformly distributed on the interval [0, 1 + ρ̂i] and C̃i has a gamma
distribution with parameters α+ 1 and µ, where α and µ are given in Equation (2.5).
The random variables Ui and C̃i are independent.

Proof. Take i ∈ ILCFS . Then combining (2.10) with Property 2.1 gives the following
expressions for the LST of the (scaled) waiting-time distribution. For i ∈ ILCFS ,
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Re(s) > 0, we have

W̃ ∗i (s) := lim
ρ↑1

W ∗i (s(1− ρ)) = lim
ρ↑1

1− C∗i (s(1− ρ) + λi(1−B∗i (s(1− ρ))))

E [C] (s(1− ρ) + λi(1−B∗i (s(1− ρ))))
(2.12)

= lim
ρ↑1

1−
(

µ(1−ρ)
µ(1−ρ)+s(1−ρ)+λi(1−B∗i (s(1−ρ)))

)α
r

(1−ρ) (s(1− ρ) + λi(1−B∗i (s(1− ρ))))
(2.13)

= lim
ρ↑1

1−
(

µ
µ+s+λi(1−B∗i (s(1−ρ)))/(1−ρ)

)α
r
(
s+

λi(1−B∗i (s(1−ρ))
1−ρ

) . (2.14)

Using l’Hôpital’s rule and the fact that −B∗′i (0) = E[Bi] we see that:

lim
ρ↑1

λi(1−B∗i (s(1− ρ)))

1− ρ = lim
ρ↑1

0− λiB∗
′

i (s(1− ρ))s

1
= ρ̂is,

which immediately implies that, for Re(s) > 0 and i ∈ ILCFS ,

W̃ ∗i (s) =
1−

(
µ

µ+s+ρ̂is

)α
r(s+ ρ̂is)

=
1

rs(1 + ρ̂i)

{
1−

(
µ

µ+ s(1 + ρ̂i)

)α}
, (2.15)

where α and µ are given in (2.5). Using (2.3) and µ/α = 1/r, it now follows that
(2.15) corresponds to the LST of a uniform random variable on [0, 1 + ρ̂i] times a
gamma distribution. Application of Levy’s Continuity Theorem [154] completes the
proof.

Using Theorem 2.1, it is easily verified that the moments of the asymptotic delay
distribution are given by the following expression.

Corollary 2.1 (Moments of the asymptotic delay). For k = 1, 2, . . .,

ω
(k)
i := lim

ρ↑1
(1− ρ)k E[W k

i ] =
(1 + ρ̂i)

k
∏k
j=1(α+ j)

(k + 1)µk
(i ∈ ILCFS), (2.16)

where α and µ are defined in Equation (2.5), assuming that the (k + 1)-st moments
of the service-time distributions and the kth moments of the switch-over time distri-
butions are finite.

We end this section with a number of remarks.

Remark 2.1 (Comparison between FCFS and LCFS case using the heavy-traffic
averaging principle). Property 2.3 and Theorem 2.1 reveal an interesting difference in
the waiting-time distributions of the FCFS case and the LCFS case. More precisely,
for the FCFS case the limiting behavior of Wi is of the form UFCFSΓ, where UFCFS
is uniformly distributed on the interval [ρ̂i, 1], whereas for the LCFS case the limiting
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distribution of Wi is of the form ULCFSΓ, where ULCFS is uniformly distributed
on the interval [0, 1 + ρ̂i], which is multiplied by the same gamma distribution. To
provide an intuitive explanation for this, we use the insights that can be obtained
by the so-called Heavy-Traffic Averaging Principle (HTAP), see e.g. [51; 52] and
[113; 114]. Loosely speaking, HTAP for polling models means that the total scaled
workload may be considered as a constant during a cycle, whereas the workloads of
the individual queues change much faster according to deterministic trajectories, or
a fluid model. Due to the HTAP, we let the constant c denote the cycle length. Let
us first consider the fluid model for FCFS. Note that the waiting time consists of two
parts. First, a customer has to wait for the residual cycle time, which is (1−U)c for U
uniformly distributed on [0, 1]. Second, a customer has to wait for all customers that
have arrived before him during the course of the ongoing cycle. Hence, this equals
ρ̂iUc. The total waiting time in the fluid model then equals (1−U+ρ̂iU)c, which has a
uniform distribution on [ρ̂ic, c]. Using that the cycle time follows a gamma distribution
explains the shape of the waiting-time distribution in heavy traffic. For LCFS, as for
FCFS, an arriving customer still has to wait for the residual cycle length (1 − U)c,
with U a uniform random variable on [0, 1]. In addition, the arriving customer has to
wait for all customers that arrived after him during the same cycle, which is of length
ρ̂i(1 − U)c. Hence, the waiting time in the fluid model is (1 + ρ̂i)(1 − U)c, which is
a uniform distribution on [0, (1 + ρ̂i)c]. This interpretation gives much insight in the
heavy-traffic asymptotics.

Remark 2.2 (Alignment with asymptotics with large switch-over times). Further
support can be given for the distribution in Theorem 2.1 by considering a different
asymptotic regime as in [131]. Let the switch-over times be deterministic with length
ri. We consider the behavior of Wi when the switch-over times tend to infinity.
Because the waiting times are known to grow without bound when the switch-over
times increase to infinity, the analysis is oriented towards the limiting distribution of
Wi

r as r →∞. Using similar techniques as in [131], it may be shown that

Wi

r
→d Ŵi (r →∞), (2.17)

where Ŵi is uniformly distributed over the interval [ãi, b̃i], with, for i ∈ IFCFS ,

ãi =
ρi

1− ρ , b̃i =
1

1− ρ , and ãi = 0, b̃i =
ρi + 1

1− ρ for i ∈ ILCFS . (2.18)

Note that the uniform distribution is the same as in the HT regime. However, in
HT the cycle times follow a gamma distribution whereas here the cycle times become
deterministic as the switch-over times grow large.

2.3.3 Random Order of Service

In this section we derive heavy-traffic limits for the Random Order of Service (ROS)
local scheduling policy. ROS is represented by ordering marks. Each customer that
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arrives gets an ordering mark x, a realization from a uniform distribution on [0, 1].
When the server arrives at the queue, the gate closes and the customers before the
gate are served in order of their marks. It is convenient to condition with respect
to x and then uncondition. Let Wi(x) be the waiting time of a customer in queue
i with ordering mark x, with i ∈ IROS , and let W ∗i (s|x) be the corresponding LST.
The following result was shown in [40]: for Re(s) > 0, 0 < x < 1 and ρ < 1,

W ∗i (s|x) =
C∗i (λix(1−B∗i (s)))− C∗i (s+ λix(1−B∗i (s)))

sE[Ci]
(i ∈ IROS). (2.19)

The next result gives the heavy-traffic limit of the distribution of Wi(x).

Theorem 2.2 (Conditional waiting time). For ρ ↑ 1, 0 < x < 1,

(1− ρ)Wi(x)→d Ui(x)C̃i (i ∈ IROS), (2.20)

where Ui(x) is uniformly distributed over the interval [ρ̂ix, 1 + ρ̂ix] and C̃i has a
gamma distribution with parameters α + 1 and µ, where α and µ are given in Equa-
tion (2.5). The random variables Ui(x) and C̃i are independent.

Proof. Combining (2.19) and Property 2.1 and using l’Hôpital’s rule, we find the
following LST of the waiting time conditional on the ordering mark x: for Re(s) > 0,
0 < x < 1,

W̃ ∗i (s|x) = lim
ρ↑1

W ∗i (s(1− ρ)|x)

= lim
ρ↑1

C∗i (λix(1−B∗i (s(1− ρ))))− C∗i (s(1− ρ) + λix(1−B∗i (s(1− ρ))))

s(1− ρ)E[Ci]

=
1

rs

{(
µ

µ+ ρ̂ixs

)α
−
(

µ

µ+ (1 + ρ̂ix)s

)α}
(i ∈ IROS). (2.21)

Applying Levy’s Continuity Theorem completes the proof.

To obtain the unconditional distribution of the waiting time, we first consider a more
general setting that also covers ‘unconditioning’ for PS and SJF. For this, let a(·)
be a continuous and strictly increasing function on some interval X = [xmin, xmax],
where we allow xmax to be infinite. Suppose we have a conditional random variable,
denoted T |x, that is uniformly distributed on the interval [a(x), a(x)+1]. We want to
find the unconditional distribution T̃ . Here, x is a realization of the random variable
X with support X ⊆ R+ having distribution function FX(·) and density fX(·). We
have the following lemma.

Lemma 2.1. Assume that the conditional random variable T |x is uniformly distri-
buted on [a(x), a(x) + 1], where x ∈ X = [xmin, xmax]. Suppose that a(xmin) = m,
a(xmax) = ρ̂i and a(x) is continuous and strictly increasing in x, such that a(·) has
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ρ̂i

x

y 1 1 + ρ̂i

a−1(y)

0

a(x) a(x) + 1

1

Figure 2.1: Boundaries of the uniform distribution.

an inverse denoted by a−1(·). Then, the unconditional distribution of T |x, denoted by
T̃ , has probability density function

fT̃ (y) =

 FX(a−1(y)) y ∈ [m, ρ̂i)
1 y ∈ [ρ̂i, 1 +m]
1− FX(a−1(y − 1)) y ∈ (1 +m, 1 + ρ̂i].

(2.22)

Proof. Note that T |x has the following probability density function

fT |x(y) =

{
1 y ∈ (a(x), a(x) + 1)
0 Otherwise

∀x ∈ X .

Figure 2.1 shows an example of the boundaries of the uniform distribution, by plotting
a(x) and a(x) + 1 with x on the vertical axis. The possible values of T |x then lie
between the two lines. To find fT̃ (y), we need to integrate out x with respect to its
density function. First, take y ∈ (m, ρ̂i), in which case the probability density fT̃ (y)
is obtained from the parts where x is smaller than a−1(y). This gives, for y ∈ (m, ρ̂i),

fT̃ (y) =

∫ a−1(y)

xmin

fX(x)fT |x(y) dx = FX(a−1(y)).

If y ∈ (ρ̂i, 1 + m) then y is between the boundaries of the uniform distribution for
every x ∈ X . Hence, we get

fT̃ (y) =

∫ xmax

xmin

fX(x)fT |x(y) dx = 1.

Finally, for y ∈ (1+m, 1+ ρ̂i), we can use that the boundaries are described by similar
curves, i.e., x needs to be larger than a−1(y − 1), so

fT̃ (y) =

∫ xmax

a−1(y−1)

fX(x)fT |x(y) dx = 1− FX(a−1(y − 1)).

Finally, it follows from the properties of a(·) that fT̃ (·) is a density function. This
completes the proof.
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Remark 2.3. For convenience it is assumed in Lemma 2.1 that the underlying
random variable X has a density. For, e.g., PS it can be of interest to consider
the case that X is a discrete random variable. This is directly related to the pro-
perties of a(·), i.e., that a(·) is continuous and strictly increasing. It is not difficult
to modify Lemma 2.1 to the case of discrete random variables by either redefining
the inverse of a(·) as a−1(y) = sup{x ∈ X : a(x) ≤ y}, or by extending the function
a(·) from the range of X to an interval [xmin, xmax], such that a(·) is continuous and
strictly increasing.

Note that the density function in (2.22) is continuous, increasing on [m, ρ̂i), constant
on [ρ̂i, 1+m] and decreasing on (1+m, 1+ ρ̂i], which closely resembles the traditional
trapezoidal distribution. In line with [61], we refer to (2.22) as a generalized trapezoidal
distribution consisting of stages of growth, stability, and decay, i.e., the function is
increasing, constant, and decreasing, respectively.

For further references, it is of interest to determine the mean of this generalized
trapezoidal distribution. There are different ways to represent this mean, for in-
stance,

E[T̃ ] =

∫ 1+ρ̂i

m

xfT̃ (x) dx =
1

2
+ ρ̂i −

∫ ρ̂i

m

FX(a−1(y)) dy =
1

2
+

∫
u∈X

a(u)fX(u) du,

where the second step follows after some rewriting. Substituting y = a(u), the third
step follows after partial integration. In Subsections 2.3.4 and 2.3.5, the mean of the
generalized distribution E[T̃ ] is specified for PS and SJF.

We now apply the lemma above to the case i ∈ IROS , in which case a(x) = ρ̂ix, with
x ∈ [0, 1]. The asymptotic scaled unconditional delay is presented in the following
theorem.

Theorem 2.3 (Unconditional waiting time). For ρ ↑ 1,

(1− ρ)Wi →d Ũ
∗
i C̃i (i ∈ IROS),

where Ũ∗i has a trapezoidal distribution with density function

fŨ∗i
(y) :=

 y/ρ̂i y ∈ [0, ρ̂i)
1 y ∈ [ρ̂i, 1]
(1 + ρ̂i − y)/ρ̂i y ∈ (1, 1 + ρ̂i].

(2.23)

and C̃i has a gamma distribution with parameters α + 1 and µ, where α and µ are
given in Equation (2.5). The random variables U∗i and C̃i are independent.

Proof. Take i ∈ IROS . Then Theorem 2.2 implies that a(x) = ρ̂ix and X = [0, 1].
Note that this function has the desired properties: a(0) = 0, a(1) = ρ̂i and a(x)
continuous and strictly increasing in x ∈ X . The cumulative distribution function of
X is given by FX(x) = x and the inverse function of a(·) is a−1(y) = y/ρ̂i. The use
of Lemma 2.1 now yields the result.
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Remark 2.4 (HTAP). Interestingly, Theorem 2.3 shows that the uniform distri-
bution that appears in the heavy-traffic limit for FCFS and LCFS is replaced by a
trapezoidal distribution for ROS. The shape of this distribution can be explained by
the fact that the waiting time of a customer does not only depend on the time that
the customer enters the system, but also on an independent random mechanism that
determines the moment that the customer is served. More specifically, exploiting the
HTAP we let the constant c denote the cycle length again and consider the fluid model
for the conditional waiting time of a customer with mark x. An arriving customer has
to wait for the residual cycle length (1− U)c, with U uniformly distributed on [0, 1],
and the time required to serve the customers that arrived during the same cycle and
have a mark smaller than x, i.e., ρ̂ixc. Clearly, the conditional waiting time in the
fluid model is uniformly distributed on [ρ̂ixc, (1+ ρ̂i)xc]. Since x is an arbitrary order
mark, the unconditional waiting time in the fluid model is (U1 + U2)c, with U1 and
U2 independent uniform distribution on the intervals [0, 1] and [0, ρ̂i], respectively.
Note that such a convolution gives rise to a trapezoidal distribution as obtained in
Theorem 2.3.

Remark 2.5 (First moments of waiting times). Observe that it follows from Pro-
perty 2.4, Corollary 2.1 and Theorem 2.3 that the first moments of the asymptotic
waiting-time distributions for the FCFS, LCFS and the ROS scheduling disciplines
are the same. This is in line with the observation in [40] that the mean waiting times
for these disciplines coincide for a general value of ρ < 1. To this end, it is easy to

see that E[Wi] = (1 + ρi)
E[C2

i ]
2E[Ci]

and that the cycle-time distributions are independent

of the local scheduling policy.

2.3.4 Processor Sharing

When the scheduling discipline is PS, the LST of the conditional sojourn time (denoted
T ∗i (s|x)) can also be expressed in terms of the LST of the cycle time. When x is the
amount of work that a tagged customer brings into the system, it holds that (cf. [40]),
for ρ < 1, Re(s) > 0, x > 0,

T ∗i (s|x) = e−sx
C∗i (λi(1− ϕ(s, x)))− C∗i (s+ λi(1− ϕ(s, x)))

sE[Ci]
(i ∈ IPS), (2.24)

where ϕ(s, x) = E
[
e−smin(Bi,x)

]
, the LST of the minimum of Bi and x. The next

theorem gives an expression for the asymptotic distribution of the conditional sojourn
time Ti(x).

Theorem 2.4 (Conditional sojourn time). For ρ ↑ 1, x > 0,

(1− ρ)Ti(x)→d Ui(x)C̃i (i ∈ IPS), (2.25)

where Ui(x) is uniformly distributed between λ̂i E[min(Bi, x)] and 1+ λ̂i E[min(Bi, x)]
and C̃i has a gamma distribution with parameters α + 1 and µ, where α and µ are
given in Equation (2.5). The random variables Ui(x) and C̃i are independent.
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Proof. Combining (2.24) with Property 2.1, we obtain, for Re(s) > 0 and x > 0,

T̃i(s|x) := lim
ρ↑1

T ∗i (s(1− ρ)|x) (2.26)

=
1

rs

{(
µ

µ+ λ̂i E[min(Bi, x)]s

)α
−
(

µ

µ+ (1 + λ̂i E[min(Bi, x)])s

)α}
,

with α + 1 and µ as given in (2.5). An application of Levy’s Continuity Theorem
yields the result.

We now proceed with the unconditional sojourn time. For notational convenience, we
assume here that the service-time distributions are absolutely continuous (see however
Remark 2.3).

Theorem 2.5 (Unconditional sojourn time). For ρ ↑ 1,

(1− ρ)Ti →d U
∗
i C̃i (i ∈ IPS),

where U∗i is a type of generalized trapezoidal distribution as characterized in Equation

(2.27) with a(x) = λ̂i E[min(Bi, x)] and xmin the lowest possible value of Bi. The
random variables U∗i and C̃i are independent.

Proof. Take a(x) = λ̂i E[min(Bi, x)] such that Ui(x) is uniformly distributed on

[a(x), a(x)+1], see Theorem 2.4. Clearly, a(xmin) = λ̂ixmin, a(xmax) = λ̂i E[Bi] = ρ̂i
and a(x) is continuous and strictly increasing. Using Lemma 2.1, we obtain the
unconditioned distribution

fU∗i (y) =


FBi(a

−1(y)) y ∈ [λ̂ixmin, ρ̂i)

1 y ∈ [ρ̂i, 1 + λ̂ixmin]

1− FBi(a−1(y − 1)) y ∈ (1 + λ̂ixmin, 1 + ρ̂i],

(2.27)

where xmin is the minimum value that Bi can take. This completes the proof.

Remark 2.6 (HTAP). Theorem 2.5 shows that the conditional sojourn time in heavy
traffic still is a uniform times a gamma distribution. This can again be intuitively
explained from the HTAP. Now, in a cycle of length c, arriving customers have to
wait for the residual cycle length (1 − U)c and their departure is delayed by all
traffic in queue i that arrives during the same cycle and has been served before the
tagged customer leaves. The latter equals λ̂i E[min(Bi, x)]c in the fluid model. The
distribution of the unconditional sojourn time not only depends on the first two
moments of the service time, but depends on the complete service-time distribution.
In particular, the curve FBi(a

−1(y)), with y ∈ [λ̂ixmin, ρ̂i), can be interpreted as the
fluid model of the cumulative number of departures from queue i from the moment
that the gate opens at queue i. To interpret this, note that in the fluid model a(x)
represents the amount of work served since the gate is open to a customer with service
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requirement x, and a−1(·) can thus be seen as the time to accumulate such an amount
of service. Hence, FBi(a

−1(y)) counts the number of customers for which a−1(y) is
sufficient to leave.

Remark 2.7 (Deterministic service times). In most queueing models, high variabi-
lity leads generally to longer waiting times. However, for the polling model under
consideration, note that Theorem 2.4 implies that for deterministic service times, the
waiting time in heavy traffic is also a uniform times a gamma distribution. Here, the
boundaries of the uniform distribution are ρ̂i and 1 + ρ̂i. We note that this is the
worst possible case for U∗i among all service-time distributions, in the sense that it
has the largest tail P(U∗i > x) for all x. This is caused by the fact that all customers
are served simultaneously and, in the end, they all jointly leave.

Below we give some examples of the type of generalized trapezoidal distribution U∗i
for some specific service-time distributions. Together with the gamma distribution,
representing the cycle time, this fully specifies the scaled sojourn time in heavy traf-
fic.

Exponential service times
Suppose Bi is exponentially distributed with parameter bi. Then

E[min(Bi, x)] =

∫ x

0

ybie
−biy dy + xe−bix =

1

bi
(1− e−bix),

so a(x) = ρ̂i(1 − e−bix). Solve a(x) = y for x to find a−1(y) = ln(1− y/ρ̂i)/(−bi).
Now substituting this in Equation (2.27) it follows after some simplification that
the generalized trapezoidal distribution U∗i coincides with the density function of U∗i
for ROS given in (2.23). This means that for the case of exponential service-time
distributions, the sojourn-time distributions for ROS and PS coincide.

Uniform service times
SupposeBi is a uniformly distributed random variable on the interval [ai, bi]. Then

a(x) = λ̂i E[min(Bi, x)] = λ̂i

(∫ x

ai

y/(bi − ai) dy + x

∫ bi

x

1/(bi − ai) dy

)

=
−λ̂i

2(bi − ai)
(
a2
i − 2bix+ x2

)
=
−ρ̂i

b2i − a2
i

(
a2
i − 2bix+ x2

)
.

Now a−1(y) can be found using the quadratic formula:

a−1(y) =

(
2bi ±

√
4b2i − 4(a2

i + y/ρ̂i(b2i − a2
i ))

)
/2 = bi −

√
(1− y/ρ̂i)(b2i − a2

i ),

where the final equality follows from x ∈ [ai, bi].
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Figure 2.2: Probability density function of U∗i with uniform (left) and Pareto (right)
service times in a PS polling system.

In this case X = [ai, bi], which means that the minimum value for y is a(ai) = λ̂iai.
On the other side of the boundaries of the conditional uniform distribution, y needs
to be greater than 1 + λ̂iai, using this we get

fU∗i (y) =


1−
√

(1−y/ρ̂i)(b2i−a2i )
bi−ai y ∈ [λ̂iai, ρ̂i)

1 y ∈ [ρ̂i, 1 + λ̂iai]√
(1−(y−1)/ρ̂i)(b2i−a2i )

bi−ai y ∈ (1 + λ̂iai, ρ̂i + 1].

Figure 2.2 illustrates the shape of the pdf of U∗i , when the c2Bi of the uniform service-
time distribution is equal to 0.25 and for two different values of ρ̂i.

Pareto service times
Assume that the service time has a Pareto distribution with parameters ai and bi, i.e.
we assume that the density of the service time, for x ≥ bi, is

fBi(x) = aib
ai
i x
−(ai+1).

We assume that ai > 2 such that the second moment is finite. In line with [52; 115]
this is sufficient for the HT limit to hold.

Now, we have

a(x) = λ̂i E[min(Bi, x)] = λ̂i

(
aibi
ai − 1

(
1− bai−1

i x1−ai)+ baii x
1−ai

)
= ρ̂i

(
1− bai−1

i x1−aia−1
i

)
.
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Some basic calculations lead to

a−1(y) = bi(ai(1− y/ρ̂i))
1

1−ai .

Here y needs to be larger than a(bi) = ρ̂i(1− a−1
i ) = λ̂ibi. We have

fU∗i (y) =


1− (ai(1− y/ρ̂i))

−ai
1−ai y ∈ [λ̂ibi, ρ̂i)

1 y ∈ [ρ̂i, 1 + λ̂ibi]

(ai(1− (y − 1)/ρ̂i))
−ai
1−ai y ∈ (1 + λ̂ibi, 1 + ρ̂i].

Figure 2.2 shows the pdf of U∗i if the Pareto service-time distribution has a squared
coefficient of variation equal to 4, for two different values of ρ̂i.

For the special case in which ai →∞ the squared coefficient of variation (SCV) of the
Pareto distribution goes to zero. In that case, it can be seen that U∗i has a uniform
distribution on the interval [ρ̂i, 1 + ρ̂i], which is in line with the case of deterministic
service times.

Discrete service times
Using Remark 2.3, Theorem 2.5 still applies by extending the range of a(·) (or mo-
difying the inverse a−1(·)). An interesting example is when the service time has
probability mass at two points. Assume that Bi equals a small value ai with proba-
bility pi, or a large value bi with probability 1− pi. Now, letting x ∈ [ai, bi], we have

E[min(Bi, x)] = (1− pi)x+ piai, giving a(x) = λ̂i((1− pi)x+ piai). With x ∈ [ai, bi],
we note that a(x) is thus continuous and strictly increasing. Hence, we obtain

fU∗i (y) =


pi y ∈ [aiλ̂i, ρ̂i)

1 y ∈ [ρ̂i, 1 + aiλ̂i]

1− pi y ∈ (1 + aiλ̂i, 1 + ρ̂i].

2.3.5 Shortest-Job-First

For the SJF policy, it is convenient to condition on x, the amount of work that a
tagged customer brings into the system. For SJF, the service-time distribution is
assumed to be absolutely continuous. The following results gives an expression for
the LST of the conditional sojourn time T ∗i (x) in terms of the cycle-time distributions
(cf. [40]): for ρ < 1, Re(s) > 0, x > 0,

T ∗i (s|x) = e−sx
C∗i (λi(1− ϕ(s, x)))− C∗i (s+ λi(1− ϕ(s, x)))

sE[Ci]
(i ∈ ISJF ), (2.28)

where ϕ(s, x) := E
[
e−sBi1{Bi≤x}

]
. This leads to the following theorem for the limiting

distribution of the conditional sojourn time Ti(x).
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Theorem 2.6 (Conditional sojourn time). For ρ ↑ 1, x > 0,

(1− ρ)Ti(x)→d Ui(x)C̃i (i ∈ ISJF ),

where Ui(x) is a uniform[λ̂i E[Bi1{Bi≤x}], 1 + λ̂i E[Bi1{Bi≤x}]] random variable and

C̃i has a gamma distribution with parameters α+ 1 and µ, where α and µ are given
in Equation (2.5). The random variables Ui(x) and C̃i are independent.

Proof. The result follows directly by combining Equation (2.28) and Property 2.1
along lines similar to those in the proof of Theorem 2.4.

The unconditional sojourn time is presented in the following theorem.

Theorem 2.7 (Unconditional sojourn time). For ρ ↑ 1,

(1− ρ)Ti →d U
∗
i C̃i (i ∈ ISJF ),

where U∗i is a generalized trapezoidal distribution as characterized in Equation (2.29)

with a(x) = λ̂i E[Bi1{Bi≤x}] and C̃i as given in Theorem 2.6. The random variables

U∗i and C̃i are independent.

Proof. Take a(x) = λ̂i E[Bi1{Bi≤x}] such that Ui(x) is uniformly distributed on
[a(x), a(x) + 1], see Theorem 2.6. Clearly, a(xmin) = 0, a(xmax) = ρ̂i and a(x) is
continuous and strictly increasing. Using Lemma 2.1, we obtain the unconditioned
distribution

fU∗i (y) =

 FBi(a
−1(y)) y ∈ [0, ρ̂i)

1 y ∈ [ρ̂i, 1]
1− FBi(a−1(y − 1)) y ∈ (1, 1 + ρ̂i].

(2.29)

This completes the proof.

Note that, similar to the PS case, the trapezoidal distribution U∗i depends on the
complete service-time distribution. Below, we present some special cases.

Exponential service times
Suppose Bi is exponentially distributed with parameter bi. First calculate

E[Bi1{Bi≤x}] =

∫ x

0

ybie
−biy dy =

1

bi
(1− e−bix(1 + bix)).

Hence, a(x) = ρ̂i(1 − e−bix(1 + bix)). To determine a−1(y), we solve a(x) = y for x
and, after some rewriting, obtain the following equation

−e−1(1− y/ρ̂i) = tet, (2.30)
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Figure 2.3: Probability density function of Ũ with exponential service times in a SJF
polling system.

where t = −(1 + bix). We thus need the solution of (2.30), which is known to be
given in terms of the Lambert W function. Observe that the equation tet may have
multiple solutions, but we need the solutions for real t ≤ −1, denoted by W−1(·).
This function decreases from W−1(−1/e) = −1 to W−1(0−) = −∞. From the above
we derive a−1(y) = −(W−1(−e−1(1− y/ρ̂i)) + 1)/bi.

Since FBi(x) = 1 − e−bix, the probability density function fU∗i (y) of the generalized
trapezoidal distribution U∗i becomes

fU∗i (y) =

 1− eW−1(−e−1(1−y/ρ̂i))+1 y ∈ [0, ρ̂i)
1 y ∈ [ρ̂i, 1]

eW−1(−e−1(1−(y−1)/ρ̂i))+1 y ∈ (1, 1 + ρ̂i].

(2.31)

The form of this distribution only depends on ρ̂i, this means that it only depends on
the ratio between the mean interarrival time and the mean service time. In Figure 2.3,
the probability density function is plotted for two different values of ρ̂i. The figure
shows that for small ρ̂i, the distribution is close to a uniform distribution. When ρ̂i
increases, the distribution gets more skewed to the right.

Uniform service times
Suppose Bi has a uniform distribution with parameters ai and bi, with ai < bi. We
have

E[Bi1{Bi≤x}] =

∫ x

ai

u

bi − ai
du =

x2 − a2
i

2(bi − ai)
= E[Bi]

x2 − a2
i

b2i − a2
i

, for ai ≤ x ≤ bi.
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This gives a(x) = ρ̂i
x2−a2i
b2i−a2i

. Some basic calculus yields the inverse of a(·): a−1(y) =√
y (b2i − a2

i ) /ρ̂i + a2
i . Because FBi(x) = (x− ai)/(bi − ai),

fU∗i (y) =


√
y/(b2i−a2i )/ρ̂i+a2i−ai

bi−ai y ∈ [λ̂iai, ρ̂i)

1 y ∈ [ρ̂i, 1 + λ̂iai]

1−
√

(y−1)(b2i−a2i )/ρ̂i+a2i−ai
bi−ai y ∈ (1 + λ̂iai, 1 + ρ̂i].

Pareto service times
Suppose Bi is Pareto distributed with parameters ai > 2 and bi. Note that ai > 2
ensures that the second moment is finite, such that the HT limit exists (see e.g.
[52; 115]). It is easy to show that a(x) = ρ̂i(1 − bai−1

i x1−ai) and a−1(y) = bi(1 −
y/ρ̂i)

1
1−ai . Using that FBi(x) = 1− (bi/x)ai , x ≥ bi gives

fU∗i (y) =


1− (1− y/ρ̂i)

−1
1−ai y ∈ [0, ρ̂i)

1 y ∈ [ρ̂i, 1]

(1− (y − 1)/ρ̂i)
−1

1−ai y ∈ (1, 1 + ρ̂i].

2.4 Results for models with globally gated service

In this section we consider the case of a globally gated service. Recall that (without
loss of generality) we assume that the global gate closes at successive polling instants
at Q1 (see for example [40] for a description of the globally gated model). As in
Section 2.3, we analyze LCFS, ROS, PS and SJF in addition to FCFS. Since the
derivations for globally gated are largely similar to the case gated service at all queues,
we only present the final results and omit the proofs.

The following result (proven in [136]) gives an asymptotic expression for the distribu-
tion of the cycle times Ci, defined in Section 2.2. Note again that the cycle times do
not depend on the local scheduling policy.

Property 2.5 (Convergence of cycle times for globally gated service discipline). For
the globally-gated system we have: for i = 1, . . . , N , as ρ ↑ 1,

(1− ρ)Ci →d Γ̃,

where Γ̃ has a gamma distribution with parameters

α :=
2r

σ2
, µ :=

2

σ2
. (2.32)

with σ2 given by (2.6).
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Following the same line of reasoning as in Section 2.3, we obtain the waiting-time
distributions for all considered scheduling disciplines for globally gated service in
heavy traffic. For convenience, we define Pi :=

∑i
j=1 ρ̂j for i = 1, . . . N and by

convention P0 := 0.

Theorem 2.8. For globally gated service and ρ ↑ 1, the following properties hold:

(i) For i ∈ IFCFS , ILCFS,
(1− ρ)Wi →d UiC̃i,

where Ui is a uniform[Pi, 1 + Pi−1] random variable if i ∈ IFCFS and Ui is a
uniform random variable on the interval [Pi−1, 1 + Pi] if i ∈ ILCFS.

(ii) For i ∈ IROS,
(1− ρ)Wi →d Ũ

∗
i C̃i,

where Ũ∗i has a trapezoidal distribution with probability density function

fŨ∗i
(y) =

 (y − Pi−1)/ρ̂i y ∈ [Pi−1,Pi)
1 y ∈ [Pi,Pi−1 + 1]
(Pi + 1− y)/ρ̂i y ∈ (Pi−1 + 1,Pi + 1].

(iii) For i ∈ IPS , ISJF ,
(1− ρ)Ti(x)→d Ui(x)C̃i,

where Ui(x) is a uniform[Pi + λ̂iκi,x, 1 + Pi + λ̂iκi,x] random variable, with
κi,x := E[min{Bi, x}] for i ∈ IPS and κi,x := E[Bi1{Bi≤x}] for i ∈ ISJF .

In all cases, C̃i has a gamma distribution with parameters α+ 1 and µ, where α and
µ are given in Equation (2.32) and it is independent of the uniform distributions.

In the above theorem we only presented the conditional waiting times for PS and SJF.
Using Lemma 2.1, this results in a generalized trapezoidal times a gamma distribution
for the unconditional waiting time, as in Subsections 2.3.4 and 2.3.5. Finally, also the
intuitive interpretation of the heavy-traffic limit using HTAP is directly in line with
that of Section 2.3.

Remark 2.8 (Renewal arrival processes). For the model under consideration with
Poisson arrivals, Theorems 2.1–2.8 give the asymptotic waiting-time and sojourn-time
distributions for the LCFS, ROS, SJF and PS scheduling disciplines. Following the
well-established line of argumentation found in [51; 52; 114], we conjecture that similar
results hold for renewal arrival processes. In particular, in [114] a strong conjecture is
given that in heavy traffic the same results for the scaled cycle-time and waiting-time
distributions for FCFS hold as those in Properties 2.1 and 2.3, respectively, but where
the parameter σ2 is now replaced by

σ2
renewal =

N∑
i=1

λ̂i
(
Var[Bi] + c2Ai E[Bi]

2
)
. (2.33)
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Here Ai represents the interarrival times between arriving customers at queue i and
c2Ai is its squared coefficient of variation. Note for the special case of Poisson arrivals,
the expression for σ2

renewal coincides with σ2. Based on the HTAP, we derive the
following conjecture for renewal arrivals.

Conjecture 2.1. For independent renewal arrival processes, Theorems 2.1–2.8 are
also valid when σ2 defined in (2.6) is replaced by σ2

renewal defined in (2.33).

In the next section, we use this conjecture to derive and validate approximations for
the waiting-time and sojourn-time distributions for renewal arrivals.

2.5 Closed-form approximations for systems with arbitrary
load

In Sections 2.3 and 2.4, we have derived heavy-traffic limits for the (scaled) waiting-
time and sojourn-time distributions under several scheduling disciplines. These results
not only give valuable insights into polling models operating under a critical load, but
are also useful in the study of polling models that are arbitrary loaded (i.e. ρ < 1).
Below, we describe how the results derived in this chapter can be used to obtain
closed-form approximations for the waiting-time and sojourn-time distributions in
polling models with renewal arrivals and arbitrary load.

For systems with FCFS service at all queues, Boon et al. [31] derive a closed-form

approximation, denoted by E[W
(app)
i ], for the mean waiting time by interpolating

between known light-traffic and heavy-traffic limits. Based on this approximation,
Dorsman et al. [62] propose to approximate the complete waiting-time distribution
by, for x > 0,

P(Wi < x) ≈ P(UiCi < (1− ρ)x) (i ∈ IFCFS), (2.34)

where Ui is uniformly [ρ̂i, 1] distributed (as defined in Property 2.1) and where Ci is
gamma-distributed with shape parameter α+ 1 and scale parameter

µ
(app)
i :=

1 + ρ̂i
1− ρ

rδ + σ2
renewal

2σ2
renewal E[W

(app)
i ]2

, (2.35)

where α, δ and σ2
renewal are defined in Property 2.1 and (2.33).

To develop an approximation for the other scheduling disciplines under consideration,
recall that the cycle-time distribution is insensitive to the scheduling discipline. Based
on this observation, for i ∈ ILCFS , we approximate the waiting-time distribution by
(2.34), where the distribution of Ci is kept the same, but with Ui uniformly distributed
on [0, 1 + ρ̂i] (cf. Theorem 2.1). Likewise, for i ∈ IROS , the waiting-time distribution
can be approximated by (2.34) with Ui replaced by a trapezoidal distribution defined
in Theorem 2.3. Approximations for the sojourn-time distributions can be obtained
by using (2.4). For PS and SJF, approximations can be obtained directly for the
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Figure 2.4: Simulated and approximated sojourn-time distributions at queue 1 for
the gated model with ρ = 0.95 for FCFS, LCFS and PS.

sojourn-time distributions, using Theorems 2.5 and 2.7, respectively. For the case of
globally gated service, waiting-time distributions are approximated in a similar way
using the results in Section 2.4; details are omitted here.

Throughout this section we will show numerical results based on simulations to il-
lustrate the usefulness and accuracy of the closed-form approximations. We consider
a three-queue polling model with gated service at each queue and with the follo-
wing parameters. The service times at queues 1, 2 and 3 are uniformly distributed
with means 1, 2, 3, respectively, and with squared coefficient of variation 1/4. The
switch-over time distributions are exponentially distributed with means r1 = r2 = 1
and r3 = 3. The arrival processes at each of the queues are renewal and mutually
independent. The ratios between the arrival rates are 1:3:2, and interarrival-time dis-
tributions are uniformly distributed with squared coefficient of variation 1/4. Note
that the system is rather asymmetric and the ratios between the per-queue load values
are 1:6:6.

To illustrate the fact that the approximation of the distribution is accurate in heavy
traffic, Figure 2.4 plots the simulated and approximated density functions of the
sojourn-time distributions at Q1 for FCFS, LCFS and PS service (at all queues) for
a heavily loaded system with ρ = 0.95. As expected, the approximations closely
follow the simulations. Figure 2.4 also illustrates that the differences between the
different scheduling disciplines are significant and are well-captured by the asymptotic
results.

To proceed, Figure 2.5 shows the simulated and approximated probability density
functions for the per-queue sojourn-time distributions for the model with LCFS ser-
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Figure 2.5: Simulated and approximated per-queue sojourn-time distributions for the
gated model with ρ = 0.95 and LCFS service.
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Figure 2.6: Simulated and approximated per-queue sojourn-time distributions for the
globally-gated model with ρ = 0.95 and LCFS service.

vice at each queue, for a heavily loaded system with ρ = 0.95. Figure 2.6 shows the
results for the same model but with globally-gated service. The results in Figures 2.5
and 2.6 illustrate the fact that the per-queue sojourn-time distributions are well-
captured by the approximations for heavy-traffic scenarios (as they should).

Next, we assess the accuracy of the approximations for the complete range of load
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values. To this end, Table 2.2 shows the simulated and approximated values of the
mean sojourn times at Q1 and their relative absolute difference defined as

∆% = 100%× |App− Sim|
Sim

for different values of ρ and for all the scheduling disciplines considered in this chapter.
Recall that the mean sojourn-times are the same for FCFS, LCFS and ROS service,
but may differ for PS and SJF service. Table 2.3 shows the results for the standard
deviations of the sojourn times at Q1. In Table 2.2 we see that the approximation of

FCFS/LCFS/ROS PS SJF
ρ Sim App ∆% Sim App ∆% Sim App ∆%

0.10 4.92E00 4.97E00 1.1 4.92E00 4.99E00 1.3 4.92E00 4.97E00 0.9
0.30 5.75E00 6.02E00 4.7 5.75E00 6.07E00 5.6 5.75E00 5.99E00 4.2
0.50 7.29E00 7.87E00 7.9 7.30E00 7.98E00 9.2 7.28E00 7.80E00 7.1
0.70 1.13E01 1.21E01 6.9 1.14E01 1.23E01 8.0 1.13E01 1.19E01 6.1
0.80 1.65E01 1.74E01 5.0 1.68E01 1.78E01 5.8 1.64E01 1.71E01 4.4
0.90 3.22E01 3.31E01 2.6 3.24E01 3.40E01 5.0 3.18E01 3.25E01 2.2
0.95 6.37E01 6.45E01 1.3 6.53E01 6.63E01 1.5 6.26E01 6.33E01 1.1
0.98 1.58E02 1.59E02 0.4 1.62E02 1.63E02 0.6 1.55E02 1.56E02 0.5

Table 2.2: Mean sojourn times for different scheduling disciplines.

the mean sojourn time is most accurate for lightly and heavily loaded systems. This
is due to the fact that, by construction, the approximations are asymptotically exact
in the limiting cases of ρ ↓ 0 and ρ ↑ 1. For moderately loaded systems, the error is
highest, but it still is no more than a few percent. Table 2.3 shows that the results
for the standard deviations are accurate for heavily loaded systems, but may become
less accurate for low-to-medium loaded systems. This is probably caused by the fact
that the approximation for the second (and higher) moments of the sojourn times in
(2.34)-(2.35) is asymptotically exact for ρ ↑ 1, but not for ρ ↓ 0 (as opposed to the
first moments, which are asymptotically exact for ρ ↓ 0 by construction).

FCFS ROS SJF
ρ Sim App ∆% Sim App ∆% Sim App ∆%

0.1 3.44E00 2.63E00 23.4 3.44E00 2.78E00 19.1 3.44E00 2.81E00 18.1
0.3 3.93E00 3.30E00 15.9 3.93E00 3.49E00 11.2 3.93E00 3.52E00 10.5
0.5 4.89E00 4.49E00 8.1 4.94E00 4.75E00 3.8 4.93E00 4.77E00 3.1
0.7 7.49E00 7.24E00 3.4 7.71E00 7.66E00 0.6 7.68E00 7.65E00 0.3
0.8 1.08E01 1.07E01 1.8 1.13E01 1.13E01 0.1 1.12E01 1.13E01 0.3
0.9 2.11E01 2.09E01 0.9 2.21E01 2.21E01 0.1 2.19E01 2.19E01 0.0

0.95 4.14E01 4.13E01 0.3 4.37E01 4.37E01 0.1 4.34E01 4.35E01 0.1
0.98 1.03E02 1.03E02 0.3 1.09E02 1.09E02 0.0 1.08E02 1.08E02 0.3

Table 2.3: Standard deviations of the sojourn times for FCFS, ROS and SJF.
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In summary, the numerical results (1) illustrate the validity of the asymptotic results,
and (2) demonstrate that the sojourn-time approximations nicely capture the impact
of the local scheduling policies on the sojourn-time distributions and are accurate over
the whole range of load values.

2.6 Concluding remarks

In this chapter, we have studied the impact of scheduling within queues on the waiting-
time and sojourn-time distributions in polling systems. We have presented the first
HT analysis of polling models where the local scheduling policy is not FCFS, but
instead, is varied as LCFS, ROS, PS and SJF. The main contribution is the deri-
vation of asymptotic closed-form expressions for the LST of the scaled waiting-time
and sojourn-time distributions under HT conditions. The results raise a number of
remarks and challenging open questions for further research, on which we would like
to elaborate in the current section.

In this chapter we have assumed that all the queues in the polling system follow the
(globally) gated service discipline. However, this assumption can easily be relaxed;
that is, we only have to assume that the specific queue for which we derive the waiting-
time distribution is served according to the gated service discipline (see, also, [40]).
For all the other queues, we only have to postulate that the service discipline belongs
to the broad class of local branching-type disciplines [121], which includes gated and
exhaustive service as special cases.

Furthermore, as [40] argues, the analysis of exhaustive polling systems is more com-
plicated because the waiting times of the customers who are served during a visit are
affected by later arrivals which take place during that visit period (which is obviously
not the case for gated systems). Extension of the results to a broader class of service
disciplines is a challenging topic for further research. In Chapter 3 we will extend the
results to the exhaustive service discipline.

Finally, an interesting question is a generic optimization of the system’s performance
with respect to the choice of the local scheduling disciplines. With respect to mean
sojourn times, it follows from [153] that SJF is optimal. For non-anticipating sche-
duling disciplines, the results in [1] suggest that the optimal discipline for minimizing
mean sojourn times belongs to the family of multilevel PS disciplines. Optimization
results beyond the mean, e.g. in terms of tails of sojourn times, is still open. In
this context, it is worthwhile to note that the sojourn-time distribution at a given
queue does not depend on the choice of the local scheduling discipline at any other
queue. This implies that the sojourn-time distribution at a queue only depends on the
choice of the local service order at that same queue. Therefore, the results presented
in this chapter provide a good starting point for tackling this type of optimization
problem.



Chapter 3

Exhaustive polling systems with non-FCFS service

3.1 Introduction

In the previous chapter, we derived HT limits of the waiting-time distributions in
cyclic polling models (described in Chapter 1) with gated and globally-gated service
for the LCFS, ROS, PS and SJF local service orders. In the current chapter, we
extend the results to the case of exhaustive service at each of the queues, which
is fundamentally more complicated than the gated and globally-gated case (as also
stated in [40]). The additional complexity of the exhaustive-service model compared
to the (globally-)gated model is that customers that arrive during a visit of the server
at a queue may intervene with the customers that were present at the beginning of
that visit period.

In this chapter, we study Poisson-driven cyclic polling models with general service-
time and switch-over time distributions, and with exhaustive service at all queues
(see Section 3.11 for a relaxation of that assumption). For this model, we consi-
der the following seven scheduling policies that determine the local order in which
the customers at a given queue are served: FCFS (which is used as a benchmark),
LCFS (with and without preemption), ROS, PS, the multi-class priority scheduling
(with and without preemption), SJF and SRPT. For these models, we derive new,
exact expressions for the waiting-time distributions in terms of the intervisit time
distributions for stable systems. Subsequently, we use these expressions to derive the
asymptotic waiting-time distributions for each of the local order policies under HT
assumptions (i.e., when the load approaches 1). We show that in all cases the asymp-
totic waiting-time distribution at queue i can be expressed as the product of two
independent random variables Γ and Θi, where Γ is gamma-distributed with known
parameters that are independent of the scheduling policy. Moreover, we derive the
distribution of the random variable Θi, which expresses the impact of the local service
order on the asymptotic waiting-time distribution. The results are exact and give a
full characterization of the limiting behavior of the system, and as such provide new
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fundamental insight in the influence of the local scheduling policy on the waiting-time
performance of polling models. As a by-product, the HT limits suggest simple closed-
form approximations for the complete waiting-time distributions for stable systems
with arbitrary load values strictly less than 1. The accuracy of the approximations is
evaluated by several numerical examples.

The remainder of the chapter is organized as follows. In Section 3.2, the model is des-
cribed and the notation is introduced. In Section 3.3, we present preliminary results,
including the HT asymptotics for FCFS that serve as a benchmark. The waiting-time
distributions and HT asymptotics for LCFS, ROS, PS, multi-class priority queues,
and SJF and SRPT are derived in Sections 3.4–3.8, respectively. The results are sum-
marized in Section 3.9. Furthermore, Section 3.10 proposes a simple approximation
for the waiting-time distributions and present numerical results to evaluate the accu-
racy of the approximations. Finally, Section 3.11 contains a number of concluding
remarks and addresses several topics for further research.

3.2 Model description

In this section we introduce the notation and give a description of the model. Recall
that useful notation with respect to a one-dimensional absolutely-continuous random
variable X is presented in Table 2.1.

The model is as follows. We consider a system of N ≥ 2 infinite-buffer queues,
Q1, . . . , QN , and a single server that visits and serves the queues in cyclic order. At
each queue, the service discipline is exhaustive; that is, the server proceeds to the next
queue when the queue is empty. Customers arrive at Qi according to a Poisson process
{Ni(t), t ∈ R} with rate λi. These customers are referred to as type-i customers. The

total arrival rate is denoted by Λ =
∑N
i=1 λi. The service time of a type-i customer is

a random variable Bi. The kth moment of the service time of an arbitrary customer
is denoted by E[Bk] =

∑N
i=1 λi E[Bki ]/Λ, k = 1, 2, . . . . The load offered to Qi is

ρi = λi E[Bi] and the total load offered to the system is equal to ρ =
∑N
i=1 ρi. A

necessary and sufficient condition for stability of the system is ρ < 1. The switch-over
time required by the server to proceed from Qi to Qi+1 is a random variable Si. We

let S =
∑N
i=1 Si denote the total switch-over time in a cycle. The random variable

Ci describes the cycle time of the server, defined as the time between two successive
departures of the server from Qi. The mean cycle time is known to be the same for all
queues, and is given by E[Ci] = E[C] = E[S]/(1− ρ). Denote by Vi the visit time at
Qi, defined as the time elapsed between a polling instant at Qi (i.e., the moment the
server arrives at the queue) and the server’s successive departure from Qi. Denote by
Ii the intervisit time of Qi, defined as the time elapsed between a departure of the
server from Qi and the successive polling instant at Qi. Note that Ci = Ii + Vi, for
i = 1, . . . , N .
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The local service order policy of a queue determines the order in which the custo-
mers are served during a visit period of the server at that queue. We only consider
work-conserving policies. We denote i ∈ IP if Qi receives scheduling policy P ∈
{FCFS, LCFS, LCFS-PR, ROS, PS, NPRIOR, NPRIOR-PR, SJF, SRPT}; for ex-
ample, IFCFS is the (index) set of queues that are served on a FCFS basis. We refer
to Table 1.1 for a short explanation of the policies

In this chapter we mainly focus on HT limits, i.e., the limiting behavior as ρ approa-
ches 1, see also Chapter 2. Recall that for each variable x that is a function of ρ, we
denote its value evaluated at ρ = 1 by x̂.

Let Ti denote the sojourn time of an arbitrary customer at Qi, defined as the time
between the moment of arrival of a customer and the moment at which the customer
departs from the system. The waiting time Wi of an arbitrary customer at Qi is
defined as the sojourn time minus the service requirement. When ρ ↑ 1, all queues
become unstable, therefore the focus lies on the limiting distribution for ρ ↑ 1 of
the random variables W̃i := (1 − ρ)Wi and T̃i := (1 − ρ)Ti, referred to as the scaled
waiting times and sojourn times at Qi, respectively. We denote by Γ(α, µ) a gamma-
distributed random variable with shape and rate parameters α and µ, respectively.
Moreover, we denote by U [a, b], with a < b, a random variable that is uniformly
distributed over the interval [a, b]. For later reference, recall from (2.3) that the LST
of the random variable U [a, b]Γ(α+1, µ), where U [a, b] and Γ(α+1, µ) are independent,
is given by, for, Re(s) > 0,

E
[
e−sU [a,b]Γ(α+1,µ)

]
=

µ

αs(b− a)

{(
µ

µ+ sa

)α
−
(

µ

µ+ sb

)α}
. (3.1)

In Sections 3.3 to 3.8 we derive expressions for the LSTs of the waiting-time distri-
butions for the scheduling disciplines shown in Table 1.1.

3.3 Preliminaries and method outline

In this section we formulate a number of known preliminary results that serve as
a reference for the remaining sections. In Section 3.1 we give expressions for the
asymptotic distributions of the cycle and intervisit times under HT assumptions. In
Section 3.2 we use these results to give an expression for the LST of the waiting-time
distribution for the case of FCFS service. We refer to [132] for rigorous proofs of these
results.

3.3.1 Cycle and intervisit times

To start, let us consider the distribution of the cycle time Ci. Recall that Ci is
defined as the time between two successive departures of the server from Qi. A simple
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but important observation is that the distribution of Ci does not depend on the local
scheduling policy, provided that the policy is work-conserving. This means that we can
use the results for the cycle times and also for the intervisit times throughout the rest
of this chapter. The following result gives a characterization of the limiting behavior of
the scaled cycle-time distributions, stating that the (scaled) cycle times C̃i := (1−ρ)Ci
converge to a gamma distribution with known parameters in HT.

Property 3.1 (Convergence of cycle times). For i = 1, . . . , N , as ρ ↑ 1,

C̃i →d Γ̃, (3.2)

where Γ̃ has a gamma distribution with parameters

α :=
E[S]δ

σ2
, µ :=

δ

σ2
, (3.3)

with

σ2 :=
E[B2]

E[B]
, and δ :=

N∑
i=1

ρ̂i(1− ρ̂i). (3.4)

Note that the distribution of the cycle time Ci is related to the intervisit time Ii in
the following way (see e.g. [28]):

E[Ii] = (1− ρi)E[Ci], and E[e−(s+λi(1−E[e−sξi ]))Ii ] = E[e−sCi ]. (3.5)

Here ξi is the busy period of a regular M/G/1 queue with arrival rate λi and service
time Bi. The (scaled) intervisit times Ĩi := (1 − ρ)Ii converge (in distribution) to a
gamma distribution with known parameters as stated in the property below.

Property 3.2 (Convergence of intervisit times). For i = 1, . . . , N , as ρ ↑ 1,

Ĩi →d Γ̃i, (3.6)

where Γ̃i has a gamma distribution with parameters

α :=
E[S]δ

σ2
, µi :=

δ

(1− ρ̂i)σ2
, (3.7)

where δ and σ2 are given in Equation (3.4).

In this chapter, we repeatedly use Properties 3.1 and 3.2 to derive expressions for
the asymptotic scaled waiting-time distributions associated with each of the service
disciplines considered herein. For each policy we use a two-step approach:

(a) we derive an expression for the LST of the limiting distribution of the waiting
times in terms of the cycle- and/or intervisit-time distribution;

(b) we combine this expression with Property 3.1 or 3.2 to obtain an expression for
the LST of the waiting-time distribution in HT and interpret the resulting LST.

To conclude, we add a remark with intuition for the distribution using the Heavy
Traffic Averaging Principle (HTAP).
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3.3.2 First-Come-First-Served

Here we illustrate the two-step approach described above for FCFS service. Regarding
the first step, the following result gives an expression for the LST of the waiting time
Wi in terms of the distribution of the intervisit time Ii (cf. [125]):

Property 3.3 (Waiting times in terms of intervisit times). For Re(s) > 0 and ρ < 1,

W ∗i (s) =
(1− ρi)s

s− λi(1−B∗i (s))

1− I∗i (s)

sE[Ii]
(i ∈ IFCFS). (3.8)

Next, as step (b), combining Properties 3.2 and 3.3, the expression for E[Ci], and
taking limits we obtain: For Re(s) > 0 and i ∈ IFCFS ,

W̃ ∗i (s) := lim
ρ↑1

W ∗i (s(1− ρ)) =
1

(1− ρ̂i)E[S]s

{
1−

(
µi

µi + s

)α}
. (3.9)

Using (3.1), this leads to the following characterization of the limiting behavior of the
scaled waiting-time distribution derived in [136]:

Property 3.4 (Convergence of the waiting times). For ρ ↑ 1,

W̃i →d UiĨi (i ∈ IFCFS), (3.10)

where Ui is a uniformly distributed random variable on [0, 1], and Ĩi has a gamma
distribution with parameters α+1 and µi, where α and µi are given in Equation (3.7).

Note that Ĩi is the length-biased counterpart of Ĩi, a gamma distributed random
variable with parameters α and µi as in Equation (3.7). It is well known that if a
gamma random variable has parameters α and µi, then its length-biased version has
parameters α+ 1 and µi.

Remark 3.1 (Intuition by the Heavy Traffic Averaging Principle). Property 3.4
states that the limiting behavior of Wi is of the form UFCFSΓ, where UFCFS is
uniformly distributed on the interval [0, 1]. An intuitive explanation for this follows
from the Heavy Traffic Averaging Principle (HTAP) combined with a fluid model
([51; 52; 113]). Loosely speaking, the HTAP principle states that the work in each
queue is emptied and refilled at a rate that is much faster than the rate at which the
total workload is changing. This implies that the total workload can be considered
as a constant during the course of a cycle, while the loads of the individual queues
fluctuate like a fluid model.

Figure 3.1 gives a graphical representation of the fluid model. On the horizontal axis,
the course of a cycle with fixed length c is plotted. The cycle is divided in two parts,
the intervisit time Ii with length (1− ρ̂i)c and the visit time Vi with length ρ̂ic. On
the vertical axis the workload in Qi is plotted. The cycle starts at the completion of
a visit to Qi. Throughout the cycle, work arrives with intensity 1 and a fraction ρ̂i



44 CHAPTER 3. EXHAUSTIVE POLLING SYSTEMS

ρ̂i(1− ρ̂i)c

c

(1− ρ̂i)c ρ̂ic

ρ̂i ρ̂i − 1

Figure 3.1: Fluid limits in heavy traffic; the amount of fluid in Qi is plotted over the
course of a cycle.

is directed to Qi. During the visit time Vi work flows out of Qi with rate 1 until the
queue is empty. We refer to [28, p. 34-39] for an intuitive explanation based on this
picture.

Here, we opt for a more direct analysis of the fluid model. Let the uniform random
variable U on [0,1] denote the fraction of the cycle c that has elapsed at the arrival
epoch of this particle. The particle has to wait for the remaining length of the cycle
(1− U)c except for the amount of work that arrives at Qi during the cycle after the
arrival of the particle. As work to Qi arrives at rate ρ̂i, the latter equals ρ̂i(1− U)c.
Hence, the waiting time equals (1 − U)c − ρ̂i(1 − U)c = (1 − U)(1 − ρ̂i)c. Using the
fact that U [0, 1] is in distribution equal to 1−U [0, 1] and Ii = (1− ρ̂i)c, we conclude
that W̃i is uniformly distributed on [0, 1]Ii. This interpretation gives much insight in
the heavy-traffic asymptotics.

3.4 Last-Come-First-Served

In this section we consider the LCFS service discipline. In Subsection 3.4.1 we derive
the results for LCFS without preemption and in Subsection 3.4.2 we look at queues
with LCFS preemptive resume (LCFS-PR) service. In both subsections, we first
provide a derivation of the LST of Wi for all ρ < 1, giving insight in the terms
contributing to the delay. Then we study the behavior of Wi in the HT regime. Since
we are interested in deriving the waiting-time distributions of customers that arrive
in steady state, it is convenient to define stationary versions of the arrival processes
on the entire real line. Hence, each arrival process Ni consists of points {Ti,n}n∈Z,
where Ti,0 ≤ 0 ≤ Ti,1. Associated with each point is the busy period ξi,n generated
by the arriving customer. The points (Ti,n, ξi,n) define a marked Poisson process on
R2.
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3.4.1 Non-Preemptive LCFS

Now we derive the LST of the waiting time of a tagged customer T that arrives at
queue i in steady state. Without loss of generality, we assume that T arrives at time
zero. We have to distinguish between the case where T arrives during an intervisit
time, and the case where T arrives during a visit time.

Case I: the tagged customer arrives during an intervisit time
In this case, T has to wait for the server to start serving queue i; this is a residual
intervisit time. In addition, T has to wait for all customers that arrived after him
during the residual intervisit time and for the busy periods they generate. We have,
for i ∈ ILCFS ,

Wi (given T arrives during intervisit time) = Iresi +
∑

Ti,k∈(0,Iresi )

ξi,k. (3.11)

Conditioning on Iresi and the number of arrivals during Iresi (as in [40]), we have for
Re(s) > 0,

E[e−sWi |arrival during intervisit time]

=

∫ ∞
t=0

e−st
∞∑
n=0

e−λit
(λit)

n

n!
E[e−sξi ]n dP(Iresi ≤ t) (3.12)

=

∫ ∞
t=0

e−t(s+λi(1−E[e−sξi ])) dP(Iresi ≤ t)

=
1− E[e−(s+λi(1−E[e−sξi ])Ii)]

(s+ λi(1− E[e−sξi ]))E[Ii]

=
1− E[e−sCi ]

(s+ λi(1− E[e−sξi ]))E[C](1− ρi)
(i ∈ ILCFS), (3.13)

where for the final step we use Equation (3.5).

Case II: the tagged customer arrives during a visit time
Note that T now arrives during the service of another customer. Hence, he has to
wait for a residual service duration. In addition, he has to wait for the duration of the
busy periods generated by the customers that arrived during the residual service time,
as they are served before the tagged customer. Hence, we have for i ∈ ILCFS ,

Wi (given arrival during visit time) = Bresi +
∑

Ti,k∈(0,Bresi )

ξi,k. (3.14)
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Using the similarity between (3.11) and (3.14), we immediately see that, for i ∈
ILCFS ,

E[e−sWi |arrival during visit time] =
1− E[e−(s+λi(1−E[e−sξi ])Bi)]

(s+ λi(1− E[e−sξi ]))E[Bi]

=
1− E[e−sξi ]

(s+ λi(1− E[e−sξi ]))E[Bi]
,

where the second equality follows from the well known functional equation satisfied
by the LST of the busy period of an M/G/1 queue (see e.g., [129, p. 354]). Note that
the probability that an arrival occurs during a visit time is equal to ρi. This leads to
the following proposition.

Proposition 3.1. For ρ < 1, Re(s) > 0,

W ∗i (s) = ρi
1− E[e−sξi ]

(s+ λi(1− E[e−sξi ]))E[Bi]

+ (1− ρi)
1− E[e−sCi ]

(s+ λi(1− E[e−sξi ]))E[C](1− ρi)
(i ∈ ILCFS). (3.15)

Note that the first term appears in the LST of the waiting time in an M/G/1 queue
with LCFS service order (see e.g., [129, p. 357]). Also note that Equation (3.15) was
found in [122], where intervisit periods are replaced with rest periods.

The following result gives an expression for the asymptotic waiting-time distribution
for LCFS service in heavy traffic.

Theorem 3.1. For ρ ↑ 1,

W̃i →d

{
0 w.p. ρ̂i
UiC̃i w.p. 1− ρ̂i

(i ∈ ILCFS),

where Ui is a uniformly distributed random variable on the interval [0, 1] and C̃i has a
gamma distribution with parameters α+1 and µ, where α and µ are given in Equation
(3.3).

Proof. Combining Proposition 3.1 with Property 3.1 gives the following expressions
for the LST of the (scaled) waiting-time distribution. For i ∈ ILCFS , Re(s) > 0,

W̃ ∗i (s) = lim
ρ↑1

W ∗i (s(1− ρ))

= lim
ρ↑1

(
ρi

1− E[e−s(1−ρ)ξi ]

(s(1− ρ) + λi(1− E[e−s(1−ρ)ξi ]))E[Bi]

+ (1− ρi)
1− E[e−s(1−ρ)Ci ]

(s(1− ρ) + λi(1− E[e−s(1−ρ)ξi ]))E[C](1− ρi)

)
. (3.16)
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Let us first consider the first term on the right-hand side of the final equation:

lim
ρ↑1

ρi
1− E[e−s(1−ρ)ξi ]

(s(1− ρ) + λi(1− E[e−s(1−ρ)ξi ]))E[Bi]

= lim
ρ↑1

ρi
(1− E[e−s(1−ρ)ξi ])/(1− ρ)

sE[Bi] + ρi((1− E[e−s(1−ρ)ξi ])/(1− ρ))

= ρ̂i
E[ξi]s

E[Bi]s+ ρ̂i E[ξi]s

= ρ̂i.

In the second equality, we use l’Hôpital’s rule on both the numerator and the deno-
minator, and the fact that the derivative of E[e−s(1−ρ)ξi ] at s(1 − ρ) = 0 is equal to
−E[ξi]. For the third equality we apply the well-known result E[ξi] = E[Bi]/(1− ρi).
Now consider the second term on the right-hand side of (3.16):

lim
ρ↑1

(1− ρi)
1− E[e−s(1−ρ)Ci ]

E[C](1− ρi)(s(1− ρ) + λi(1− E[e−s(1−ρ)ξi ]))

= lim
ρ↑1

(1− ρi)
1−

(
µ
µ+s

)α
E[S](1− ρi)(s+ λi(1− E[e−s(1−ρ)ξi ])/(1− ρ))

= (1− ρ̂i)
1−

(
µ
µ+s

)α
E[S](1− ρ̂i)s(1 + λi E[ξi])

= (1− ρ̂i)
1

E[S]s

{
1−

(
µ

µ+ s

)α}
. (3.17)

Combining the above gives

W̃ ∗i (s) = ρ̂i + (1− ρ̂i)
1

E[S]s

{
1−

(
µ

µ+ s

)α}
(i ∈ ILCFS), (3.18)

where α and µ are given in (3.3). Note that (3.18) corresponds to the LST of a
random variable that is equal to 0 with probability ρ̂i and to a uniform random
variable on [0, 1] times a gamma distribution with probability 1− ρ̂i. This completes
the proof.

Remark 3.2 (HTAP). The mixed distribution can be intuitively explained with the
HTAP and a fluid model, see Figure 3.1. With probability ρ̂i a particle arrives during
Vi. In this case the scaled waiting time is negligible in HT, since the residual service
time and the busy periods generated by customers arriving during this time, do not
scale with ρ. With probability (1 − ρ̂i) a particle arrives during Ii. Let the uniform
random variable UI denote the fraction of Ii that has elapsed at the arrival epoch
of this particle. This arriving particle has to wait for the remaining intervisit time
(1−UI)Ii, in addition it has to wait for the busy periods generated by particles that
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arrived during that time for duration ρ̂i(1−UI)Ii/(1− ρ̂i), the amount of work built
up during the remaining intervisit time divided by the rate at which the queue is
emptied. Adding the two terms and noting that (1 − UI) is in distribution equal to
UI we get for the scaled waiting time of a particle arriving during an intervisit time:

W
(I)
i = UIIi/(1 − ρ̂i) = UIc. Now we can use the HTAP and the results from [132]

to find the distribution of c and arrive at the result given in Theorem 3.1.

3.4.2 LCFS with Preemptive Resume

The analysis of LCFS-PR service is largely similar to the non-preemptive LCFS case.
When an arrival occurs during an intervisit time, the waiting time of the customer
consists of the busy periods generated by the customers arriving during the service of
the tagged customer, the residual intervisit time and the busy periods generated by
the customers arriving during the residual intervisit time. This gives for Case I (see
Section 4.1): For i ∈ ILCFS-PR,

Wi (given T arrives during intervisit time) = (3.19)∑
Ti,k∈(0,Bi)

ξi,k + Iresi +
∑

Ti,k∈(0,Iresi )

ξi,k.

When the arrival occurs during a visit period, the waiting time of T consists of
the busy period generated by customers arriving during the service of the tagged
customer. We have in Case II: For i ∈ ILCFS-PR,

Wi (given T arrives during visit time) =
∑

Ti,k∈(0,Bi)

ξi,k. (3.20)

Due to the preemptive nature of the discipline, the first term of (3.19) is equal to
(3.20), the waiting time in Case II, so we calculate the LST of the waiting time of
Case II first. Conditioning on the service time and the number of arrivals therein
yields: For i ∈ ILCFS-PR,

E
[
e−sWi |T arrives during visit time

]
= E

[
e
−s(∑Ti,k∈(0,Bi)

ξi)
]

=

∫ ∞
t=0

∞∑
n=0

e−λit
(λit)

n

n!
E[e−sξi ]n dP(Bi ≤ t)

=

∫ ∞
t=0

e−t(λi(1−E[e−sξi ])) dP(Bi ≤ t)

= B∗i (λi(1− E
[
e−sξi

]
)).

The last two terms of (3.19) are equal to the waiting time of non-preemptive LCFS
given in (3.11). We use the corresponding LST given in (3.13) to arrive at (3.21): For



3.5. RANDOM ORDER OF SERVICE 49

i ∈ ILCFS-PR, Re(s) > 0,

E
[
e−sWi |T arrives during intervisit time

]
=

B∗i (λi(1− E
[
e−sξi

]
))

1− E[e−sCi ]
(s+ λi(1− E[e−sξi ]))E[C](1− ρi)

. (3.21)

Combining the two cases leads to the following expression for the LST of the waiting
time at Qi in terms of the cycle time.

Proposition 3.2. For ρ < 1, i ∈ ILCFS-PR, Re(s) > 0,

W ∗i (s) = B∗i (λi(1− E[e−sξi ])) (3.22)

×
(
ρi + (1− ρi)

1− E[e−sCi ]
(s+ λi(1− E[e−sξi ]))E[C](1− ρi)

)
.

The next result gives the HT limit of the distribution of W̃i.

Theorem 3.2. For ρ ↑ 1,

W̃i →d

{
0 w.p. ρ̂i
UiC̃i w.p. 1− ρ̂i

(i ∈ ILCFS-PR),

where Ui is a uniformly distributed random variable on the interval [0, 1] and C̃i has a
gamma distribution with parameters α+1 and µ, where α and µ are given in Equation
(3.3).

Proof. Using (3.17) and the fact that for Re(s) > 0 it holds that limρ↑1B∗i (λi(1 −
E[e−sξi ])) = 1, we immediately see that the LST of W̃i in HT is given by

W̃ ∗i (s) := lim
ρ↑1

W ∗i (s(1− ρ))

= ρ̂i + (1− ρ̂i)
1

E[S]s

{
1−

(
µ

µ+ s

)α}
(i ∈ ILCFS-PR), (3.23)

with α and µ given in (3.3).

Note that the HT scaled waiting-time distribution (3.23) for i ∈ ILCFS-PR is equal to
the HT scaled waiting-time distribution (3.18) for i ∈ ILCFS . This holds because the
busy periods generated by customers arriving during service of the tagged customer
do not scale with ρ.

3.5 Random Order of Service

In this section we first derive the LST of the scaled waiting-time distribution for ROS
in terms of the intervisit times. Then we use this result to obtain the waiting-time
distribution in heavy traffic.
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Proposition 3.3. For ρ < 1, i ∈ IROS, Re(s) > 0,

W ∗i (s) =

1− ρi
sE[Ii]

(∫ 1

x=ξ∗i (s)

1− I∗i (λi − λix)

B∗i (λi − λix)− x (B∗i (λi(1− x))−B∗i (s+ λi(1− x))) dK(x, s)

+

∫ 1

x=ξ∗i (s)

(I∗i (λi(1− x))− I∗i (s+ λi(1− x))) dK(x, s)

)
,

with ξ∗i (s) = B∗i (s+λi(1−ξ∗i (s))), the LST of a busy period at queue i with a dedicated
server, and

K(x, s) := exp

(
−
∫ 1

y=x

1

y −B∗i (s+ λi − λiy)
dy

)
. (3.24)

Proof. The derivation proceeds along the lines of Kingman [95]. Define the waiting
time of a tagged customer T as w = u + v. Here u is the time between the arrival
instant of T and the time the server begins working on a new type i customer, and
v is the time from that moment until T is taken into service. A customer may arrive
during an intervisit period of Qi, in which case u = Iresi , or during a visit period,
yielding u = Bresi .

For v we first consider the transform of the number of customers at moments when
the server is able to take a customer from queue i into service, denoted as Q(z,X),
with X ∈ {Bi, Ii}. From Kawasaki et al. [91] we have for an arrival during a visit
period:

Q(z,Bi) =
(1− ρi)(1− I∗i (λi − λiz))e−λi(1−z)Bi

λi E[Ii](B∗i (λi − λiz)− z)
.

If the customer arrives during an intervisit period we have, for |z| < 1, i ∈ IROS ,

Q(z, Ii) = e−λi(1−z)Ii .

Kingman [95] (Theorem 2) provides the LST of v given the number of customers
present. Combining this theorem with the equations above, we obtain the LST of
v for an arrival during a visit period while a customer of size Bi is in service: For
Re(s) > 0, i ∈ IROS ,

E[e−sv|Bi and arrival during visit period] =∫ 1

ξ∗i (s)

(1− ρi)(1− I∗i (λi − λix))e−λi(1−x)Bi

λi E[Ii](B∗i (λi − λix)− x)
dK(x, s).

Similarly, we have for a customer arriving during an intervisit period of length Ii: For
Re(s) > 0, i ∈ IROS ,

E[e−sv|Ii and arrival during intervisit period] =

∫ 1

ξ∗i (s)

e−λi(1−x)Ii dK(x, s).
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Note that given Bi or Ii, u and v are independent. For an arrival during a visit while
a customer of size Bi is in service, we obtain: For Re(s) > 0, i ∈ IROS ,

E[e−sw|Bi] = E[e−sB
res
i |Bi]E[e−sv|Bi]

=
1− e−sBi
sBi

∫ 1

ξ∗i (s)

(1− ρi)(1− I∗i (λi − λix))e−λi(1−x)Bi

λi E[Ii](B∗i (λi − λix)− x)
dK(x, s)

=
1− ρi
sλi E[Ii]

∫ 1

ξ∗i (s)

1− I∗i (λi − λix)

B∗i (λi − λix)− x
e−λi(1−x)Bi − e−(s+λi(1−x))Bi

Bi
dK(x, s).

Now, using the fact that E
[
e−φBi/Bi

]
=

B∗i [φ]
E[Bi]

(see [95]), we have for Re(s) > 0,

i ∈ IROS ,

E[E[e−sw|Bi]] =

1− ρi
sλi E[Ii]

∫ 1

ξ∗i (s)

1− I∗i (λi − λix)

B∗i (λi − λix)− x
B∗i (λi(1− x))−B∗i (s+ λi(1− x))

E[Bi]
dK(x, s).

Again it holds that a customer arrives with probability ρi during a visit period. Hence,
W ∗i (s) = ρi E[E[e−sw|Bi]] + (1 − ρi)E[E[e−sw|Ii]]. Using similar arguments for the
final term in addition to some rewriting, we obtain the result.

Next, we turn to the heavy-traffic limit. Before we state our result, we define Y as a
random variable with pdf and cdf

fY (y) =
(1− y)

ρ̂i
1−ρ̂i

(1− ρ̂i)
, FY (y) = 1− (1− y)

1
1−ρ̂i , y ∈ [0, 1].

The r.v. Y is to be interpreted as the fraction of customers, including both present
customers and those arriving until the server’s departure from the queue, that is
served before the arriving customer, see Remarks 3.4 and 3.5.

The next theorem gives the HT limit of the distribution of W̃i in terms of Y .

Theorem 3.3. For ρ ↑ 1,

W̃i →d

{
Ufi C̃ w.p. ρ̂i
Ugi C̃ w.p. 1− ρ̂i

(i ∈ IROS),

where Ufi has a uniform distribution on the interval [0, Y ρ̂i] and Ugi has a uniform
distribution on [Y ρ̂i, 1− ρ̂i + Y ρ̂i].

Proof. First we rewrite the LST of the waiting time given in Proposition 3.3. Noting
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that dK(x,s)
dx = K(x,s)

x−B∗i (s+λi(1−x)) , we get

W ∗i (s) =
1− ρi
sE[Ii]

(∫ 1

x=ξ∗i (s)

K(x, s)(1− I∗i (λi − λix))

×
(

1

B∗i (λi(1− x))− x +
1

x−B∗i (s+ λi(1− x))

)
dx

+

∫ 1

x=ξ∗i (s)

K(x, s) (I∗i (λi(1− x))− I∗i (s+ λi(1− x)))
1

x−B∗i (s+ λi(1− x))
dx

)
.

In line with Takagi and Kudoh [127] we take y = 1−x
1−ξ∗i (s) ; this gives x = 1−y(1−ξ∗i (s))

and dx = −(1− ξ∗i (s)) dy, yielding

W ∗i (s) =
1− ρi
sE[Ii]

(∫ 1

y=0

K
(
1− y(1− ξ∗i (s)), s

)(
1− I∗i (yλi(1− ξ∗i (s)))

)
×
(

1− ξ∗i (s)

B∗i (yλi(1− ξ∗i (s)))− 1 + y(1− ξ∗i (s))

+
1− ξ∗i (s)

1− y(1− ξ∗i (s))−B∗i (s+ yλi(1− ξ∗i (s)))

)
dy

+

∫ 1

y=0

K
(
1− y(1− ξ∗i (s)), s

)(
I∗i (yλi(1− ξ∗i (s)))− I∗i (s+ yλi(1− ξ∗i (s)))

)
×
(

1− ξ∗i (s)

1− y(1− ξ∗i (s))−B∗i (s+ yλi(1− ξ∗i (s)))

)
dy

)
.

We now take heavy-traffic limits for the terms separately. We start with the most
involved term, K(x, s). Using the substitution t = 1−y

1−x in (3.24), we may write

K(x, s) = exp

(
−
∫ 1

t=0

1− x
1− t(1− x)−B∗i (s+ λit(1− x))

dt

)
.

Taking the HT limit of K(1 − y(1 − ξ∗i (s)), s) we obtain, using l’Hôpital’s rule and
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some rewriting,

lim
ρ↑1

K(1− y(1− ξ∗i (s(1− ρ))), s(1− ρ)) =

exp

(
−
∫ 1

t=0

y E[ξi]

−E[ξi]ty + E[Bi](1 + λity E[ξi])
dt

)
= exp

(
− y

1− ρ̂i

∫ 1

t=0

1

1− ty dt

)
= exp

(
1

1− ρ̂i
ln(1− y)

)
= (1− y)

1
1−ρ̂i .

In the second step we use the fact that E[ξi] = E[Bi]
1−ρ̂i . The HT limits for the other

terms can be determined using l’Hôpital’s rule in addition to some rewriting and the
expression for E[ξi] above. In particular, we get

lim
ρ↑1

I∗i (yλi(1− ξ∗i (s(1− ρ)))) = Ĩ∗i

(
yρ̂is

1− ρ̂i

)
,

lim
ρ↑1

I∗i (s(1− ρ) + yλi(1− ξ∗i (s(1− ρ)))) = Ĩ∗i

(
s(1− ρ̂i + yρ̂i)

1− ρ̂i

)
,

lim
ρ↑1

1− ξ∗i (s(1− ρ))

B∗i (yλi(1− ξ∗i (s(1− ρ))))− 1 + y(1− ξ∗i (s(1− ρ)))
=

1

y(1− ρ̂i)
,

lim
ρ↑1

1− ξ∗i (s(1− ρ))

1− y(1− ξ∗i (s(1− ρ)))−B∗i (s(1− ρ) + yλi(1− ξ∗i (s(1− ρ))))
=

1

(1− y)(1− ρ̂i)
.

Moreover, we have Ĩ∗i

(
cs

1−ρ̂i

)
= C̃∗i (cs) =

(
µ

µ+cs

)α
for fixed c > 0. Combining the

above gives, after some rewriting,

W̃ ∗i (s) =
1− ρ̂i

sE[S](1− ρ̂i)

(∫ 1

y=0

(
1− Ĩ∗i

(
yρ̂is

1− ρ̂i

))
(1− y)

1
1−ρ̂i

y(1− y)(1− ρ̂i)
dy

+

∫ 1

y=0

(
Ĩ∗i

(
yρ̂is

1− ρ̂i

)
− Ĩ∗i

(
s(1− ρ̂i + yρ̂i)

1− ρ̂i

))
(1− y)

1
1−ρ̂i

(1− y)(1− ρ̂i)
dy

)

= ρ̂i

∫ 1

y=0

1

sE[S]yρ̂i

{
1−

(
µ

µ+ yρ̂is

)α}
(1− y)

ρ̂i
1−ρ̂i

(1− ρ̂i)
dy

+ (1− ρ̂i)
∫ 1

y=0

1

sE[S](1− ρ̂i)

{(
µ

µ+ yρ̂is

)α

−
(

µ

µ+ s(1− ρ̂i + yρ̂i)

)α}
(1− y)

ρ̂i
1−ρ̂i

(1− ρ̂i)
dy.
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This LST corresponds to a mixture of two distributions. With probability ρ̂i and
conditioning on Y = y, it is the LST of a uniform [0, yρ̂i] times a gamma distribution
with parameters α + 1 and µ; with probability 1 − ρ̂i and conditioning on Y = y, it
is the LST of a uniform [yρ̂i, 1− ρ̂i + yρ̂i] times a gamma distribution with the same
parameters. This completes the proof.

Remark 3.3. The expressions for Ufi and Ugi in Theorem 3.3 can be rewritten more
explicitly, similar to those in Theorem 3.5, see also Remark 3.8.

Remark 3.4 (HTAP). The HT limit states that conditional on Y = y, the scaled
waiting-time distribution is a uniform times a gamma distribution with probability ρ̂i
and another uniform times a gamma distribution with probability 1 − ρ̂i. Here, y is
a tag representing the fraction of work from the work present and arriving until the
server’s departure from the queue that is served before the tagged customer in a fluid
model. See Remark 3.5 below for a more intuitive derivation of the tag-distribution
FY (·).
With probability 1− ρ̂i a particle arrives during an intervisit time of length c(1− ρ̂i).
If UI is the fraction of the intervisit time that has elapsed at the arrival epoch of a
tagged particle, it first has to wait (1−UI)c(1− ρ̂i) until Qi is visited. The total work
present upon arrival plus the amount of work arriving until the server’s departure
from Qi equals the total workload arriving during a cycle and is ρ̂ic. Given the tag
Y = y, the total scaled waiting time equals ((1−UI)(1−ρ̂i)+yρ̂i)c, corresponding to a
uniform distribution on [yρ̂i, 1−ρ̂i+yρ̂i]. With probability ρ̂i a particle arrives during
a visit time of length ρ̂ic. If UV is the fraction of the intervisit time that remains,
the amount work present upon arrival in addition to the remaining amount of work
arriving equals UV ρ̂ic. Given a tag Y = y, the scaled waiting time is yUV ρ̂ic, which
is a uniform distribution on [0, yρ̂i] times c. Theorem 3.3 thus follows intuitively from
HTAP.

Remark 3.5 (Intuition for tag-distribution Y ). We provide an intuitive explanation
for the distribution of Y using a fluid model for the number of customers or particles.
Assume the tagged customer arrives during a visit time, say at time 0, finding x
particles present. The queue length is decreasing at rate 1 − ρ̂i, i.e. at time t the
queue length Li(t) = x−(1−ρ̂i)t, until the queue is empty at time x/(1−ρ̂i). Observe
that with Li(t) particles present, the probability for service selection is 1/Li(t). Let
F̄ (t) be the probability that the tagged customer has not been taken into service at
time t. Since there are continuously options for service selection in the fluid model,
F̄ (t) satisfies the following first-order differential equation (DE), for 0 < t < x/(1−ρ̂i),

− d

dt
F̄ (t) = F̄ (t)× 1

Li(t)
.

Solving the above DE with boundary condition F̄ (0) = 1 and using the fluid version
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of Li(t), we have, for 0 < t < x/(1− ρ̂i),

F̄ (t) = exp

(∫
1

x− (1− ρ̂i)t
dt

)
=

(
1− t1− ρ̂i

x

) 1
1−ρ̂i

.

Finally, the queue being empty at time x/(1− ρ̂i) implies that also x/(1− ρ̂i) particles
have been served since time 0. When at least a fraction y of those has been served
before the tagged customer is taken into service, then we look for

F̄

(
y × x

1− ρ̂i

)
= (1− y)

1
1−ρ̂i .

This coincides with one minus the cdf of Y .

3.6 Processor Sharing

In a Processor Sharing (PS) queue, all customers present at the queue that is re-
ceiving service are served simultaneously and at the same rate. We note that the
waiting time Wi (to be interpreted as the delay) is thus defined as the sojourn time
minus the service requirement. In this section we will only consider the case of ex-
ponentially distributed service time. We extend the work done in [12], where they
derive the heavy-traffic limit of the LST of the scaled waiting time conditional on
the service requirement. In Subsection 3.6.1, we give the conditional scaled waiting-
time distribution. In Subsection 3.6.2 we derive the unconditional scaled waiting-time
distribution.

3.6.1 Conditional waiting-time distribution in heavy traffic

Let customers in Qi have exponentially distributed service requirements with rate bi.
Let x be the required service duration of a tagged customer. Then we have the follo-
wing theorem for the heavy-traffic limit of the conditional waiting time Wi|x:

Theorem 3.4. For ρ ↑ 1, x ≥ 0,

W̃i|x→d

{
Ufi,xĨi w.p. ρ̂i
Ugi,xĨi w.p. 1− ρ̂i

(i ∈ IPS),

where Ufi,x = U [0, ω(x)], Ugi,x = U [ω(x), ω(x) + 1] and Ĩi ∼ Γ(α+ 1, µi). The parame-

ters α and µi can be found in Equation (3.7), and ω(x) = ρ̂i
1−ρ̂i (1− e

−bix(1−ρ̂i)).
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Proof. The authors of [12] derive the LST of the scaled conditional waiting time in
heavy traffic: For ρ ↑ 1, x ≥ 0, i ∈ IPS ,

W̃ ∗i (s|x) =
ρ̂i

sω(x)E[S](1− ρ̂i)

{
1−

(
µi

µi + sω(x)

)α}
+

1− ρ̂i
sE[S](1− ρ̂i)

{(
µi

µi + sω(x)

)α
−
(

µi
µi + s(ω(x) + 1)

)α}
. (3.25)

From this LST we see that the distribution of the conditional waiting time is a uniform
[0, ω(x)] times a gamma distribution with parameters α + 1 and µi with probability
ρ̂i. With probability 1− ρ̂i, the conditional waiting time has a uniform [ω(x), ω(x) +
1] times a gamma distribution with parameters α + 1 and µi. This completes the
proof.

Remark 3.6 (HTAP). Theorem 3.4 states that the conditional waiting-time distribu-
tion is a uniform times a gamma distribution with probability ρ̂i and another uniform
times a gamma distribution with probability 1− ρ̂i. This can be intuitively explained
with a fluid model. In the fluid model ω(x)c(1 − ρ̂i) is the scaled waiting time of
a particle, with service requirement x, arriving at the start of a visit period. With
probability 1− ρ̂i a particle arrives during an intervisit period of length c(1− ρ̂i). If UI
is the fraction of the intervisit time that has elapsed at the arrival epoch of a tagged
particle, then the scaled waiting time of this particle is the remaining intervisit time
(1 − UI)c(1 − ρ̂i) plus ω(x)c(1 − ρ̂i). Using the HTAP gives a uniform distribution
on [ω(x), ω(x) + 1] times a gamma distribution with parameters α + 1 and µi. A
particle arriving during a visit period has to wait an amount of time that is uniformly
distributed between 0 (arrive at the end of the visit time) and ω(x)c(1 − ρ̂i) (arrive
at the start of the visit time). Using the HTAP now gives a uniform distribution on
[0, ω(x)] times a gamma distribution with parameters α+ 1 and µi.

Remark 3.7 (Intuition for ω(x)). The sojourn time of a tagged customer with service
time x from the start of the visit time (ω(x)Ii) can be intuitively explained with a
fluid model. As long as the tagged customer is present, the amount of service received
during (0, t) is B(t) =

∫ t
0

1/L(u) du with L(u) the number of customers at time u.
During the visit time, we have in a fluid model L(t) = L(0)− (1− ρ̂i)bit. Hence,

B(t) =

∫ t

u=0

1

L(0)− (1− ρ̂i)biu
du = − 1

(1− ρ̂i)bi
(ln(L(0)− (1− ρ̂i)bit)− lnL(0)) .

To obtain the time until service completion, we solve B(t) = x for t. Moreover, using

that L(0) = λ̂ic(1− ρ̂i) in the fluid model, yields

ω(x)× Ii =
λ̂i

(1− ρ̂i)bi

(
1− e−x(1−ρ̂i)bi

)
× c(1− ρ̂i).

The result follows from ρ̂i = λ̂i/bi.



3.6. PROCESSOR SHARING 57

minx

x

y

)(1 ya−

)(xb)(xa

)( minxa )( maxxa )( minxb )( maxxb

Figure 3.2: Boundaries of the conditional distribution.

3.6.2 Unconditional waiting-time distribution in heavy traffic

In the previous section we derived the heavy-traffic limit of the waiting-time distribu-
tion conditional on the service requirement. To obtain the unconditional waiting-time
distribution, we first consider a more general setting that also covers ‘unconditioning’
for SJF. Suppose we have a conditional random variable, denoted T |x, with pdf
fT |x(y), cdf FT |x(y), and y ∈ [a(x), b(x)], with a(x) < b(x) ∀x. We want to find the

unconditional distribution T̃ . Here, x is a realization of a random variable X with
support x ∈ [xmin, xmax]. We have the following lemma.

Lemma 3.1. Assume that the conditional random variable T |x has density fT |x(y)
and distribution function FT |x(y), with support y ∈ [a(x), b(x)]. Suppose a(x) and
b(x) are both increasing in x and a(x) < b(x) ∀x. Let a−1(·) be the inverse of a(·)
and b−1(·) be the inverse of b(·). Then, the unconditional distribution of T |x, denoted
by T̃ , has probability density function, for a(xmax) ≤ b(xmin),

fT̃ (y) =


∫ a−1(y)

x=xmin
fT |x(y)fX(x) dx y ∈ [a(xmin), a(xmax)]∫ xmax

x=xmin
fT |x(y)fX(x) dx y ∈ [a(xmax), b(xmin)]∫ xmax

x=b−1(y)
fT |x(y)fX(x) dx y ∈ [b(xmin), b(xmax)],

(3.26)

and, for a(xmax) > b(xmin),

fT̃ (y) =


∫ a−1(y)

x=xmin
fT |x(y)fX(x) dx y ∈ [a(xmin), b(xmin)]∫ a−1(y)

x=b−1(y)
fT |x(y)fX(x) dx y ∈ [b(xmin), a(xmax)]∫ xmax

x=b−1(y)
fT |x(y)fX(x) dx y ∈ [a(xmax), b(xmax)].

(3.27)



58 CHAPTER 3. EXHAUSTIVE POLLING SYSTEMS

Proof. First consider the case that a(xmax) ≤ b(xmin). Figure 3.2 shows an example
of the boundaries of the conditional distribution, by plotting a(x) and b(x) with x
on the vertical axis. The possible values of T |x then lie between the two lines. To
find fT̃ (y), we need to integrate out x with respect to its density function. First,
take y ∈ [a(xmin), a(xmax)], in which case the probability density function fT̃ (y) is
obtained from the parts where x is smaller than a−1(y). This gives

fT̃ (y) =

∫ a−1(y)

x=xmin

fT |x(y)fX(x) dx. (3.28)

If y ∈ [a(xmax), b(xmin)] then y is between the boundaries of the conditional distri-
bution for every x ∈ [xmin, xmax]. Hence, we get

fT̃ (y) =

∫ xmax

x=xmin

fT |x(y)fX(x) dx. (3.29)

Finally, for y ∈ [b(xmin), b(xmax)], fT̃ (y) can now be obtained from the parts where
x is larger than b−1(y). This gives

fT̃ (y) =

∫ xmax

x=b−1(y)

fT |x(y)fX(x) dx. (3.30)

The case a(xmax) > b(xmin) is similar. It may be checked fT̃ (·) is a density function.
This completes the proof.

Note that the distribution in Equation (3.26) is continuous, increasing on the in-
terval [a(xmin), a(xmax)], constant on the interval [a(xmax), b(xmin)] and decreasing
on the interval [b(xmin), b(xmax)], which closely resembles the traditional trapezoidal
distribution. In line with [61], we refer to (3.26) as a generalized trapezoidal distribu-
tion.

We now apply Lemma 3.1 to the case i ∈ IPS , in which case we have two conditional
distributions, Ufi,x and Ugi,x. We need to find the unconditional versions of both
uniform distributions.

Theorem 3.5. For ρ ↑ 1,

W̃i →d

{
Ũfi Ĩi w.p. ρ̂i
Ũgi Ĩi w.p. 1− ρ̂i

(i ∈ IPS),

where Ũfi has a generalized trapezoidal distribution with pdf

fŨi(y) =
1

ρ̂i
Beta1−y(1−ρ̂i)/ρ̂i

(
1 +

ρ̂i
1− ρ̂i

, 0

)
y ∈ [0, ρ̂i/(1− ρ̂i)], (3.31)
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where Betax(a, b) =
∫ x

0
ta−1(1−t)b−1 dt. Ũgi has a generalized trapezoidal distribution

with pdf, for ρ̂i ≤ 1
2 ,

gŨi(y) =


1−

(
1− y(1−ρ̂i)

ρ̂i

) 1
1−ρ̂i

y ∈
[
0, ρ̂i

1−ρ̂i

)
1 y ∈

[
ρ̂i

1−ρ̂i , 1
]

(
1− (y−1)(1−ρ̂i)

ρ̂i

) 1
1−ρ̂i

y ∈
(

1, ρ̂i
1−ρ̂i + 1

]
,

(3.32)

and, for ρ̂i >
1
2 ,

gŨi(y) =


1−

(
1− y(1−ρ̂i)

ρ̂i

) 1
1−ρ̂i

y ∈ [0, 1)(
1− (y−1)(1−ρ̂i)

ρ̂i

) 1
1−ρ̂i −

(
1− y(1−ρ̂i)

ρ̂i

) 1
1−ρ̂i

y ∈
[
1, ρ̂i

1−ρ̂i

]
(

1− (y−1)(1−ρ̂i)
ρ̂i

) 1
1−ρ̂i

y ∈
(

ρ̂i
1−ρ̂i ,

ρ̂i
1−ρ̂i + 1

]
,

and Ĩi has a gamma distribution with parameters α + 1 and µi. The parameters α
and µi can be found in Equation (3.7).

Proof. Let fUi,x(·) and gUi,x(·) be the densities of Ufi,x and Ugi,x, respectively. First

consider fUi,x(y) = 1
ω(x) for y ∈ [0, ω(x)]; thus a(x) = 0 and b(x) = ω(x). Here, x is

the service requirement, a realization of an exponential distribution, so x ∈ [0,∞).
Since ω(0) = 0 and ω(∞) = ρ̂i/(1− ρ̂i) we only have to find the final term of (3.26)
and consider the interval [0, ρ̂i/(1 − ρ̂i)]. For a fixed y, the inverse function of ω is
ω−1(y) = ln(1− y(1− ρ̂i)/ρ̂i)/(−bi(1− ρ̂i)). By Lemma 3.1, this gives

fŨi(y) =

∫ ∞
x=ω−1(y)

fBi(x)fUi,x(y) dx

=

∫ ∞
x=

ln(1−y(1−ρ̂i)/ρ̂i)
−bi(1−ρ̂i)

bie
−bix 1− ρ̂i

ρ̂i

(
1− e−bix(1−ρ̂i)

)−1

dx

=

∫ 0

t=1−y(1−ρ̂i)/ρ̂i
bi

1− ρ̂i
ρ̂i

(1− t)−1 1

−bi(1− ρ̂i)
t
ρ̂i

1−ρ̂i dt

=

∫ 1−y(1−ρ̂i)/ρ̂i

t=0

1

ρ̂i
(1− t)−1t

ρ̂i
1−ρ̂i dt

=
1

ρ̂i
Beta1−y(1−ρ̂i)/ρ̂i

(
1 +

ρ̂i
1− ρ̂i

, 0

)
.

The third equality is obtained by taking t = e−bix(1−ρ̂i). This leads to an incomplete
Beta function.

Now we turn to the second term involving Ugi,x. Note that gUi,x(y) = 1 for y ∈
[ω(x), ω(x) + 1]. To apply Lemma 3.1, observe that for ρ̂i/(1− ρ̂i) ≤ 1 it holds that
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a(xmax) ≤ b(xmin). First assume that ρ̂i/(1− ρ̂i) ≤ 1, implying ρ̂i < 1/2. For a fixed
y ∈ [0, ρ̂i/(1 − ρ̂i)), x needs to be smaller than ω−1(y), if y ∈ [ρ̂i/(1 − ρ̂i), 1], it lies
between the boundaries of the uniform distribution for all x and if y ∈ (1, ρ̂i/(1 −
ρ̂i) + 1], then x needs to be larger than ω−1(y). This gives for the pdf of Ũgi

gŨi(y) =


FBi(ω

−1(y)) y ∈
[
0, ρ̂i

1−ρ̂i

)
1 y ∈

[
ρ̂i

1−ρ̂i , 1
]

1− FBi(ω−1(y − 1)) y ∈
(

1, ρ̂i
1−ρ̂i + 1

]
.

Substituting FBi(x) = 1 − e−bix and the inverse of ω(·) gives Equation (3.32). The
case ρ̂i > 1/2 implies a(xmax) > b(xmin) and is similar, completing the proof.

Remark 3.8 (PS and ROS). For regular GI/M/1 queues, the relation between PS
and ROS has been characterized by Borst et al. [34]. It is easily seen that the sample
path relations (see Equation (3) of [34]) also hold for the polling models under con-
sideration. More specifically, consider a tagged customer Ti arriving at Qi when the
server visits Qi. Then, the sojourn-time distribution of Ti for PS, given ni customers
at Qi upon arrival, is identical to the waiting-time distribution of Ti for ROS, given
ni waiting customers at Qi upon arrival in addition to the one in service. Under
HT scalings, the differences between waiting and sojourn times and the one customer
vanish, explaining the equivalence between Theorems 3.3 and 3.5 (see Remark 3.3).

3.7 n-class priority queues

In this section we look at n-class priority queues. Each customer is assigned to a
priority index k, 1 ≤ k ≤ n, where customers with a low priority index are served
before customers with higher priority indices. Within each class the service order
is FCFS. In Subsection 3.7.1, the focus lies on the non-preemptive n-class priority
regime. We will later use this discipline to find the waiting-time distribution in SJF
queues, by letting the number of priority classes go to infinity. In [93], Kella and
Yechiali study the M/G/1 queue with single and multiple server vacations under
both the preemptive and non-preemptive priority regimes. The M/G/1 queue with
multiple vacations is similar to a polling model, since we express the waiting times in
cycle times and we can replace vacations by intervisit times. This relation has also
been used in [29] to analyze multi-class polling models. We also study the preemptive
n-class priority regime in Subsection 3.7.2.

3.7.1 Non-preemptive n-class priority queues

Here, we are interested in the non-preemptive n-class priority regime. We now in-
troduce our notation and terminology based on [93], as this turns out to be useful
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and provide intuition for this and the next section. We replace vacation times with
intervisit times and add the subscript i to every queue-dependent variable: λi,k is the
arrival rate of class-k customers and Bi,k is the service duration of class-k customers.
Class-a customers are the customers with priority index lower than k, i.e., they are
served before class-k customers. They have arrival rate λi,a =

∑k−1
j=1 λi,j and service

duration Bi,a. Class-b customers are customers with priority index higher than k,
their arrival rate is λi,b =

∑n
j=k+1 λi,j and their service duration is Bi,b. We have

ρi,a = λi,a E[Bi,a] and ρi,b = λi,b E[Bi,b]. ξi,a denotes the length of time from a mo-
ment a class-a customer enters service and no other class-a customers are present,
until the first moment when there are no class-a customers in the queue. Clearly ξi,a
is the duration of a busy period in a standard M/G/1 queue with arrival rate λi,a
and service times Bi,a. Consequently, the LST of ξi,a and its mean are given by: For
Re(s) > 0,

ξ∗i,a(s) = B∗i,a(s+ λi,a − λi,aξ∗i,a(s)), E[ξi,a] = E[Bi,a]/(1− ρi,a). (3.33)

For this model, Kella and Yechiali [93] derive the following LST for the waiting-time
distribution Wi,k of a class-k customer in Qi: For Re(s) > 0, k = 1, . . . , n,

W ∗i,k(s) =
(1− ρi)(1− I∗i (s+ λi,a − λi,aξ∗i,a(s)))

E[Ii](λi,kB∗i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s)
(3.34)

+
ρi,b(1−B∗i,b(s+ λi,a − λi,aξ∗i,a(s)))

E[Bi,b](λi,kB∗i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s)
(i ∈ INPRIOR).

The first term of (3.34) corresponds to the waiting time of class-k customers in Qi
that arrive during the time from the start of the intervisit time until the moment
a class-b customer at Qi is taken into service. The second term corresponds to the
waiting time of class-k customers that arrive during the time from the moment the
first class-b customer is taken into service until the end of the cycle. Note that this
expression was also derived in [29]. The following theorem gives the heavy-traffic limit
of the distribution of Wi,k.

Theorem 3.6. For ρ ↑ 1, k = 1, . . . , n,

W̃i,k →d

{
0 w.p.

ρ̂i,b
1−ρ̂i+ρ̂i,b

UiĨi w.p. 1−ρ̂i
1−ρ̂i+ρ̂i,b

(i ∈ INPRIOR),

where Ui is a uniformly distributed random variable that lies between 0 and 1
1−ρ̂i,a

and Ĩi has a gamma distribution with parameters α + 1 and µi. The parameters α
and µi are given in (3.7).

Proof. Combining Equation (3.34) and Property 3.2, we get for the LST of the (scaled)
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waiting time of a class-k customer: for Re(s) > 0, k = 1, . . . , n, i ∈ INPRIOR:

W̃ ∗i,k(s) = lim
ρ↑1

W ∗i,k(s(1− ρ))

= lim
ρ↑1

[ (1− ρi)
(

1−
(

µi
µi+s+λi,a(1−ξ∗i,a(s(1−ρ)))/(1−ρ)

)α)
E[Ii](λi,kB∗i,k(s(1− ρ) + λi,a − λi,aξ∗i,a(s(1− ρ)))− λi,k + s(1− ρ))

+
ρi,b(1−B∗i,b(s(1− ρ) + λi,a − λi,aξ∗i,a(s(1− ρ))))

E[Bi,b](λi,kB∗i,k(s(1− ρ) + λi,a − λi,aξ∗i,a(s(1− ρ)))− λi,k + s(1− ρ))

]

=
(1− ρ̂i)

(
1−

(
µi

µi+s(1+λ̂i,a E[ξi,a])

)α)
E[S](1− ρ̂i)s(1− ρ̂i,k(1 + λ̂i,a E[ξi,a]))

+
ρ̂i,b(1 + λ̂i,a E[ξi,a])

1− ρ̂i,k(1 + λ̂i,a E[ξi,a])

=
1− ρ̂i

1− ρ̂i + ρ̂i,b

1

E[S]s(1 + λ̂i,a E[ξi,a])(1− ρ̂i)

{
1−

(
µi

µi + s(1 + λ̂i,a E[ξi,a])

)α}

+
ρ̂i,b

1− ρ̂i + ρ̂i,b

=
1− ρ̂i

1− ρ̂i + ρ̂i,b

1

E[S]s(1− ρ̂i)/(1− ρ̂i,a)

{
1−

(
µi

µi + s/(1− ρ̂i,a)

)α}
+

ρ̂i,b
1− ρ̂i + ρ̂i,b

. (3.35)

The third equality was found using l’Hôpital’s rule and some basic calculations. After
some rewriting we arrive at the fourth equation, and writing out E[ξi,a] using (3.33)
leads to the final equation. Recognizing this as the LST of a random variable that
is equal to zero with probability

ρ̂i,b
1−ρ̂i+ρ̂i,b and a uniform times a gamma distribution

with probability 1−ρ̂i
1−ρ̂i+ρ̂i,b completes the proof.

Remark 3.9 (HTAP). We can use the fluid model to give some intuition for the
asymptotic waiting-time distribution, which corresponds to a uniform times a gamma
distribution in addition to a probability mass at zero. In the fluid model, we only
consider class a and class k particles, as the impact of class b is negligible in HT.
Figure 3.3 gives a graphical representation of the fluid model; the workload of class a
and k particles in Qi is plotted over the course of a cycle of length c. The considered
particles arrive at the queue with rate ρ̂i,a + ρ̂i,k and during a visit time they are
served with rate 1 until the queue is empty. The cycle is divided in three parts: the
first part is the intervisit time Ii with length (1−ρ̂i)c. The second part is the duration
between a polling instant and the first time since the start of the cycle for which no

class a and k particles are present. This part has length
(ρ̂i,a+ρ̂i,k)(1−ρ̂i)c

1−(ρ̂i,a+ρ̂i,k) . In this

part only class a and k particles are served. The last part is the part where class b
particles are served, interrupted by classes a and k, having length

c− (1− ρ̂i)c−
(ρ̂i,a + ρ̂i,k)(1− ρ̂i)c

1− (ρ̂i,a + ρ̂i,k)
=

ρ̂i,bc

1− ρ̂i + ρ̂i,b
.
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(ρ̂i,a + ρ̂i,k)(1− ρ̂i)c

(ρ̂i,a+ρ̂i,k)(1−ρ̂i)c
1−(ρ̂i,a+ρ̂i,k)

c

(1− ρ̂i)c
ρ̂i,bc

1−ρ̂i+ρ̂i,b

(ρ̂i,a + ρ̂i,k)
(ρ̂i,a + ρ̂i,k)− 1

Figure 3.3: Fluid limits in heavy traffic. The workload of class a and k particles in
Qi is plotted over the course of a cycle.

Now, first consider the atom in zero. With probability
ρ̂i,b

1−ρ̂i+ρ̂i,b a class-k particle

arrives during the last part of the cycle where hardly any class a or k particles are
present. In this case the scaled waiting time of the particle is negligible in HT, since
the residual service time of the particle in service and the busy periods generated by
class-a customers arriving during this remaining service time do not scale with ρ.
Second, with probability 1−ρ̂i

1−ρ̂i+ρ̂i,b a particle arrives during the first or second part of

the cycle. Let the uniform random variable Ui denote the fraction of the length of
the first two parts of the cycle together that has elapsed at the arrival epoch of the
tagged arriving particle. Similar to FCFS, the scaled waiting time of this particle is the

remaining duration (1−Ui) (1−ρ̂i)c
1−ρ̂i+ρ̂i,b minus the time required to serve the class-k work

(or extended service time) that arrives during the first two parts of the cycle, but after
the tagged particle. Due to class-a interruptions, the extended service time of class k

is E[Bi,k]/(1− ρ̂i,a). Hence, the scaled waiting time is (1−Ui) (1−ρ̂i)c
1−ρ̂i+ρ̂i,b (1− ρ̂i,k

1−ρ̂i,a ) =

(1− Ui) (1−ρ̂i)c
1−ρ̂i,a . Since Ii = (1− ρ̂i)c, this term corresponds to a uniform distribution

on [0, 1
1−ρ̂i,a ]Ii, explaining the result for non-negligible waiting times.

3.7.2 Preemptive n-class priority queues

Similar to the previous section, the results of [93] also allow the derivation of the LST
of the time until service in a polling system where different priority classes are served

with preemptive priority. Let W
(q)
i denote the time until a customer first receives

service, or the waiting time in queue. We observe that this is not equal to the waiting
time as defined in the current chapter (i.e. sojourn time minus service time) due to
service preemptions. For class k, the LST of the time from the start until the end of



64 CHAPTER 3. EXHAUSTIVE POLLING SYSTEMS

service Ri,k, often referred to as the residence time, is

R∗i,k = B∗i,k(s+ λi,a − λi,aξ∗i,a(s)). (3.36)

For a class-k customer in Qi the LST of waiting time in queue is: For Re(s) > 0,
k = 1, . . . , n and i ∈ INPRIOR-PR,

W
(q),∗
i,k (s) =

(1− ρi)(1− I∗i (s+ λi,a − λi,aξ∗i,a(s)))

E[Ii](λi,kB∗i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s)

+
ρi,b(λi,a(1− ξ∗i,a(s)) + s)

λi,kB∗i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s
. (3.37)

For n-class priority queues, the waiting-time distribution in heavy traffic is equal to

the case of non-preemptive priority queues. For the scaled waiting time in queue W
(q)
i,k

of a class-k customer in Qi with preemptive priority service we get using (3.37): For
Re(s) > 0, i ∈ INPRIOR−PR, k = 1 . . . , n,

W̃
(q),∗
i,k (s) =

(1− ρ̂i)
(

1−
(

µi
µi+s(1+λ̂i,a E[ξi,a])

)α)
E[S](1− ρ̂i)s(1− ρ̂i,k(1 + λ̂i,a E[ξi,a]))

+
ρ̂i,b(1 + λ̂i,a E[ξi,a])

1− ρ̂i,k(1 + λ̂i,a E[ξi,a])
,

which is equal to (3.35) from the non-preemptive case. As before, α and µi are given
in (3.7). From (3.36) it follows directly that the residence time can be neglected in
heavy traffic.

3.8 SJF and SRPT

The Shortest-Job-First (SJF) service discipline can be thought of as a non-preemptive
priority queue with different priority classes. It may be interpreted as the continuous
equivalent to having an infinite number of priority classes, where the priority classes
correspond to job sizes. Alternatively, in Schrage and Miller [123], for the waiting
time conditional on the service requirement x, a three-class priority queue is used
where the second class consists of customers of size x. From the heavy-traffic limit
derived in the previous section we can immediately derive the heavy-traffic limit of
the waiting-time distribution for SJF. In Subsection 3.8.1 we give the scaled waiting-
time distribution conditional on the service requirement. In Subsection 3.8.2 we give
the unconditional scaled waiting-time distribution. SRPT and preemptive SJF are
discussed in Subsection 3.8.3.

3.8.1 Conditional waiting-time distribution in heavy traffic

To go from Equation (3.35) to SJF we let the service time of the customer determine
its priority. Note that we can apply Section 3.7.1 if the distribution is discrete. In this
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section we assume that the service-time distribution has a density. First we derive the
LST of the waiting time conditional on x, the service duration required by a tagged
customer. Define ρi(x) = λi E[Bi1{Bi<x}] which is the continuous equivalent of ρi,a.
Because the service-time distribution is continuous, we have ρi − ρi,b = ρi,a. We can
now write down the conditional LST using (3.35): For Re(s) > 0, x > 0,

W̃ ∗i (s|x) =
1− ρ̂i

1− ρ̂i(x)

1

E[S]s(1− ρ̂i)/(1− ρ̂i(x))

{
1−

(
µi

µi + s/(1− ρ̂i(x))

)α}
+
ρ̂i − ρ̂i(x)

1− ρ̂i(x)
(i ∈ ISJF ). (3.38)

This result gives rise to the following theorem.

Theorem 3.7. For ρ ↑ 1,

W̃i,x →d

{
0 w.p. ρ̂i−ρ̂i(x)

1−ρ̂i(x)

Ui,xĨi w.p. 1−ρ̂i
1−ρ̂i(x)

(i ∈ ISJF ), (3.39)

where Ui,x is a random variable with a uniform distribution on [0, 1
1−ρ̂i(x) ] and Ĩi has

a gamma distribution with parameters α+ 1 and µi as given in (3.7).

Proof. The results follows directly from (3.38).

Remark 3.10 (HTAP). The intuition for the asymptotic waiting-time distribution
is similar to the n-class priority queue, but slightly simpler. For the fluid model, we
only consider particles that are served before a particle with service requirement x,
i.e., type-a particles. Figure 3.4 gives a graphical representation of the fluid model;
on the horizontal axis the course of a cycle with length c is plotted. On the vertical
axis the workload of type-a particles in Qi is plotted. The cycle is divided in three
parts; the first part is the intervisit time Ii with length (1 − ρ̂i)c. The second part
is the first part of the visit time where type-a particles are being served; it starts at
polling instant of Qi and ends the first moment since the start of the cycle that no

type-a particles are present. This part has length ρ̂i(x)(1−ρ̂i)c
1−ρ̂i(x) . The last part is the

part where the other particles are served and has length

c− (1− ρ̂i)c−
ρ̂i(x)(1− ρ̂i)c

1− ρ̂i(x)
=
c(ρ̂i − ρ̂i(x))

1− ρ̂i(x)
.

With probability ρ̂i−ρ̂i(x)
1−ρ̂i(x) a particle with service requirement x arrives during the last

part of the cycle where hardly any type-a particles are present. Again, the scaled
waiting time in HT is negligible in this case, since the remaining service duration
of the particle in service and the type-a busy periods generated by type-a particles
arriving during this remaining duration do not scale with ρ. With probability 1−ρ̂i

1−ρ̂i(x)

a particle arrives during the duration of the first two parts together. Let the uniform
random variable Ui denote the fraction of combined length of the first two parts that
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ρ̂i(x)(1− ρ̂i)c

ρ̂i(x)(1−ρ̂i)c
1−ρ̂i(x)

c

(1− ρ̂i)c
(ρ̂i−ρ̂i(x))c
1−ρ̂i(x)

ρ̂i(x)
ρ̂i(x)− 1

Figure 3.4: Fluid limits in heavy traffic. The amount of type a workload in Qi is
plotted over the course of a cycle.

has elapsed at the arrival epoch of the arriving particle. This particle is served at the
start of the third part of the cycle, so the waiting time of this particle is the remaining

duration of the first two parts (1 − Ui) (1−ρ̂i)c
1−ρ̂i(x) . Using Ii = (1 − ρ̂i)c, it follows that

the scaled waiting time is now uniformly distributed on [0, 1
1−ρ̂i(x) ]Ii.

3.8.2 Unconditional waiting-time distribution in heavy traffic

For the unconditional waiting-time distribution in heavy traffic we have the following
theorem. Let ρ̂−1

i (y) denote the inverse function of ρ̂i(x).

Theorem 3.8. For ρ ↑ 1,

W̃i →d ŨiĨi (i ∈ ISJF ), (3.40)

where Ũi has probability density function

fŨi(y) =

{
1− ρ̂i y ∈ [0, 1]

(1− ρ̂i)
(

1− FBI
(
ρ̂−1
i

(
y−1
y

)))
y ∈

(
1, 1

1−ρ̂i

]
,

(3.41)

with a point mass at zero of ∫ ∞
0

ρ̂i − ρ̂i(x)

1− ρ̂i(x)
fBi(x) dx, (3.42)

and where Ĩi has a gamma distribution with parameters α+1 and µi as given in (3.7).

Proof. Note that the conditional waiting-time distribution in (3.39) can be written
as a gamma distribution times a uniform distribution with a point mass at zero; we
refer to the latter as “uniform” distribution. To find the unconditional distribution
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of the waiting time, we need to find the unconditional “uniform” distribution Ũi
using Lemma 3.1. The cumulative distribution function of the conditional “uniform”
distribution is given by

FUi,x(y) =


0, y < 0
ρ̂i−ρ̂i(x)
1−ρ̂i(x) + 1−ρ̂i

1−ρ̂i(x)y(1− ρ̂i(x)), 0 ≤ y ≤ 1
1−ρ̂i(x)

1, y > 1
1−ρ̂i(x) .

The probability density function of Ui,x is given by fUi,x(y) = 1 − ρ̂i, for y ∈
[0, 1

1−ρ̂i(x) ], thus we have a(x) = 0 and b(x) = 1
1−ρ̂i(x) . Note that ρ̂i(xmin) = 0

and ρ̂i(xmax) = ρ̂i, by recalling that ρ̂i(x) = λ̂i E[Bi1{Bi<x}]; b(x) thus increases
from 1 to 1/(1− ρ̂i). If y ≤ 1, we find

fŨi(y) =

∫ ∞
x=0

fBi(x) ∗ fUi,x(y) dx = 1− ρ̂i, y ∈ [0, 1].

When y > 1, Ui,x only has probability mass for x > ρ̂−1
i ((y − 1)/y). We get

fŨi(y) =

∫ ∞
x=ρ̂−1

i ( y−1
y )

fBi(x) ∗ fUi,x(y) dx

= (1− ρ̂i)
(

1− FBi
(
ρ̂−1
i

(
y − 1

y

)))
, y ∈

(
1,

1

1− ρ̂i

]
.

Combining the results above we see that Ũi has probability mass (3.42) in zero, and
density (3.41). This completes the proof.

3.8.3 SRPT and preemptive SJF

In this subsection we consider preemptive size-based scheduling policies. The most
common is SRPT, where the customer with the smallest remaining service time is
preemptively taken into service. A less well-known policy is preemptive SJF, where
the customer is preemptively taken into service with the smallest original service time.
The latter policy also has some desirable properties, see e.g. [15; 80]. Similar to SJF,
the waiting-time distribution for preemptive SJF follows directly from the preemptive
n-class priority queue of Subsection 3.7.2.

The analysis of SRPT does not follow directly from the results of Kella and Yechiali
[93]. Below, we use their framework to derive the LST of the waiting time in queue

W
(q)
i,x for a customer with service time x. We utilize the notation introduced in

Section 3.7 and adopt the terminology of [93]. In particular, letting class-a represent
customers with service times smaller than x, ξ∗i,a(s) is defined by

ξ∗i,a(s) =
1

FBi(x)

∫ x

0

exp
(
−t(s+ λi,a − λi,aξ∗i,a(s))

)
fBi(t) dt, (3.43)
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with λi,a = λiFBi(x), i.e., ξ∗i,a(s) is a type-a busy period. Similarly, let class-b repre-
sent customers with service times larger than x and λi,b = λi(1− FBi(x)).

Proposition 3.4. For ρ < 1, i ∈ ISRPT , Re(s) > 0,

W
(q),∗
i (s) =

1− ρi
sE[Ii]

(
1− I∗i (s+ λi,a − λi,aξ∗i,a(s))

)
+
ρi − ρi(x)− λi,bx

s
(s+ λi,a − λi,aξ∗i,a(s))

+
λi,b
s

(
1− exp

(
−x(s+ λi,a − λi,aξ∗i,a(s))

))
.

Proof. We start with the multi-class case, where class-k is the class under conside-
ration having service times in (x − ε, x], for ε > 0 small, and classes a and b have
priority index lower and higher than k, respectively. That is, the service times of
class-a is smaller than x − ε and of class-b is larger than x. Applying the idea of
Schrage and Miller [123], customers of size larger than x only affect class-k as soon
as their remaining service times become x. Specifically, class-b initiates a delay cycle,
as defined in [93], when their remaining service time is x. In the terminology of Kella
and Yechiali, we thus have Ti,a,k cycles for Ti = Ii, Bi,a, Bi,k, but now also for T = x.
Since the LST of the waiting time given the cycle during which the customer arrives
is known, it remains to specify the probabilities that the system is in a specific delay
cycle. In line with [93, p.28], we have the cycle probabilities

Πi,0 := P(no delay) = ρi,b − λi,bx = ρi − ρi,a − ρi,k − λi,bx,

P(Bi,a cycle) =
Πi,0ρi,a

1− ρi,a − ρi,k
, P(Bi,k cycle) =

Πi,0ρi,k
1− ρi,a − ρi,k

,

P(Ii cycle) =
1− ρi

1− ρi,a − ρi,k
, P(x cycle) =

λi,bx

1− ρi,a − ρi,k
.

Using the probabilities above in Equations (7a) and (8) of [93], we obtain, for Re(s) >
0,

W
(q),∗
i,k (s) =

(1− ρi)(1− I∗i (s+ λi,a − λi,aξ∗i,a(s)))

E[Ii](λi,kB∗i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s)

+
Πi,0(s+ λi,a − λi,aξ∗i,a(s)) + λi,b

(
1− exp

(
−x(s+ λi,a − λi,aξ∗i,a(s))

))
λi,kB∗i,k(s+ λi,a − λi,aξ∗i,a(s))− λi,k + s

.

(3.44)

Letting ε ↓ 0, and substituting Πi,0, we obtain the result.

As in Subsection 3.7.2, W
(q)
i,x is the waiting time in queue before the customer is first

taken into service; this is not the same as the waiting time defined in this chapter.
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We note that the residence time is identical to the residence time in a regular SRPT
queue, see [123].

For LCFS and multi-class priority queues, the HT limits for the non-preemptive and
preemptive policies are identical. The same holds for SJF, preemptive SJF, and SRPT
as represented by the following theorem.

Theorem 3.9. For ρ ↑ 1, the scaled waiting times W̃i follow the same probability
distribution for SJF, preemptive SJF, and SRPT.

Proof. Consider the conditional scaled waiting time W̃i,x(s). For preemptive SJF it
can be directly observed from Subsection 3.7.2 that the heavy-traffic limit is identical

to the one for SJF. Using Proposition 3.4, it follows that limρ↑1W
(q),∗
i,x (s(1−ρ)) equals

the right-hand side of (3.38). Using (3.36) as an upper bound for the residence time,
it is evident that the additional delay during the service does not contribute to the
HT limit.

3.9 Summary of the results

In this section we give a summary of the most important results obtained in this chap-
ter. The main result of the chapter is the fact that the scaled waiting-time distribution
can always be characterized as a product of two distributions. The first distribution
is a service-order specific distribution, the second distribution is a gamma distribu-
tion. The gamma distribution is a scaled length-biased intervisit-time distribution or
cycle-time distribution; the most intuitive representation for the second depends on
the scheduling policy. Due to the fact that for exhaustive service at queue i it holds
that C∗i (s) = I∗i (s+λi(1− ξ∗i (s))), see also (3.5), we can rewrite the second (gamma)
distribution as the scaled length-biased intervisit-time distribution for all scheduling
policies.

Let Θi denote the service-order specific distribution; the probability density functions
for the different service policies are then given in Table 3.1. In Figure 3.5 we plot the
pdf fΘi(x) of Θi (Figure 3.5a) and also the cumulative distribution functions FΘi(x)
(Figure 3.5b). We choose ρ̂i = 0.4. For FCFS, LCFS, ROS, and NPRIOR, the HT
limit only depends on the service time distribution through its first moment. This
is not the case for PS, SJF, and SRPT. In the figures we took exponential service
times for PS and SJF. Figure 3.5a nicely shows how Θi behaves; for LCFS and
FCFS it is like a uniform distribution, for SJF it is a type of generalized trapezoidal
distribution, whereas it slightly deviates from this for ROS and PS. The atoms in zero
can be observed from Figure 3.5b. In addition, these cdfs allow us to see the impact
of scheduling policy. For instance, SJF is here superior to ROS and PS.
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Service order pdf of Θi

FCFS fΘi(x) =

{
1 x ∈ [0, 1]
0 otherwise

LCFS/LCFS-PR fΘi(x) = (1− ρ̂i)
{

1− ρ̂i x ∈ [0, 1
1−ρ̂i

]

0 otherwise
with a point mass of ρ̂i in zero

ROS/PS fΘi(x) = ρ̂i

{
1
ρ̂i

Beta1−x(1−ρ̂i)/ρ̂i(1 + ρ̂i
1−ρ̂i

, 0) x ∈ [0, ρ̂i
1−ρ̂i

]

0 otherwise

+1{ρ̂i≤1/2}(1− ρ̂i)


1− g(x) x ∈ [0, ρ̂i

1−ρ̂i
)

1 x ∈ [ ρ̂i
1−ρ̂i

, 1]

g(x− 1) x ∈ (1, ρ̂i
1−ρ̂i

+ 1]

0 otherwise

+1{ρ̂i>1/2}(1− ρ̂i)


1− g(x) x ∈ [0, 1)

g(x− 1)− g(x) x ∈ [1, ρ̂i
1−ρ̂i

]

g(x− 1) x ∈ ( ρ̂i
1−ρ̂i

, ρ̂i
1−ρ̂i

+ 1]

0 otherwise,

where g(x) =
(

1− x(1−ρ̂i)
ρ̂i

) 1
1−ρ̂i

NPRIOR/ fΘi,k (x) =
1− ρ̂i

1− ρ̂i + ρ̂i,b

{
1− ρ̂i,a x ∈

[
0, 1

1−ρ̂i,a

]
0 otherwise

NPRIOR-PR with a point mass of
ρ̂i,b

1− ρ̂i + ρ̂i,b
in zero

SJF/SRPT fΘi(x) =


1− ρ̂i x ∈ [0, 1]

(1− ρ̂i)
(
1− FBi

(
ρ̂−1
i

(
x−1
x

)))
x ∈

(
1, 1

1−ρ̂i

]
0 otherwise

with a point mass of

∫ ∞
0

ρ̂i − ρ̂i(x)

1− ρ̂i(x)
fBi(x) dx in zero

Table 3.1: The probability density functions of the service-order specific distributions.



3.10. CLOSED-FORM APPROXIMATIONS 71

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 

D
en

si
ty

 

x 

FCFS 

LCFS 

ROS/PS 

SJF 

(a) Probability density functions.
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(b) Cumulative distribution functions.

Figure 3.5: Shapes of the service order specific distributions.

3.10 Closed-form approximations for systems with arbitrary
load

In this section we illustrate the results by calculating moments and tail probabilities of
the waiting-time distribution for different service disciplines by simulations. Moreover,
we use the heavy-traffic limits as the basis for approximations for the waiting-time
distributions for stable systems, i.e. with ρ < 1. To this end, the asymptotic results
suggest the following approximation for the waiting-time distribution for ρ < 1: For
i = 1, . . . , N ,

P(Wi ≤ x) ≈ P(ΘiΓi ≤ (1− ρ)x). (3.45)

The moments of the waiting-time distribution can be approximated using

E[W k
i ] ≈ E[Θk

i ]E[Γki ]

(1− ρ)k
.

See Section 3.11 and references therein for a discussion on convergence of moments.

We consider a polling model with N = 3 queues and all queues receive exhaustive
service. Service times and switch-over times are exponentially distributed. The mean
service durations at queue 1, 2, and 3 equal 2, 3, and 1, respectively. The mean
switch-over times are given by E[S1] = E[S3] = 1 and E[S2] = 3. Arrivals are Poisson
and the arrival rates at the different queues are chosen such that the ratios between
the arrival rates are 3:2:1, while the total load of the system is varied. Note that the
system is rather asymmetric and that the ratios between the loads of the queues are
6:6:1.

We apply the approximation to a system with a load of 0.95 and let the service order be
ROS, PS and SJF. We plot the approximated and simulated cumulative distributions
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Figure 3.6: Approximated and simulated cumulative distribution functions of the
waiting-time distribution in a system with a load of 0.95.

of the waiting time at the first queue. Figure 3.6 shows that the approximation follows
the simulation closely. ROS and PS are plotted together, since the distributions are
equal. Note that for the SJF service discipline the approximation shows a point mass
at zero, this effect does not show up as clearly in the simulation. This is caused by
the fact that the point mass at zero only occurs if the load is very close to 1.

To illustrate the differences between the various scheduling policies we plot the ap-
proximated cumulative distribution functions of the scaled waiting times at the first
queue of the system described above. In Figure 3.7 we clearly see a point mass at
zero if the service discipline is LCFS or SJF. The line of SJF always lies above the
line of PS; as the service-time distribution is exponential, this indicates that for ex-
ponential service times SJF is a better policy than PS. Table 3.2 shows the simulated
and approximated values of the mean waiting times at Q1 and their relative absolute
differences defined as

∆% = 100%× |App− Sim|
Sim

for different values of ρ and for different scheduling policies considered in this chapter.
The mean waiting times are equal for FCFS, LCFS and ROS and also for PS if the
service-time distribution is exponential. In Table 3.3, the results for the standard
deviations of the waiting times at Q1 are given. Both tables show that the relative
differences decrease to 0 if ρ increases to 1. It is interesting to note that for lower
values of ρ, the error in the standard deviation is quite high, especially if the service
order is LCFS. This can be explained by the fact that in HT the waiting time is equal
to zero if an arrival occurs during a visit period. For lower loads this effect does not
occur, busy periods will influence the waiting time. The numerical approximations
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Figure 3.7: Cumulative distribution functions of the scaled waiting times at the first
queue for different service orders.

can be improved using an interpolation with light-traffic limits, as carried out in [62]
and also in the previous chapter.

FCFS/LCFS/ROS/PS SJF
ρ Sim App ∆% Sim App ∆%
0.7 12.25 12.02 1.89 10.11 8.88 12.19
0.8 18.43 18.03 2.15 14.69 13.31 9.34
0.9 36.68 36.07 1.66 28.16 26.63 5.45

0.95 72.79 72.13 0.90 54.86 53.26 2.92
0.98 180.91 180.33 0.32 134.82 133.14 1.25
0.99 361.32 360.66 0.18 267.83 266.29 0.57

Table 3.2: Simulated value, approximated value and delta of the mean waiting time
for different service disciplines and loads.

3.11 Discussion and concluding remarks

In this chapter we assume that all queues receive exhaustive service, which is an
important extension of the results obtained for similar models but with gated service
at all queues in Chapter 2. We emphasize that the exhaustive service case is more
complicated than the gated case, despite the fact that both the exhaustive and the
gated service disciplines satisfy the well-known branching structure identified in [121].
The complexity lies in the fact that for exhaustive service the local service order of the
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LCFS ROS/PS SJF
ρ Sim App ∆% Sim App ∆% Sim App ∆%
0.7 17.86 20.92 17.10 15.10 16.22 7.37 13.35 14.30 7.12
0.8 28.53 31.38 9.99 23.46 24.33 3.69 20.64 21.44 3.91
0.9 60.02 62.76 4.56 48.02 48.65 1.31 42.16 42.89 1.72

0.95 122.64 125.52 2.35 96.72 97.30 0.60 85.01 85.78 0.90
0.98 310.73 313.80 0.99 242.49 243.26 0.31 213.70 214.44 0.35
0.99 624.20 627.59 0.54 485.78 486.51 0.15 427.88 428.88 0.24

Table 3.3: Simulated value, approximated value and delta of the standard deviation
of the waiting time for different service disciplines and loads.

customers during a visit period Vi of the server to a given queue i cannot be determined
at the polling instant marking the beginning of Vi; for gated the service order is
determined at the beginning of Vi. As a consequence, newly arriving customers at
queue i during Vi may change the local service order and the sharing of server capacity
among the customers served during Vi, and hence affect the waiting-time and sojourn-
time distributions in a complex manner. For example, this complexity manifests
itself in the case of PS service and multiple vacations, where analytic results on
(conditional) sojourn times, conditioned on the number of customers at the beginning
of a service period, are only known under the assumption of exponential service times
(see [50]). Even for multiple vacation models, extension of such results to the case
of general service times is complicated, because of the complex relation between the
number of customers in the system and the remaining amounts of per-customer service
times.

The assumption that all queues are served exhaustively can easily be relaxed to the
general setting where a subset of the queues receive gated service (or some other
branching-type service policy). More specifically, for general mixtures of exhaustive
and gated service, let G be the set of indices i for which Qi receives gated service,
and E := {1, . . . , N}\G the subset of queues that receive exhaustive service. Then
the results presented above still hold; the only difference is that the parameter δ in
(3.4) should be replaced by

δmixture := 1−
∑
i∈E

ρ̂2
i +

∑
i∈G

ρ̂2
i . (3.46)

In the present chapter it is assumed that the arrival processes at the queues are
Poisson. This assumption can easily be relaxed to renewal arrivals. Following a well-
established line of argumentation (see [51; 52; 114]), one may conjecture that results
presented in Section 3.3 to 3.8 are still valid when σ2 defined in (3.4) is replaced
by

σ2
renewal =

N∑
i=1

λ̂i
(
Var[Bi] + c2Ai E[Bi]

2
)
, (3.47)
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as was also defined earlier in (2.33).

Finally, we address a number of topics for further research. First, the heavy-traffic
results proven in this chapter demonstrate convergence in distribution by demonstra-
ting point-wise convergence of the LST’s to their limiting regimes, and application
of Levy’s Continuity Theorem. An interesting question is whether the results can be
extended to other types of convergence, and under what assumptions. For example,
convergence in distribution does not necessarily imply moment-wise convergence; the
latter requires the finiteness of higher moments of the service times and switch-over
times. We refer to [136] (Section 3.3) for more detailed discussion about moment-wise
convergence. In the case of PS service at queue i we made the additional assumption
that the service times are exponentially distributed. Under this assumption, we pro-
ved the correctness of Theorem 3.4 by using the results in [12] (Section 5) which, in
turn, rely on the classical results by Coffmann et al. [50] for the M/M/1 PS queue
(without vacations). It is an open question how the results for PS can be extended
to the case of generally distributed service times.





Chapter 4

Transient analysis of cycle times in polling systems

4.1 Introduction

In Chapters 2 and 3, we derived the waiting time distribution in heavy traffic for
polling models with various scheduling and service disciplines. In this chapter, we
study cyclic polling models with Poisson arrivals, general service and switch-over
times and gated or globally gated service. We focus on the transient behavior of
the successive cycle times. Our goal is to gain an understanding in the dependency
structure between the different cycles. This study is motivated by our interest in
systems where disruptions or breakdowns may occur, often leading to excessive cycle
lengths. In this context, we are interested in the following questions:

1. If the system encounters an excessively long cycle time (e.g., due to a disruption
or a breakdown), then how will that influence the durations of the subsequent
cycle times? What is the time needed to recover from excessive cycle times?

2. What is the dependency structure between various residence and cycle times?
More specifically, what is the correlation between the successive cycle (and re-
sidence) times?

A primary motivation for the second question is that the dependency structure makes
polling models challenging to analyze. Insights into the dependency between cycles
and residence times might pave the way for approximation methods. For instance, for
polling models in tandem, the output of some queues may feed into another queue.
The output of a specific queue in a polling system is essentially driven by an on-
off source with dependent on and off times (‘on’ representing visit times and ‘off’
representing intervisit times). Similar relations have also motivated the study of some
vacation models, see e.g. [39; 41; 47]. Finally, we note that waiting-time and queue-
length distributions can be expressed in terms of the marginal cycle-time distribution
for polling models with (globally) gated and exhaustive service.

In this chapter, we assume that the distribution of the first cycle (in case of globally
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gated service) or N residence times (in case of gated service), where N is the number
of queues, is known and that the arrivals are Poisson. Using this, we show how the
joint LST of all x subsequent cycles (globally gated) can be expressed in terms of the
LST of the first cycle. Moreover, for the case of gated service we show how all x > N
subsequent residence times can be expressed in terms of the LST of the first cycle.
From these joint LST’s, we derive the first two moments and correlation coefficients
between different cycles. Lastly, we analyze a heavy-tailed first cycle length, due to
disruptions or breakdown, or the heavy-traffic regime to provide new fundamental
insights into the time-dependent behavior.

The remainder of this chapter is organized as follows. In Section 4.2 the models are
described and the method and goals of the chapter are outlined. In Section 4.3 we
study the case of globally-gated service, whereas we study the case of gated service
in Section 4.4. Both sections contain asymptotic results, such as heavy-tailed initial
cycle lengths and heavy traffic, and numerical illustrations.

4.2 Model description

We consider a system of N ≥ 2 infinite-buffer queues, Q1, . . . , QN , and a single server
that visits and serves the queues in cyclic order. Customers arrive at Qi according
to a Poisson process {Ni(t), t ∈ R} with rate λi. These customers are referred to as

type-i customers. The total arrival rate is denoted by Λ =
∑N
i=1 λi. The service time

of a type-i customer is a random variable Bi, with LST B∗i (·), and kth moment E[Bki ],
k = 1, 2, . . . , when it is finite. The kth moment of the service time of an arbitrary
customer is denoted by E[Bk] =

∑N
i=1 λi E[Bki ]/Λ, k = 1, 2, . . . . The load offered to

Qi is ρi = λi E[Bi] and the total load offered to the system is equal to ρ =
∑N
i=1 ρi.

The switch-over time required by the server to proceed from Qi to Qi+1 is a random

variable Si with mean E [Si] and LST S∗i (·). Let S =
∑N
i=1 Si, with LST S∗(·), denote

the total switch-over time in a cycle. We define δi(s) := λi(1 − B∗i (s)) and let ei be
a unit vector with 1 in the ith position and 0 in the other positions.

We consider the gated and globally gated service disciplines. When the service dis-
cipline is gated, a gate at Qi closes when the server arrives at Qi. Every customer
standing in front of the gate is served, while customers arriving at Qi during service
of Qi must wait for the next cycle, this holds for all i = 1, . . . , N . When the ser-
vice discipline is globally gated, a gate closes at all queues when the server arrives
at Q1. During the following cycle, every customer standing in front of the gate is
served.
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Method and goals

Throughout this chapter we assume that the distribution of the length of the first cycle
is known. For the gated service discipline, this requires that the joint distribution of
the first N residence times is known, where a residence time is a visit time plus the
subsequent switch-over time. When the probabilistic behavior of the first cycle is
known, the next residence time can be expressed in terms of the first cycle, as it
consists of a visit time to serve all the work that arrived at the queue during the first
cycle plus the switch-over time. For globally gated, this is true for every queue, as
the gate closes at the start of a cycle. For gated, the length of a visit time is always
determined by the work that arrived at the corresponding queue during the last N
residence times. It can be seen that the second cycle is completely determined in
terms of the first cycle. Consequently, the third cycle can be expressed in terms of
the second cycle and so also in terms of the first cycle. As a result, every cycle can
recursively be expressed in terms of the first cycle. We use this fact to derive the
joint LST of x consecutive cycles or residence times in terms of the LST of the first
cycle.

Let us first consider the globally gated case. Our goal is to determine the joint LST
of x consecutive cycle times, denoted by γx(z). The vector z of length x contains
the variables z1, . . . , zx, corresponding to cycles 1, . . . , x, with the LST of the first
cycle, γ1(z), assumed to be given. Choosing the zi in specific ways, enables us to
calculate all kinds of useful performance measures. For example, when zi = z for all
i ∈ J ⊆ {1, . . . , x} and 0 otherwise, we obtain the LST of the sum of cycles of set J .
Such a choice is especially convenient to calculate moments, which are then obtained
by differentiating with respect to z and taking z = 0.

Also, the covariance between cycle 1 and cycle x can be calculated using the following
property of the covariance: if X1 and X2 are random variables, then Var(X1 +X2) =
Var(X1) + Var(X2) + 2Cov(X1, X2), with the variance of a random variable X being
Var(X) = E[X2] − E[X]2. To calculate the covariance between cycle x and cycle y
(y ≥ x), we define 3 vectors of length y: a = z(ex + ey), b = zex and c = zey.
Let Ci denote the ith cycle. The first vector is then used to calculate the variance of
Cx + Cy, the other two vectors are used for the variance of Cx and Cy, respectively.
The covariance is then given by

Cov(Cx, Cy) =
1

2
(Var(Cx + Cy)−Var(Cx)−Var(Cy)) . (4.1)

If, due to some external event or disaster, the first cycle is very long, we can easily
derive the duration of the effect by calculating the duration of subsequent cycles,
until it converges to the expected duration of E[S]/(1 − ρ), if ρ < 1. In addition,
the recursive relations allow us to derive exact asymptotic transient results for some
limiting regimes, such as heavy traffic and heavy-tailed initial cycle times.

For gated, the same methods can be applied, for residence times instead of cycle times.
By choosing N consecutive zi equal to z, it is also possible to look at cycles. Note
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that the state description for gated in terms of residence times can also be applied to
the globally gated case to obtain information about the residence times.

4.3 Analysis of globally gated service

In this section we consider the joint LST of x cycles for a globally gated service
discipline. This result is used to derive various moments and asymptotic properties.
We suppose that the distribution of the first cycle, C1, is known, and that its LST
is given by γ1(z) := E[e−zC1 ]. Because of the globally gated service discipline, the
length of a cycle determines the number of customers that are served during the next
cycle. The number of customers that are served during a cycle plus the switch-over
times together determine the length of that cycle. As such every cycle length can be
expressed in the length of the previous cycle, and it is possible to express every cycle
length recursively in terms of the first cycle. If we want to give the joint LST of C1

and C2, in terms of the LST of C1, we can first condition on the value of C1 and then
integrate over the density of C1, as follows:

E[e−z1C1−z2C2 ] =

∫ ∞
c1=0

E[e−z1c1−z2C2 ] dP(C1 ≤ c1)

=

∫ ∞
c1=0

E[e−z1c1−
∑N
k=1 λk(1−B∗k(z2))c1 ]E[e−z2S ] dP(C1 ≤ c1)

= C∗1

(
z1 +

N∑
k=1

δk(z2)

)
S∗(z2), (4.2)

where C∗1 (·) is the LST of C1, which we defined as γ1(·). More generally, we can write
the joint LST of the first x cycles, denoted by γx(·), in terms of the LST of the first
cycle. Here, z is a vector of length x, with zi corresponding to cycle i.

Theorem 4.1. The joint transform of the x cycle lengths is given by

γx(z) = E[e−
∑x
i=1 ziCi ] = γ1(z1 + ζ

(x)
1 (z))

x−1∏
j=1

S∗(zj+1 + ζ
(x−j)
j+1 (z)), (4.3)

with
ζ

(1)
n (z) = 0

ζ
(i)
n (z) =

∑N
k=1 δk(zn+1 + ζ

(i−1)
n+1 (z)).

(4.4)

Note that ζ
(i)
n can be interpreted as the amount of work that arrived during the nth

cycle and recursively contains the amount of work that arrives during the next (i−1)
cycles, i.e., in some sense it defines a descendant set (see also Remark 4.1 below). In
the proof of Theorem 4.1, we use the following lemma (with the proof deferred to
Section 4.5.1).
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Lemma 4.1. For i = 2, 3, . . . and n = 1, 2, . . ., we have

ζ(i)
n (z′) = ζ(i+1)

n (z), (4.5)

with z′ = z + ζ
(2)
n+i−1(z) · en+i−1.

Proof of Theorem 4.1. We use induction to prove the theorem. It evidently holds for
x = 1. Now assume that Equation (4.3) holds for k ≤ x. Taking k = x+ 1 gives

γ(x+1)(z) = γx(z1, z2, . . . , zx +

N∑
k=1

δk(zx+1))S∗(zx+1)

= γx(z1, z2, . . . , zx + ζ(2)
x (z))S∗(zx+1 + ζ

(1)
x+1(z))

= γ1(z1 + ζ
(x)
1 (z′))

x−1∏
j=1

S∗(zj+1 + ζ
(x−j)
j+1 (z′))S∗(zx+1 + ζ

(1)
x+1(z))

= γ1(z1 + ζ
(x+1)
1 (z))

x−1∏
j=1

S∗(zj+1 + ζ
(x−j+1)
j+1 (z))S∗(zx+1 + ζ

(1)
x+1(z))

= γ1(z1 + ζ
(x+1)
1 (z))

x∏
j=1

S∗(zj+1 + ζ
(x−j+1)
j+1 (z)).

For the first equality, we use a reasoning similar to Equation (4.2), then we rewrite
the result using (4.4). For the third equality, the induction hypotheses is used. For
the fourth equality, we use Lemma 4.1, completing the proof.

Remark 4.1 (Link with the Descendant Set Approach). The expression in Theo-
rem 4.1 can be explained along the lines of the Descendant Set Approach (DSA) [97].
The DSA considers original customers (originators) and non-original customers, where
an original customer arrives during a switch-over period, and a non-original customer
arrives during the service of another customer; The children of a customer T arrive
during the service of T . The descendant set of T is recursively defined to consist of
T , its children and the descendants of its children. In our case, the first cycle and the
x− 1 switch-over times can be interpreted as originators and the recursive definition

of ζ
(i)
n (z) represents the descendant sets. We note that in this case all quantities are

expressed in time (or amount of work), while in the DSA this is typically in terms of
number of customers.

By choosing specific values for zi, i = 1, . . . , x, many performance measures can be
determined, see also Section 4.2. Below, we focus on the first two moments and the
correlation coefficient. Here we assume that zi is either z or 0 (depending on whether
cycle i is included). Let J ⊆ {1, 2, . . . , x} be the set of cycles that is included, i.e.,
zi = z if and only if i ∈ J . Taking the derivative of γx, with respect to zx, taking
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z = 0 and multiplying by −1, gives the expected length of cycle x. The derivative of
γx, with respect z, then becomes

d

dz
γx(z) =

d

dz
γ1(z1 + ζ

(x)
1 (z))

(
1{1∈J} +

d

dz
ζ

(x)
1 (z)

) x−1∏
j=1

S∗(zj+1 + ζ
(x−j)
j+1 (z))

+ γ1(z1 + ζ
(x)
1 (z))

x−1∑
j=1

d

dz
S∗(zj+1 + ζ

(x−j)
j+1 (z))

(
1{j+1∈J} +

d

dz
ζ

(x−j)
j+1 (z)

)
(4.6)

×
x−1∏
k 6=j

S∗(zk+1 + ζ
(x−k)
k+1 (z)),

with d
dz ζ

(i)
n (z) recursively defined as

d

dz
ζ(i)
n (z) =

N∑
k=1

d

dz
δk(zn+1 + ζ

(i−1)
n+1 (z))

(
1{n+1∈J} +

d

dz
ζ

(i−1)
n+1 (z)

)
, i ≥ 2, (4.7)

and d
dz ζ

(i)
n (z) = 0 if i = 1. Here d

dz δk(z) = −λkB∗k(z). Taking z = 0 gives
d
dz δk(z)|z=0 = ρk, and filling in z = 0 in Equation (4.7) gives the next property:

Property 4.1. We have, for i = 2, 3, . . . and n = 1, 2, . . .,

d

dz
ζ(i)
n (z)|z=0 =

i−1∑
k=1

ρk1{n+k∈J}. (4.8)

Proof. Equation (4.8) can be proved by induction. First, take i = 2, yielding

d

dz
ζ(2)
n (z) =

N∑
k=1

d

dz
δk(zn+1)1{n+1∈J}.

If z = 0, this equals
∑N
k=1 ρk1{n+1∈J} = ρ1{n+1∈J}, which agrees with (4.8). Now

assume (4.8) is true for all k ≤ i. Taking k = i+ 1 gives

d

dz
ζ(i+1)
n (z) =

N∑
k=1

d

dz
δk(zn+1 + ζ

(i)
n+1(z))

(
1{n+1∈J} +

d

dz
ζ

(i)
n+1(z)

)
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according to (4.7), and for z = 0, we obtain

d

dz
ζ(i+1)
n (z)|z=0 =

N∑
k=1

ρk

(
1{n+1∈J} +

i−1∑
l=1

ρl1{n+1+l∈J}

)

= ρ1{n+1∈J} +

i−1∑
l=1

ρl+1
1{n+1+l∈J}

= ρ1{n+1∈J} +

i∑
l=2

ρl1{n+l∈J} =

i∑
k=1

ρl1{n+l∈J},

where the first equality holds due to the induction hypotheses, completing the proof.

Combining the above yields the following proposition, for the expectation of the sum-
mation of the lengths of cycles i ∈ J .

Proposition 4.1 (First moments). The expected total length of all cycles in set J is

E

∑
j∈J

Cj

 = E[γ1]

x−1∑
k=0

ρk1{k+1∈J} + E[S]

x−1∑
j=1

x−j−1∑
l=0

ρl1{j+l+1∈J}, (4.9)

where E[γ1] is the expected length of the initial cycle.

To calculate the variances of specific cycles, or covariances between two cycles, we
also need the second moments. To this end, we take the derivative of Equation (4.6),
resulting in Equation (4.19) in Section 4.5.2. The derivative of (4.7) is given by
Equation (4.20) in Section 4.5.2. Taking z = 0 leads to the following property:

Property 4.2. We have, for i = 2, 3, . . . and n = 1, 2, . . .,

d2

dz2
ζ(i)
n (z)|z=0 = −ΛE[B2]

i−2∑
k=0

ρk

i−k−2∑
j=0

ρj1{n+j+k+1∈J}

2

.

The proof is by induction and is similar to the proof of Property 4.1.

Proposition 4.2 (Second moments). Let E[γ2
1 ] be the second moment of the initial
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cycle. The second moment of the total cycle length of all cycles in J is

E


∑
j∈J

Cj

2
 = E[γ2

1 ]

(
x−1∑
k=0

ρk1{k+1∈J}

)2

(4.10)

+ E[γ1]

2E[S]

(
x−1∑
k=0

ρk1{k+1∈J}

)x−1∑
j=1

x−j−1∑
k=0

ρk1{j+1+k∈J}


+ ΛE[B2]

x−2∑
k=0

ρk

x−k−2∑
j=0

ρj1{j+k+2∈J}

2
+ E[S]ΛE[B2]

x−1∑
j=1

x−j−2∑
k=0

ρk

(
x−j−k−2∑

l=0

ρl1{j+l+k+2∈J}

)2

+ E[S2]

x−1∑
j=1

(
x−j−1∑
k=0

ρk1{j+k+1∈J}

)2

+ E[S]2


x−1∑
j=1

x−j−1∑
k=0

ρk1{j+k+1∈J}

2

−
x−1∑
j=1

(
x−j−1∑
k=0

ρk1{j+k+1∈J}

)2
 .

Using Equation (4.1) and the moments derived above, we can calculate the covariance
between cycles 1 and x. This gives

Cov(C1, Cx) =
1

2

(
E[γx(a)2]− E[γx(a)]2

− (E[γx(b)2]− E[γx(b)]2)− (E[γx(c)2]− E[γx(c)]2)
)

=
(
E[γ2

1 ]− E[γ1]2
)
ρx−1, (4.11)

where the second equality is obtained by filling in Equations (4.9) and (4.10). Inte-
restingly, we see that the covariance between the first cycle and cycle x only depends
on the variance of the first cycle and the load of the complete system.

Remark 4.2 (Steady-state distribution). In polling models, it is common to relate
the length of a cycle to the length of the previous cycle. Assuming the system to be
in steady state, this provides an equation for the LST of the steady-state cycle length
(see e.g. [158]). In fact Equation (27) of [158] is equivalent to (4.2) if we take z1 = 0.
A similar recursive scheme can also be found in [38]. The distinguishing feature is
that [38; 158] focus on steady-state results, whereas our aim is to derive transient
performance.

Alternatively, putting zx = z and zi equal to zero for i < x, gives information about
cycle x. Taking x → ∞, also gives information about a cycle in steady state. This
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limit in Equation (4.8) gives exactly E[S]/(1 − ρ), if ρ < 1. Doing the same with
Equation (4.10), gives exactly the second moment of a steady state cycle. This shows
that our expressions are in line with known results (see again [38; 158]).

4.3.1 Asymptotic properties

From Theorem 4.1 and Equation (4.11) we may derive more explicit results for the
different asymptotic regimes, such as light and heavy traffic and large switch-over
times. Moreover, we consider the case in which the first cycle has a heavy-tailed dis-
tribution, representing the situation that this cycle is affected by an external event.

Light and heavy traffic In heavy traffic, when ρ ↑ 1, we directly obtain that the
coefficient of correlation between cycles 1 and x tends to 1, see (4.11). Hence, the
distribution of Cx is identical to the distribution of C1 in heavy traffic.

For light traffic, we observe from Equation (4.11) that when the load tends to zero,
the covariance between the first cycle and any other cycle is equal to zero, which
also holds for the correlation coefficient. For approximations based on light and he-
avy traffic interpolations, the derivative of the light-traffic regime with respect to the
load is useful. Remarkable is that the derivative of the covariance is zero for cycles
x = 3, 4, . . ., but it is strictly positive for the second cycle.

Large switch-over times Another common asymptotic regime is the situation of
large switch-over times, see [131]. Let the switch-over times be deterministic with
length r, i.e. S∗(z) = e−rz. We scale the cycle times by dividing by r and let r →∞.
This gives

lim
r→∞

γx(z/r) = lim
r→∞

γ1(z1/r + ζ
(x)
1 (z/r))

x−1∏
j=1

e−(zj+1/r+ζ
(x−j)
j+1 (z/r))r

=

x−1∏
j=1

e−(
∑x−j−1
k=0 ρkzj+k+1).

implying that the scaled cycle lengths become deterministic and are simple expressi-
ons in terms of the system load ρ.

Heavy-tailed initial cycle length Let us assume that the first cycle is regularly
varying of index −ν (denoted as C1 ∈ R−ν ; and with m < ν < m + 1), whereas the
service and switch-over times have a lighter tail. This situation is of interest in cases
where a disaster or external events leads to a long cycle. Of primary interest is how
this initial cycle affects future cycle lengths.

More specifically, we assume that P(C1 > y) ∼ L(y)y−ν , ν > 1, with L(y) some slowly
varying function. We use the notation f(y) ∼ g(y) to indicate that f(y)/g(y)→ 1 as
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y → ∞. A function L(·) is called slowly varying if L(ηy) ∼ L(y), for all η > 1. For
the service and switch-over times, we assume the following:

Assumption 4.1. P(Bi > y) = o(P(C1 > y)) and P(Si > y) = o(P(C1 > y))
(i = 1, . . . , N), where f(y) = 0(g(y)) is equivalent to limy→∞ f(y)/g(y) = 0.

Proposition 4.3. Suppose that C1 ∈ R−ν and Assumption 4.1 is satisfied. Then,
for n = 1, 2, . . . ,

P(Cn > y) ∼ P
(
C1 >

y

ρn−1

)
, as y →∞

The result of Proposition 4.3 can be intuitively explained and is related to the fact
that rare events tend to occur due to a single most probable cause in systems with
heavy-tailed characteristics. More precisely, the most likely way for a large n-th
cycle time is a large initial cycle time, whereas the system shows average behavior
otherwise. As traffic arrives at rate ρ, the amount of traffic arriving during the first
cycle is about ρC1; this means cycle 1 needs to be larger than y/ρ for cycle 2 to be
at least of length y.

The proof of the above proposition relies on the relation between the asymptotic
behavior of regularly varying distributions and the behavior of the LST near the
origin. For clearness of exposition, we restate that result (see [26; 27; 36]).

Theorem 4.2. Let X be a non-negative random variable, L(·) a slowly varying
function, ν ∈ (m,m + 1), and D ≥ 0. Then the following statements are equiva-
lent:

P(X > y) = (D + o(1))y−νL(y), as y →∞,

E
[
e−zX

]
−

m∑
j=0

E[Xj ]
(−z)j
j!

= (−1)mΓ(1− ν)(D + o(1))zνL(1/z), as z ↓ 0.

To derive Proposition 4.3, we use the series expansion of E
[
e−zCn

]
and rely on

Lemma 3 of [58] stating the series expansion of iterated functions that are regularly
varying.

Proof of Proposition 4.3. We first show that P(C2 > y) ∼ P(C1 > y/ρ). The result
for Cn then follows by induction. Now, first assume that the switch-over time at the
end of the second cycle can be neglected, and let the corresponding cycle length be

C̃n. Let t(z) =
∑
k δk(z). Then E e−zC̃2 = γ1(t(z)), which is precisely an iterated

function of the type considered in [58, Lemma 3]. Using the definition of δk(·), we
obtain t(z) = ρz + o(z), when y → ∞. In the notation of [58], we have ψν = 0 (due
to Assumption 4.1), φν = (−1)mΓ(1− ν) (due to Theorem 4.2), and ψ1 = ρ (due to
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the series expansion of t(z) above). Using [58, Lemma 3], yields

E
[
e−zC̃2

]
= γ1(t(z)) =

m∑
i=0

θiz
i + ((−1)mΓ(1− ν) + o(1))ρνzνL(1/z).

Another application of Theorem 4.2 provides the desired asymptotic tail probability of
C2 in the case of zero switch-over times. From Feller [67], p. 271, and Assumption 4.1
it follows that P(C̃2 +

∑
i Si > y) ∼ P(C̃2 > y). Hence, the switch-over times are

negligible and the proof is completed.

4.3.2 Numerical results

In this section we show the impact of the first cycle on the succeeding cycles by
plotting mean cycle lengths, standard deviations and correlations between different
cycles. The parameters that are needed, are the first two moments of the total
switch-over times, the total arrival rate and the overall load, the second moment of
the service distribution of an arbitrary customer and the first two moments of the first
cycle length. Let us consider the following system; switch-over times are exponentially
distributed, with parameters E[S] = 5 and E[S2] = 50. The total arrival rate to the
system is Λ = 3, the service times have an exponential distribution with E[B2] = 2

3ρ
2.

The first cycle is deterministic, with length 10E[S]
1−ρ , so it is 10 times longer than an

average cycle. The means and standard deviations of the cycle lengths for different
values of ρ are plotted in Figure 4.1. Figure 4.1a shows that the mean cycle length
decreases to the length of an average cycle, for lower loads this decrease is faster than
for higher loads. Figure 4.1b illustrates that the standard deviation first increases
and then decreases, until it converges to the standard deviation of an average cycle.
The low standard deviation in the beginning is explained by the fact that the first
cycle is deterministic.

The correlation between cycles 1 and x is given by the covariance between cycles 1 and
x, Equation (4.11), divided by the standard deviation of cycle 1 times the standard
deviation of cycle x. Suppose that the first cycle is an average cycle, then both
standard deviations are equal, so the covariance is divided by the variance of an
average cycle. It is immediately clear that the correlation between cycles 1 and x
is then given by ρx−1. This is plotted in Figure 4.2. Figure 4.2a shows that the
correlation between cycles 1 and 2 is equal to ρ; for cycles that are further apart the
correlation decreases rapidly unless the systems load is considerable. For instance,
the correlation between cycles 1 and 50 is only significant if the load well exceeds 0.9.
Figure 4.2b illustrates how the correlation decreases for fixed ρ by letting the distance
between cycles increase. Note that when the load is equal to 1, the correlation does
not decrease, which would give a horizontal line.
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Figure 4.1: Mean and standard deviation per cycle, for different values of ρ, if the
first cycle is ten times the average length.
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Figure 4.2: The correlation with cycle one, as function of ρ for different values of x
and as function of x for different values of ρ.
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4.4 Analysis of gated service

First, we note that the structure and methods of proof in this section are similar to
those for the globally gated case of Section 4.3. Recall that with the gated service
policy, the server only serves the customers that were present at the queue, the mo-
ment the server arrived. Analogously to the globally gated case, we again assume
that the probabilistic behavior of the first cycle is known. But for gated it is not suf-
ficient to have information about the length of the cycle, we need information about
the lengths of the first N visits and switch-overs. The visit time plus the following
switch-over time, i.e. Vi + Si, is called the residence time. Assuming the first N re-
sidence times are probabilistically known, we can write down the joint LST of the
first x residence times, for x ≥ N . This LST is denoted by γ̂x(z), and is given in the
following theorem:

Theorem 4.3. For x ≥ N , we have

γ̂x(z) = E[e−
∑x
i=1 zi(Vi+Si)]

= γ̂N (z1 + d
(x−1)
1 (z), . . . , zN + d

(x−N)
N (z))

x−N∏
k=1

S∗
k̃
(zN+k + d

(x−N−k)
N+k (z)),

with x̃ = x mod N and

d(i)
n (z) =

N+n∑
k=n+1

δk̃(zk + d
(i+n−k)
k (z))1{N<k≤n+i}.

Note that the vector z has length x, and every element zi of the vector now corresponds

to the ith residence time for i = 1, . . . , x. The recursive term d
(i)
n (z) is similar to the

ζ of the globally gated case. In order to prove Theorem 4.3, we first establish the
following lemma (with the proof deferred to Section 4.5.1).

Lemma 4.2. For n = 1, 2, . . . fixed and x ≥ n and x ≥ N , we have

(z′n + d(x−n)
n (z′)) = zn + d(x−n+1)

n (z), (4.12)

with z′ = z + d
(1)
x (z)

∑x
i=x−N+1 ei

Proof of Theorem 4.3. For the proof of Theorem 4.3, we use induction. First we take
the case x = N , giving

γ̂N (z) = γ̂N (z1 + d
(N−1)
1 (z), . . . , zN + d

(N−N)
N (z))

0∏
k=1

S∗
k̃
(zN+k + d

(−k)
N+k(z))

= γ̂N (z1, . . . , zN ),
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because d
(N−n)
n (z) = 0 for all n, and the product of switch-overs is empty and thus

equals 1. Next we assume that Theorem 4.3 holds for all k ≤ x, then for k = x + 1,
we have

γ̂x+1(z) = γ̂x(z1, . . . , zx−N , zx−N+1 + d(1)
x , . . . , zx + d(1)

x )S∗
x+1
∼(zx+1)

=

(
γ̂N (z′1 + d

(x−1)
1 (z′), . . . , z′N + d

(x−N)
N (z′))

x−N∏
k=1

S∗
k̃
(z′N+k + d

(x−N−k)
N+k (z′))

)
× S∗

x+1
∼(zx+1)

= γ̂N (z1 + d
(x)
1 (z), . . . , zN + d

(x−N+1)
N (z))

x−N∏
k=1

S∗
k̃
(zN+k + d

(x−N−k+1)
N+k (z))

× S∗
x+1
∼(zx+1)

= γ̂N (z1 + d
(x)
1 (z), . . . , zN + d

(x−N+1)
N (z))

x−N+1∏
k=1

S∗
k̃
(zN+k + d

(x−N−k+1)
N+k (z)).

For the first equality, we use the same reasoning that was used for Equation (4.2).
For the second equality, the induction hypothesis is used. The third equality uses
Lemma 4.2. For the last equality, note that x+ 1

∼
= x + 1 mod N , which equals

x−N + 1
∼

= x−N + 1 mod N . This completes the proof.

As in Section 4.3, we define J ⊆ {0, 1, 2, . . . , x} as the set of residence times we wish
to include. Specifically, we take zj equal to z if j ∈ J , and 0 otherwise. For example,
if we want to calculate the distribution of the length of the first residence time in the
second cycle we set zN+1 = z and all other zi equal to 0. Moments can now again
be derived by differentiating with respect to z. The derivative of γ̂x with respect to
z (with zi either z or 0) is then given by:

d

dz
γ̂x(z) =

N∑
j=1

γ̂
(j)
N (z1 + d

(x−1)
1 (z), . . . , zN + d

(x−N)
1 (z))

(
1{j∈J} +

d

dz
d

(x−j)
j (z)

)

×
x−N∏
k=1

S∗
k̃
(zN+k + d

(x−N−k)
N+k (z))

+ γ̂N (z1 + d
(x−1)
1 (z), . . . , zN + d

(x−N)
N (z)) (4.13)

×
x−N∑
j=1

d

dz
S∗
j̃
(zN+j + d

(x−N−j)
N+j (z))

(
1{N+j∈J} +

d

dz
d

(x−N−j)
N+j (z)

)
×
∏
k 6=j

S∗
k̃
(zN+k + d

(x−N−k)
N+k (z)),

where γ̂
(j)
N (·) is the partial derivative of γ̂N (·), with respect to the jth parameter. The
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derivative of d
(x−j)
j (z) is recursively defined as

d

dz
d

(x−j)
j (z) =

N+j∑
k=j+1

d

dz
δk̃(zk + d

(x−k)
k (z))

(
1{k∈J} +

d

dz
d

(x−k)
k (z)

)
1{N<k≤x}.

(4.14)

For convenience, we define αj = d
dzd

(x−j)
j (z)|{z=0}. The expected length of resi-

dence times under consideration (that is, in set J) is given by the following proposi-
tion.

Proposition 4.4 (First moments). The expected total residence time for set J is

E

∑
j∈J

Vj + Sj

 =

N∑
j=1

(
E[V̂j ] + E[Ŝj ]

) (
1{j∈J} + αj

)
+

x−N∑
j=1

E[Sj̃ ]
(
1{N+j∈J} + αN+j

)
,

with

αj =

N+j∑
k=j+1

ρk̃
(
1{k∈J} + αk

)
1{N<k≤x}. (4.15)

Example 4.1. An interesting special case is where we are only interested in two
subsequent cycles, i.e. x = 2N . Take J = {N + 1, . . . , x}. From (4.15) it may be
easily verified that

αi =

N+i∑
j=N+1

ρj̃ + ρj̃

x∑
k=j+1

ρk̃

k−1∏
l=j+1

(1 + ρl̃). (4.16)

For the second moment we need to differentiate Equation (4.13), the result can
be found in Section 4.5.2, Equation (4.21). Taking z = 0 yields the second mo-
ments.

Proposition 4.5 (Second moments). The second moment of the total residence time
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for set J is

E


∑
j∈J

(Vj + Sj)

2
 =

N∑
j=1

N∑
l=1

E[(V̂j + Ŝj)(V̂l + Ŝl)]
(
1{l∈J} + αl

) (
1{j∈J} + αj

)

−
N∑
j=1

E[(V̂j + Ŝj)]
d2

dz2
d

(x−j)
j (z)|{z=0}

+ 2

N∑
j=1

E[(V̂j + Ŝj)]
(
1{j∈J} + αj

) x−N∑
k=1

E[Sk̃]
(
1{N+k∈J} + αN+k

)
+

x−N∑
j=1

[
E[S2

j̃
]
(
1{N+j∈J} + αN+j

)2 − E[Sj̃ ]
d2

dz2
d

(x−N−j)
N+j (z)|{z=0}

+ E[Sj̃ ]
(
1{N+j∈J} + αN+j

)∑
k 6=j

E[Sk̃]
(
1{N+k∈J} + αN+k

)]
,

with αj given by (4.15) and d2

dz2 d
(x−j)
j (z)|{z=0} recursively given by

d2

dz2
d

(x−j)
j (z)|{z=0} =

N+j∑
k=j+1

[
−λk̃ E[B2

k̃
]
(
1{k∈J} + αk

)2
+ ρk̃

d2

dz2
d

(x−k)
k (z)|{z=0}

]
1{N<k≤x}.

Remark 4.3 (Comparison with globally gated). For globally gated we are able to
find closed-form expressions for both the mean and the second moment. For gated
this turned out to be involved, so the recursive terms are left intact. Assuming the
initial cycle to be in steady-state, the relations between the residence times of the
second cycle expressed in terms of the first cycle give rise to a system of equations.
We refer to e.g. Takagi [125] for such an approach for the analysis of the number of
customers at polling instants.

By adding more parameters to the joint LST of the residence times, the visit times
and switch-over times can be tracked separately. Analogously to the gated case, the
globally gated case can be extended to also record the visit and switch-over times per
cycle. This can be useful, for example, for determining the output process.

4.4.1 Asymptotic properties

The asymptotic results are similar to those for the globally gated case. However, the
expressions are more involved and concern iteratively defined functions. Below, we
focus on the two most interesting cases: heavy traffic and heavy-tailed initial cycle
length.
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Heavy traffic For the heavy-traffic regime, we consider the usual scaling of resi-
dence times R̃i := Ṽi + S̃i = (1 − ρ)(Vi + Si). For each variable x that is a function
of ρ, we denote its value evaluated at ρ = 1 by x̂.

Proposition 4.6. For the joint LST of scaled residence times, we have

lim
ρ↑1

γ̂x(z(1− ρ)) = γ̂HT
N (z1 + α̂1, . . . , zN + α̂N ),

with γ̂HT
N (·) the joint transform of scaled initial residence times, and α̂j given by the

recursion

α̂j =

N+j∑
k=j+1

ρ̂k̃(zk + α̂k)1{N<k≤x}. (4.17)

Proof. The heavy-traffic limit follows from

lim
ρ↑1

γ̂x(z(1− ρ)) =

lim
ρ↑1

γ̂N (z1(1− ρ) + d
(x−1)
1 (z(1− ρ)), . . . , zN (1− ρ) + d

(x−N)
N (z(1− ρ)))

×
x−N∏
k=1

S∗
k̃
(zN+k(1− ρ) + d

(x−N−k)
N+k (z(1− ρ))).

Using Theorem 4.3 and by applying l’Hôpital’s rule, we obtain

lim
ρ↑1

d
(i)
n (z(1− ρ))

1− ρ = lim
ρ↑1

N∑
k=n+1

δ
′

k̃
(zk(1− ρ) + d

(i+n−k)
k (z(1− ρ)))

×
(
zk +

d

d(1− ρ)
d

(i+n−k)
k (z(1− ρ))

)
1{N<k≤n+i}.

The recursion (4.17) then follows by letting α̂j = limρ↑1 d
(i)
n (z(1− ρ))/(1− ρ). Com-

bining the above provides the result.

Proposition 4.6 shows that in heavy traffic, the joint LST of residence times is fully
characterized by the LST of the initial cycle. As such, we see that an ‘averaging
principle’ applies to our transient results, as the future evolution of residence times
are specified by average input values. However, we note that, depending on the
composition of the first cycle, the scaled cycle lengths may either increase or decrease;
see Example 4.2 for an illustration.

Example 4.2. For simplicity, take N = 2 and x = 4. Similar to (4.16), we may
obtain that α̂1 = ρ̂1z3 + ρ̂1ρ̂2z4 and α̂2 = ρ̂1z3 + (1 + ρ̂1)ρ̂2z4, yielding

lim
ρ↑1

γ̂x(z(1− ρ)) =

E
[
exp{−z1R̃1 − z2R̃2 − z3ρ̂1(R̃1 + R̃2)− z4ρ̂2(ρ̂1R̃1 + (1 + ρ̂1)R̃2)}

]
.
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Addressing expected values, it holds in equilibrium that (1 − ρ̂1)E[R̃∗1] = ρ̂1 E[R̃∗2].
If we assume that the initial residence time of queue 1 is relatively short, i.e., that
(1 − ρ̂1)E[R̃∗1] ≤ ρ̂1 E[R̃∗2], then it may be verified that E[R̃3] ≥ E[R̃1] and E[R̃4] ≤
E[R̃2]. Moreover, for the total cycle length we have E[R̃3 + R̃4] ≥ E[R̃1 + R̃2]. This
means that the residence times converge to their equilibrium value, whereas the overall
cycle length is increasing. For a relatively long initial residence time of queue 1, i.e.,
(1− ρ̂1)E[R̃∗1] ≥ ρ̂1 E[R̃∗2], all inequalities are reversed.

Heavy-tailed initial cycle length Clearly, an excessively long residence time af-
fects subsequent residence times. For convenience, we assume here that queue N
(which may be arbitrary) has a heavy-tailed residence time. When the residence time
of queue i < N would have a heavy tail, this would affect the tail behavior of queues
i + 1, . . . , N as well, which is precisely the effect we aim to study. More precisely,
we assume that the residence time of queue N is regular varying of index −ν (with
m < ν < m + 1) and asymptotically dominates the tail of the residence times at
queues 1, . . . , N − 1, that is

P(V1 + S1 > η1y, . . . , VN−1 + SN−1 > ηN−1y, VN + SN > y) ∼ P(VN + SN > y).

This leads to the following assumption.

Assumption 4.2. The initial cycle length is asymptotically dominated by the resi-
dence time of queue N , giving

γ̂N (f1(z), . . . , fN−1(z), z) =

m∑
i=0

aiz
i + (−1)mΓ(1− ν)(1 + o(1))zνL(1/z).

As in the globally gated case, it holds that an excessively long n-th residence time is
most likely due to an excessively long initial visit of queue N , while the system shows
average behavior otherwise. The average behavior is specified by a similar recursive
scheme as for the mean residence times and heavy-traffic asymptotics.

Proposition 4.7. Suppose that VN ∈ R−ν and Assumptions 4.1 and 4.2 are satisfied.
Then,

P(Vx + Sx > y) ∼ P (VN > y/α̃N ) ,

with α̃x = 1 and α̃N given by the recursion

α̃j =

N+j∑
k=j+1

ρk̃α̃k1{N<k≤x}. (4.18)

Proof. The proof is along the same line as the proof of Proposition 4.3. Consider the
visit of queue x, i.e., take zx = z and zi = 0 for i = 1, . . . , x−1. First, we assume that
all switch-over times equal zero, represented by Ṽj in the notation for the visit time
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of the j-th queue. From Theorem 4.3, we obtain E e−zṼx = γ̂N (d
(x−1)
1 , . . . , d

(x−N)
N ).

We thus need to consider the series expansion of the terms d
(x−j)
j , which are in fact

iterated functions. In view of [58, Lemma 3] and Assumption 4.1, we have ψν = 0
(in the notation of [58]; see also the proof of Proposition 4.3) and we only need to

consider the first term of the series expansion of d
(x−j)
j . Using Theorem 4.3, it easily

follows that d
(x−j)
j = α̃jz+o(z) where α̃j follows from the recursion (4.18). Applying

the same arguments as in [58, Lemma 3] combined with Assumption 4.2, we obtain

E
[
e−zṼx

]
= γ̂N (d

(x−1)
1 , . . . , d

(x−N)
N ) =

m∑
i=0

θiz
i + ((−1)mΓ(1− ν) + o(1))α̃νNz

νL(1/z).

Using Theorem 4.2 yields P(Ṽx > y) ∼ P(VN > y/α̃N ). Again, under Assumption 4.1,
it is straightforward to show that the contribution of switch-over times and the contri-
bution of work arriving during these switch-over times are negligible. This completes
the proof.

4.4.2 Numerical results

In this section we use a numerical example to illustrate the properties of a gated
system. Consider a symmetric system with N = 4 queues, λi = 1, E[Bi] = ρi,
E[B2

i ] = 2ρ2
i , ρi = ρ/N , E[Si] = 5

4 , and E[S2
i ] = 25

8 , for all i. Because of a disaster, all
visit times take ten times longer than average, but switch-over times are not affected,

so E[(V̂i + Ŝi)] = 10ρE[Si]
1−ρ + E[Si]. We take the residence times deterministic, giving

E[(V̂i + Ŝi)(V̂j + Ŝj)] = E[(V̂i + Ŝi)]
2, for i, j = 1, 2, 3, 4.

The mean and standard deviation of the cycle lengths of this system are plotted in
Figure 4.3. We see that the figures look very similar to the globally gated case in
Figure 4.1. Figure 4.4 shows the correlation between cycle 1 and various other cycles,
where the first cycle is distributed as an average cycle. These figures also look similar
to the globally gated case in Figure 4.2. Recall that the correlation between cycle 1
and 2 was equal to ρ in the globally gated system, Figure 4.4a shows that this is not
the case for the gated system, however, the difference is small.

4.5 Appendix

4.5.1 Proofs

Proof of Lemma 4.1. We prove Lemma 4.1 by induction. First we show that the
lemma holds for i = 2:

ζ(2)
n (z′) =

N∑
k=1

δk(zn+1 + ζ
(2)
n+1(z) + ζ

(1)
n+1(z)) = ζ(3)

n (z).
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Figure 4.3: Mean and standard deviation per cycle, for different values of ρ, if the
first cycle is ten times normal length and deterministic.
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Figure 4.4: The correlation with cycle one, as function of ρ for different values of x
and as function of x for different values of ρ.



4.5. APPENDIX 97

Both equalities follow from the definition of ζ, given in Equation (4.4). Now assume
that (4.5) is true for all k ≤ i. We have for k = i+ 1:

ζ(i+1)
n (z′) =

N∑
k=1

δk(zn+1 + ζ
(i)
n+1(z′))

=

N∑
k=1

δk(zn+1 + ζ
(i+1)
n+1 (z)) = ζ(i+2)

n (z).

The first and the last equality use the definition of ζ, and for the second equality, the
induction hypotheses is used. This completes the proof.

Proof of Lemma 4.2. We prove Lemma 4.2 using induction. First we show that the
lemma holds for n = x, because then x− n = 0, providing

(z′x + d(0)
x (z′)) = zx + d(1)

x (z) + 0.

This follows from the fact that zx is the last element of z and d
(0)
x = 0. Now assume

that Equation (4.12) holds for all k ≤ x− n. For k + 1 = x− n, we need to consider
two cases: (i) the case where zx−k−1 is not one of the last N elements of z and (ii)
the case where it is. For case (i) we have x − k − 1 < x − N + 1, thus k > N − 2,
giving

(z′x−k−1 + d
(k+1)
x−k−1(z′)) = zx−k−1 +

N+x−k−1∑
l=x−k

δl̃(z
′
l + d

(x−l)
l (z′))

= zx−k−1 +

N+x−k−1∑
l=x−k

δl̃(zl + d
(x−l+1)
l (z))1{N<l≤x}

= zx−k−1 + d
(k+2)
x−k−1(z).

For the first equality, the definition of d
(i)
n (z) is used, the second equality uses the

induction hypotheses and the final equality uses the definition again. Note that
N + x− k− 1 ≤ x and thus also N + x− k− 1 ≤ x+ 1, so the last equality is indeed
true. For the second case, we have

(z′x−k−1 + d
(k+1)
x−k−1(z′)) = zx−k−1 + d(1)

x (z) +

N+x−k−1∑
l=x−k

δl̃(z
′
l + d

(x−l)
l (z′))1{N<l≤x}

= zx−k−1 + δx+1
∼(zx+1 + d

(0)
x+1(z)) +

N+x−k−1∑
l=x−k

δl̃(zl + d
(x−l+1)
l (z))1{N<l≤x}

= zx−k−1 +

N+x−k−1∑
l=x−k

δl̃(zl + d
(x−l+1)
l (z))1{N<l≤x+1} = zx−k−1 + d

(k+2)
x−k−1(z).
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The first equality uses the definition of d
(i)
n (z), whereas the second equality also uses

the induction hypothesis. For the third equality we use the fact that the indicator
function determines the end of the summation at x and the extra term contains the
case were k = x+ 1. The final equality follows again from the definition, completing
the proof.

4.5.2 Second-order derivatives

For globally gated, the second derivative of γx(z) given in Equation (4.3), is given
by

d2

dz2
γx(z) =

d2

dz2
γ1(z1 + ζ

(x)
1 (z))

(
1{1∈J} +

d

dz
ζ

(x)
1 (z)

)2 x−1∏
j=1

S∗(zj+1 + ζ
(x−j)
j+1 (z))

+ 2
d

dz
γ1(z1 + ζ

(x)
1 (z))

(
1{1∈J} +

d

dz
ζ

(x)
1 (z)

)
×
x−1∑
j=1

d

dz
S∗(zj+1 + ζ

(x−j)
j+1 (z))

(
1{j+1∈J} +

d

dz
ζ

(x−j)
j+1 (z)

) x−1∏
k 6=j

S∗(zk+1 + ζ
(x−k)
k+1 (z))

+
d

dz
γ1(z1 + ζ

(x)
1 (z))

d2

dz2
ζ

(x)
1 (z)

x−1∏
j=1

S∗(zj+1 + ζ
(x−j)
j+1 (z))

+ γ1(z1 + ζ
(x)
1 (z)) (4.19)

×
x−1∑
j=1

[
d2

dz2
S∗(zj+1 + ζ

(x−j)
j+1 (z))

(
1{j+1∈J} +

d

dz
ζ

(x−j)
j+1 (z)

)2 x−1∏
k 6=j

S∗(zk+1 + ζ
(x−k)
k+1 (z))

+
d

dz
S∗(zj+1 + ζ

(x−j)
j+1 (z))

d2

dz2
ζ

(x−j)
j+1 (z)

x−1∏
k 6=j

S∗(zk+1 + ζ
(x−k)
k+1 (z))

+
d

dz
S∗(zj+1 + ζ

(x−j)
j+1 (z))

(
1{j+1∈J} +

d

dz
ζ

(x−j)
j+1 (z)

)
×
x−1∑
k 6=j

d

dz
S∗(zk+1 + ζ

(x−k)
k+1 (z))

(
1{k+1∈J} +

d

dz
ζ

(x−k)
k+1 (z)

) x−1∏
l 6=k

S∗(zl+1 + ζ
(x−l)
l+1 (z))

]
.

The second derivative of ζ
(i)
n (z), given in (4.4), is equal to

d2

dz2
ζ(i)
n (z) =

N∑
k=1

[
d2

dz2
δk(zn+1 + ζ

(i−1)
n+1 (z))

(
1{n+1∈J} +

d

dz
ζ

(i−1)
n+1 (z)

)2

+
d

dz
δk(zn+1 + ζ

(i−1)
n+1 (z))

d2

dz2
ζ

(i−1)
n+1 (z)

]
. (4.20)
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For gated, the second derivative of γ̂x(z), given in Theorem 4.3, is given by

d2

dz2
γ̂x(z) =

N∑
j=1

N∑
l=1

γ̂
(j,l)
N (z1 + d

(x−1)
1 (z), . . . , zN + d

(x−N)
1 (z))

(
1{l∈J} +

d

dz
d

(x−l)
l (z)

)

×
(
1{j∈J} +

d

dz
d

(x−j)
j (z)

) x−N∏
k=1

S∗
k̃
(zN+k + d

(x−N−k)
N+k (z))

+

N∑
j=1

γ̂
(j)
N (z1 + d

(x−1)
1 (z), . . . , zN + d

(x−N)
1 (z))

d2

dz2
d

(x−j)
j (z)

x−N∏
k=1

S∗
k̃
(zN+k + d

(x−N−k)
N+k (z))

+ 2

N∑
j=1

γ̂
(j)
N (z1 + d

(x−1)
1 (z), . . . , zN + d

(x−N)
1 (z))

(
1{j∈J} +

d

dz
d

(x−j)
j (z)

)

×
x−N∑
k=1

d

dz
S∗
k̃
(zN+k + d

(x−N−k)
N+k (z))

(
1{N+k∈J} +

d

dz
d

(x−N−k)
N+k (z)

)
×
∏
l 6=k

S∗
l̃
(zN+l + d

(x−N−l)
N+l (z))

+ γ̂N (z1 + d
(x−1)
1 (z), . . . , zN + d

(x−N)
N (z)) (4.21)

×
x−N∑
j=1

[
d2

dz2
S∗
j̃
(zN+j + d

(x−N−j)
N+j (z))

(
1{N+j∈J} +

d

dz
d

(x−N−j)
N+j (z)

)2

×
∏
k 6=j

S∗
k̃
(zN+k + d

(x−N−k)
N+k (z))

+
d

dz
S∗
j̃
(zN+j + d

(x−N−j)
N+j (z))

d2

dz2
d

(x−N−j)
N+j (z)

∏
k 6=j

S∗
k̃
(zN+k + d

(x−N−k)
N+k (z))

+
d

dz
S∗
j̃
(zN+j + d

(x−N−j)
N+j (z))

(
1{N+j∈J} +

d

dz
d

(x−N−j)
N+j (z)

)
×
∑
k 6=j

d

dz
S∗
k̃
(zN+k + d

(x−N−k)
N+k (z))

(
1{N+k∈J} +

d

dz
d

(x−N−k)
N+k (z)

)

×
∏
l 6=k

S∗
l̃
(zN+l + d

(x−N−l)
N+l (z))

]
,
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with d2

dz2 d
(x−j)
j (z), being the derivative of (4.14), recursively given by

d2

dz2
d

(x−j)
j (z) =

N+j∑
k=j+1

[
d2

dz2
δk̃(zk + d

(x−k)
k (z))

(
1{k∈J} +

d

dz
d

(x−k)
k (z)

)2

+
d

dz
δk̃(zk + d

(x−k)
k (z))

d2

dz2
d

(x−k)
k (z)

]
1{N<k≤x}.

Note that d
dzd

(x−j)
j (z) is also recursively defined and given in (4.14).



Chapter 5

Queue-length distributions in DPS queues with
batch arrivals

5.1 Introduction

In this chapter, we study a queueing model with the Discriminatory Processor Sharing
(DPS) service policy. In contrast to the polling models from the previous chapters
(Chapters 2, 3 and 4), where the server only serves one job type, the server now
serves all job types simultaneously regardless of their type. The customer classes are
assigned with different weights indicating their relative priority (see Chapter 1 for a
more elaborate description). The majority of papers on DPS only considers single
arrivals, i.e., whenever an arrival occurs, only one new customer joins the system.
In some applications it is possible that multiple customers arrive at the same time,
where these customers could possibly belong to different classes. Such an arrival
pattern is captured by allowing multi-class batch arrivals. Our result gives insight
in the relation between the simultaneity of arrivals and the joint queue length in the
DPS model.

The possibility of simultaneous arrivals of batches of different types strongly enhances
the modeling capabilities of DPS models. Examples are found in communication
networks. For instance, consider a Web server that needs to respond to numerous
document-retrieval requests initiated by the end users. A Web document generally
consists of a number of files (e.g., pieces of text, in-line images, audio or video files),
each of which generates a separate file-retrieval request to the Web server. Each of
these requests generates one or more data flows to be transferred via a multitude
of connections (typically TCP-based connections with different characteristics) that
compete for access to a shared medium. This way, a document request can be seen
as a batch of flows that arrive simultaneously to a DPS node. Other examples can
be found in computer systems where threads compete for access to shared processors
in a processor sharing fashion. Efficient thread-spawning algorithms create batches
of additional threads to reduce congestion during temporary overload situations, and
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vice versa, can terminate threads when no longer needed. At the operating system
level, different thread types may have different priorities. This way, the creation of
threads can be seen as a batch of jobs arriving to a DPS node.

DPS models have received much attention in the literature; we refer to Altman et
al. [7] for a survey on DPS queues. The (conditional) moments of the response
times and number of customers in a DPS queue and their finiteness are studied in
[11; 66; 82]. Analysis of overloaded regimes in PS and DPS models can be found in
[6; 21; 64; 88]. DPS models in the heavy-traffic (HT) regime have been studied in
[120; 141]. These papers assume single arrivals and the approach they follow differs
from our approach. The analysis we follow builds on the study of Verloop et al. [145],
who analyze a DPS queue with phase-type service time distributions by considering
a Markovian framework. Their main result is the joint distribution of the scaled
number of customers in the system in the HT regime. Grishechkin [75] allows for
batch arrivals and explored the relationship between Processor Sharing models and
Crump-Mode-Jagers branching processes. Recently, Izagirre et al. [87] proposed an
approximation for the mean sojourn time in a DPS queue with Poisson arrivals and
general service times by interpolating between heavy traffic and light traffic.

The motivation for this chapter is two-fold. First, it is of a fundamental interest
to explicitly quantify the impact of correlations between the arrival processes of the
different customers classes on the number of each type in the system. Using a specific
class of correlation structures, we take a significant step in that direction. In fact, our
results explicitly quantify the impact of the simultaneity of the arrivals on the joint
distribution of the number of jobs in DPS systems in HT. Moreover, the result also
leads to sharp approximations of the impact of batched arrivals for stable systems
(i.e., with load strictly less than 1), providing new insight in the performance of DPS
systems, a class of models that is notoriously hard to analyze in an exact manner.
Second, in several applications of DPS models the arrival processes of the different job
types are correlated (see the examples above). In view of those applications it is im-
portant to be able to predict the queueing behavior accurately, in particular when the
system load is significant. The effectiveness of the existing numerical techniques (like
simulations) tends to degrade strongly when the system is heavily loaded. This raises
the need for the development of simple and fast approximations for the delay incurred
at each of the queues, explicitly capturing the impact of correlated arrivals.

We study a DPS queue with batch arrivals that occur according to a Poisson process
and exponential service times. Each arriving batch may contain customers of multiple
types and the number of customers per type can be larger than one. The size of a batch
is according to a general joint batch-size distribution. We are interested when the
system is in HT. To obtain this, we scale the arrival rate and let the total load of the
system go to 1. We analyze the scaled joint queue-length distribution and show that
a state-space collapse occurs in the HT limit. More specifically, the joint distribution
of the scaled number of customers is given by a vector of constants multiplied by an
exponential distribution. This result is similar to the result of Verloop et al. [145] for
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Poisson arrivals of single customers, where the authors find the same constant vector
times an exponential distribution. The difference with [145] is in the parameter of
the exponential distribution, which now contains the second moments and correlation
structure of the batches. In the HT regime, the batch arrivals only affect the mean of
the scaled joint queue-length distribution. For polling models a similar phenomenon
is observed in, e.g., [135].

The remainder of this chapter is organized as follows. In Section 5.2 the model is
described in detail and we introduce the notation. In Section 5.3, we state the main
result and include some intuition. The proof of the main result is given in Section 5.4.
Finally, in Section 5.5, we discuss numerical results.

5.2 Model description

We consider a system with N classes. Arrivals occur according to a Poisson process
with rate λ. Each arrival consists of a batch of size K = (K1, . . . ,KN ), where Ki

stands for the number of class-i customers. Denote the joint batch-size distribution
by p(k1, . . . , kN ) = p(k) := P(K1 = k1, . . . ,KN = kN ) and let the corresponding
probability generating function (PGF) of K be K(z), where z = (z1, . . . , zN ) and
|zi| < 1, for i = 1, . . . , N . The arrival rate of class-i customers is denoted by λi :=
λE[Ki]. Customers of type i have an exponentially distributed service requirement
with mean 1/µi. The N customer types share a common resource of capacity 1.
Associated with every class i, there is a strictly positive weight wi, i = 1, . . . , N .
When there are q := (q1, . . . , qN ) customers present in the system, with qi the number
of type-i customers, each type-i customer is served at rate

wi∑N
j=1 wjqj

, i = 1, . . . , N.

We denote the random variable of the number of type-i customers in the system
by Qi and denote its joint steady-state distribution by π(q) := P(Q = q), with
Q = (Q1, . . . , QN ). The load of type-i is given by

ρi :=
λi
µi
,

and the load of the system is

ρ := λ

N∑
j=1

E[Kj ]

µj
=

N∑
j=1

ρj .

We analyze the system when it is near saturation, i.e., for ρ ↑ 1. To obtain this regime
we scale the arrival rate by letting

λ ↑ λ̂ :=

(
N∑
i=1

E[Ki]

µi

)−1

, (5.1)
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while keeping µi, i = 1, . . . , N , and the batch-size distribution p(k) fixed. In HT, the
load per customer type is given by

ρ̂i =
λ̂i
µi
, i = 1, . . . , N,

with λ̂i = λ̂E[Ki]. The total load is equal to ρ̂ =
∑N
i=1 ρ̂i = 1. We let ei denote the

ith unit vector.

5.3 Main result

In this section we state the main result. The proof of this result can be found in
Section 5.4.

Theorem 5.1. As ρ ↑ 1, the joint distribution of the scaled queue lengths is given by

(1− ρ)(Q1, Q2, . . . , QN )→d (Q̂1, Q̂2, . . . , Q̂N ) =d

(
ρ̂1

w1
,
ρ̂2

w2
, . . . ,

ρ̂N
wN

)
X, (5.2)

where X is exponentially distributed with mean

E[X] =

∑N
j=1 ρ̂j

1
µj

+ λ̂
∑N
i=1

∑N
j=1 E[KiKj ]

1
µi

1
µj

2
∑N
j=1(ρ̂j/wj)

1
µj

.

The intuition behind the result is as follows. Observe that the total amount of work
is the same for any work-conserving M/G/1 queue and is exponentially distributed
in HT. Hence, the total amount of work in a DPS queue in HT is also an exponential
random variable X. From the theorem above, we see that there is balance in how
the total amount of work is distributed among the N classes. This is reflected by
the fact that the exponential random variable is multiplied by a constant vector;
the different customer types all have their own portion of the exponential random
variable equal to ρ̂i/wi, i = 1, . . . , N . The number of type-i customers grows with

rate λ̂i and is depleted with rate wiqiµi

(∑N
j=1 wjqj

)−1

. Due to the balance of type-i

customers for a certain realization of X, these two rates should be equal. We can
solve this equation for qi to get: qi = (ρ̂i/wi)

∑N
j=1 wjqj . We see that

∑N
j=1 wjqj is

a constant common to all qi, i = 1, . . . , N , giving relative portions according to the
vector (ρ̂1/w1, . . . , ρ̂N/wN ).

Observe that the joint batch arrivals only influence the deterministic vector in The-
orem 5.1 through the load. Also, the random variable X remains exponential; the
effect of the joint batch arrivals only appears in the mean of X. In case of single-class
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arrival processes, it holds that E[KiKj ] = 0 if i 6= j. Rewriting E[X] for single and
single-class arrivals, respectively, yields

E[X] =

∑N
j=1 ρ̂j

1
µj∑N

j=1(ρ̂j/wj)
1
µj

(for single arrivals)

E[X] =

∑N
j=1 ρ̂j

1
µj

(
1 + E[K2

j ]/E[Kj ]
)

2
∑N
j=1(ρ̂j/wj)

1
µj

(for single-type batch arrivals).

Analogous to the derivation of Verloop et al. [145], we can extend our main result
to phase type service-time distributions and even to a more general Markovian fra-
mework. In this framework, after service completion a customer of type i becomes
a customer of type j with probability p̂ij , or the customer leaves the system with
probability p̂i0. The service duration of a type-i customer is still exponential with
rate µi, but now a customer has to complete multiple services with different service
rates (because the customer changes type after a service completion).

Conjecture 5.1. Consider the general Markovian framework described in [145]. The
joint distribution of the scaled queue length (Q̂1, . . . , Q̂N ) is given by

(Q̂1, . . . , Q̂N ) =d

(
ρ̂1

w1
,
ρ̂2

w2
, . . . ,

ρ̂N
wN

)
X,

with ρ̂i, i = 1, . . . , N the load corresponding to type-i customers and X exponentially
distributed with mean

E[X] =

∑N
j=1 ρ̂j E[Rj ] + λ̂

∑N
i=1

∑N
j=1 E[KiKj ]E[Ri]E[Rj ]

2
∑N
j=1(ρ̂j/wj)E[Rj ]

,

where Ri is the remaining service durations of customers of type i, i = 1, . . . , N .

5.4 Analysis

In this section we derive the limiting distribution of the number of customers in the
queue in HT (i.e., when ρ ↑ 1). To this end, we start by formulating the balance
equations for the limiting distribution π(q); these balance equations will be used to
derive the functional equation. When we have the functional equations, we scale it
with a factor (1 − ρ) and take the limit ρ ↑ 1. This leads to a partial differential
equation. The solution to this equation gives the desired distribution up to a single
random variable. The final step is finding this random variable.
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5.4.1 Balance equations and functional equation

In this subsection, we derive the functional equation. First, we introduce a transfor-
mation that leads to more convenient expressions. Define

r(0) = 0, and r(q) =
π(q)∑N
j=1 wjqj

, for q 6= 0. (5.3)

Let P (z) and R(z) denote the generating functions of π(q) and r(q), respectively.
That is

P (z) = E
[
zQ1

1 . . . zQNN

]
=

∞∑
q1=0

· · ·
∞∑

qN=0

zq11 · · · · · zqNN π(q),

and

R(z) = E

 zQ1

1 · · · · · zQNN∑N
i=1 wiQi1{

∑N
j=1Qj>0}

 =

∞∑
q1=0

. . .

∞∑
qN=0

zq11 · · · · · zqNN r(q).

The following lemma formulates a functional equation for R(z):

Lemma 5.1. For ρ < 1, a functional equation for R(z) is given by

λ(1− ρ)(1−K(z)) =

N∑
i=1

(λzi(K(z)− 1) + µi(1− zi))wi
∂

∂zi
R(z). (5.4)

Proof. Assuming ρ < 1, the equilibrium distribution π(q) satisfies the following ba-
lance equations

λπ(0) =

N∑
i=1

µiπ(ei), (5.5)

and, for q 6= 0,(
λ+

∑N
i=1 wiµiqi∑N
i=1 wiqi

)
π(q) = λ

q1∑
k1=0

· · ·
qN∑

kN=0

p(k)π(q− k)

+

N∑
i=1

µi
wi(qi + 1)∑N
j=1 wjqj + wi

π(q + ei).
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Now we take the generating function, yielding

∞∑
q1=0

· · ·
∞∑

qN=0

1{∑N
j=1 qj>0}z

q1
1 · · · · · zqNN

(
λ+

∑N
i=1 wiµiqi∑N
i=1 wiqi

)
π(q)

=

∞∑
q1=0

· · ·
∞∑

qN=0

zq11 · · · · · zqNN λ

q1∑
k1=0

· · ·
qN∑

kN=0

p(k)π(q− k)

+

N∑
i=1

∞∑
q1=0

· · ·
∞∑

qN=0

1{∑N
j=1 qj>0}z

q1
1 · · · · · zqNN µi

wi(qi + 1)∑N
j=1 wjqj + wi

π(q + ei).

To get rid of the indicator functions, we add Equation (5.5), change the order of
summation in the second line and start the corresponding summations at 0 by a
change of variable. This leads to

λπ(0) +

∞∑
q1=0

· · ·
∞∑

qN=0

1{∑N
j=1 qj>0}z

q1
1 · · · · · zqNN

(
λ+

∑N
i=1 wiµiqi∑N
i=1 wiqi

)
π(q)

= λ

∞∑
k1=0

· · ·
∞∑

kN=0

zk11 · · · · · zkNN p(k)

∞∑
q1=0

· · ·
∞∑

qN=0

zq11 · · · · · zqNN π(q)

+

N∑
i=1

∞∑
q1=0

· · ·
∞∑

qN=0

zq11 · · · · · zqNN µi
wi(qi + 1)∑N
j=1 wjqj + wi

π(q + ei).

We now apply the transformation from (5.3). Note that for the first term on the
right-hand side, we have to take into account that r(0) = 0, but π(0) 6= 0. Hence, we
obtain

λπ(0) +

∞∑
q1=0

· · ·
∞∑

qN=0

zq11 · · · · · zqNN

(
λ

N∑
i=1

wiqi +

N∑
i=1

wiµiqi

)
r(q)

= λK(z)

(
π(0) +

∞∑
q1=0

· · ·
∞∑

qN=0

zq11 · · · · · zqNN r(q)

N∑
i=1

wiqi

)

+

N∑
i=1

∞∑
q1=0

· · ·
∞∑

qN=0

zq11 · · · · · zqNN µiwi(qi + 1)r(q + ei).

Taking partial derivatives of R(z) with respect to zi, we get

∂

∂zi
R(z) = z−1

i

∞∑
q1=0

· · ·
∞∑

qN=0

zq11 · · · · · zqNN qir(q).
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Using this, we can rewrite the functional equation as

λπ(0) +

N∑
i=1

(
λwizi

∂

∂zi
R(q) + µiwizi

∂

∂zi
R(q)

)

= λK(z)

(
π(0) +

N∑
i=1

wizi
∂

∂zi
R(q)

)
+

N∑
i=1

µiwi
∂

∂zi
R(q).

Rearranging the terms and using π(0) = 1− ρ completes the proof.

5.4.2 Heavy-traffic limit

For convenience we use the change of variables zi = e−si , with si > 0, i = 1, . . . , N .
We use the notation s = (s1, . . . , sN ) and e−(1−ρ)s = (e−(1−ρ)s1 , . . . , e−(1−ρ)sN ). For
the heavy-traffic limit, we define

R̂(s) = E

[
1− e−s1Q̂1 · · · · · e−sN Q̂N∑N

j=1 Q̂jwj
1{∑N

j=1 Q̂j>0}

]
. (5.6)

Now we can formulate the following lemma.

Lemma 5.2. If limρ↑1 P (e−(1−ρ)s) exists, then the function R̂(s) satisfies the follo-
wing partial differential equation:

0 =

N∑
i=1

Fi(s)
∂R̂(s)

∂si
= F(s)∇R̂(s), ∀ s ≥ 0,

where F(s) = (F1(s), . . . , FN (s)), and

Fi(s) = wi

µisi − λ̂ N∑
j=1

sj E[Kj ]

 , i = 1, . . . , N,

with λ̂ as defined in (5.1).

Proof. We divide both sides of (5.4) by (1 − ρ) and apply the change of variables.

Note that limρ↑1(1 −K(e−(1−ρ)s))/(1 − ρ) =
∑N
j=1 sj E[Kj ]. Taking the limit ρ ↑ 1

gives the partial differential equation

0 =

N∑
i=1

µisi − λ̂ N∑
j=1

sj E[Kj ]

wi
∂

∂si
R̂(s). (5.7)

This completes the proof.
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The lemma above is similar to Lemma 2 in [145]; in our case pij = 0 if j > 0 and
it turns out that p0j = E[Kj ] due to batch arrivals. The next step is to establish
the state-space collapse. Due to the similarity between our functional equation in
Lemma 5.2 and the functional equation in [145, Lemma 2], we can rely on Lemma 3
of [145]. Specifically, [145, Lemma 3] gives that R̂(s) is constant on an (N − 1)-
dimensional hyperplane, see [145] for a geometric interpretation. Essentially, this
provides that the N -dimensional random vector of queue lengths reduces to a de-
terministic vector times a single random variable in heavy traffic. Applying [145,
Lemma 3] and the subsequent analysis, we get

(Q̂1, Q̂2, . . . , Q̂N ) =d

(
ρ̂1

w1
,
ρ̂2

w2
, . . . ,

ρ̂N
wN

)
w1

ρ̂1
Q̂1, (5.8)

Note that [145, Lemma 3] holds in our case, as its proof does not depend on the fact
that the p0j add up to 1, and we take p0j equal to E[Kj ], j = 1, . . . , N . Equation

(5.8) is now equivalent to (5.2), with X distributed as w1

ρ̂1
Q̂1. It remains to find the

distribution of X.

5.4.3 Specifying the common distribution

The distribution of X is given in the following lemma.

Lemma 5.3. X is exponentially distributed with mean

E[X] =

∑N
j=1 ρ̂j

1
µj

+ λ̂
∑N
i=1

∑N
j=1 E[KiKj ]

1
µi

1
µj

2
∑N
j=1(ρ̂j/wj)

1
µj

.

Proof. Denote by B the total amount of work that an arbitrary arriving batch brings
into the system. From Kingman [94] we have that the total amount of work in the
system W in the GI/GI/1 queue, when scaled by (1 − ρ), has a proper distribution
as ρ ↑ 1. In particular,

(1− ρ)W →d Ŵ ,

where Ŵ is exponentially distributed with mean

E[Ŵ ] =
E[B2]

2E[B]
.

For our DPS model, we can represent the total workload as

W =

N∑
j=1

Qj∑
h=1

Rj,h,

where Rj,h is the remaining service requirement of the hth type-j customer. Since
we have exponential service requirements, the remaining service requirements are
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in distribution equal to the original service requirements: Rj,h =d Bj,h, with Bj,h
exponentially distributed with mean E[Bj ] = 1/µj . Using the representation of the
total workload, we may write

(1− ρ)W =

N∑
j=1

(1− ρ)Qj ×
1

Qj

Qj∑
h=1

Bj,h.

Observe that (1 − ρ)Qj → Xρ̂j/wj according to Theorem 5.1 and 1
Qj

∑Qj
h=1Bj,h →

E[Bj ] due to the strong law of large numbers. This suggests that

Ŵ = X

N∑
j=1

ρ̂j
wj

E[Bj ].

This equation is formally shown in [145, Equation (17)].

Combining the two expressions for E[Ŵ ] above gives

E[B2]

2E[B]
= E[X]

N∑
j=1

ρ̂j
wj

E[Bj ],

and thus

E[X] =
E[B2]/(2E[B])∑N
j=1(ρ̂j/wj)E[Bj ]

.

Note that B can be rewritten as

B =

N∑
j=1

Kj∑
i=1

Bj,i.

Using the law of total expectation, we derive the moments of B:

E[B] = E[E[B|K]] = E

 N∑
j=1

Kj∑
i=1

E[Bj,i]

 =

N∑
j=1

E[Kj ]
1

µj
=

1

λ̂
,

and

E[B2] = E
[
E[B2|K]

]
= E

[
Var [B|K] + (E[B|K])

2
]

= E

 N∑
j=1

Kj∑
i=1

Var[Bj,i] +

N∑
i=1

N∑
j=1

KiKj E[Bi]E[Bj ]


= E

 N∑
j=1

Kj
1

µ2
j

+

N∑
i=1

N∑
j=1

KiKj
1

µi

1

µj


=

N∑
j=1

E[Kj ]
1

µ2
j

+

N∑
i=1

N∑
j=1

E[KiKj ]
1

µi

1

µj
.
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Substituting the above in the equation for E[X] completes the proof.

Proof of Theorem 5.1. The proof of Theorem 5.1 follows directly from combining
Lemma 5.2 and [145, Lemma 3], leading to Equation (5.8), and Lemma 5.3 for the
distribution of the remaining random variable.

5.5 Numerical results

In this section we perform some numerical experiments and compare simulation results
with the closed-form expressions from the HT limit. In Subsection 5.5.1, we plot the
queue-length distribution obtained from simulation, to demonstrate the state-space
collapse. In Subsection 5.5.2, we present the scaled mean queue lengths for different
loads and show that the mean queue lengths indeed converge to their HT limit. We
will use the heavy-traffic result as an approximation for smaller loads and show the
errors in a table. Finally, in Subsection 5.5.3, we compare the mean queue lengths
in the system with joint batch arrivals to the mean queue lengths in a system with
batch arrivals of one customer class and a system with single arrivals.

5.5.1 State-space collapse

The basic DPS queue that we use for our experiments is a system with two customer
classes and batches of at most 2 arrivals per class. We use the batch-size distribution
p(0, 1) = p(1, 0) = p(1, 1) = p(1, 2) = p(0, 2) = 1/5, i.e., there are five possible batches
that have the same probability of occurrence. We take w1 = 2, w2 = 1, µ1 = 0.75
and µ2 = 1. The arrival rate λ is varied to allow for different loads. In Figure 5.1,
we plot the joint queue-length distribution obtained by simulation for three different
loads: ρ = 0.8 (5.1a), ρ = 0.9 (5.1b) and ρ = 0.99 (5.1c). For every point (Q1, Q2),
the color of the point represents the density. We see that for higher loads, the density
is more concentrated on a single line, demonstrating the state-space collapse.

5.5.2 Convergence and approximation of moments

We use the same model instances as in Subsection 5.5.1. In Figure 5.2, the scaled
mean queue lengths (1 − ρ)E[Qi] are plotted for loads of ρ = 0.7 and larger. The
dashed lines are the simulation results, the solid lines correspond to the HT limit
without any further modification. Observe that the scaled simulated queue lengths
converge to the HT limit.

The HT result also provides the following for the scaled marginal queue length dis-
tribution: (1 − ρ)Qi →d (ρ̂i/wi)X, with X an exponential random variable. This
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(c) ρ = 0.99.

Figure 5.1: Joint queue-length distribution for different values of ρ.
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Figure 5.2: Scaled mean queue length for both customer classes and for different
loads.
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E[Q1] E[Q2
1]

ρ Sim App ∆% Sim App ∆%
0.70 1.06 1.33 25.79 3.30 3.56 7.80
0.80 1.76 2.00 13.90 7.88 8.00 1.58
0.90 3.79 4.00 5.60 32.27 32.00 0.85
0.95 7.82 8.00 2.35 129.48 128.00 1.15
0.99 40.19 40.00 0.48 3212.30 3200.00 0.38

Table 5.1: Comparison between simulation and heavy-traffic approximation for type-1
customers.

provides the basis for an approximation of the number of type-i customers in a sy-
stem with ρ < 1. Specifically, Qi is then approximately exponentially distributed
with mean

E[Qi] =
(ρ̂i/wi)E[X]

1− ρ
and with second moment

E[Q2
i ] =

2((ρ̂i/wi)E[X])2

(1− ρ)2
, i = i, . . . , N.

We compare the approximations above with simulation results for different values of
ρ (by changing λ) using the absolute percentual error, given by

∆% = 100%× |App− Sim|
Sim

.

From Table 5.1 we see that the approximation works better for higher loads. This
is to be expected, since the approximation is exact in HT. For loads around 0.9,
the approximation is reasonable, for lower loads the error increases substantially.
Note that we only studied one specific setting, but we expect similar results in other
settings.

5.5.3 The impact of batch arrivals

Finally, we experiment with the impact of batch arrivals on the (scaled) mean queue
length. To do so, we consider a system with joint batch arrivals to similar systems with
single-class batch arrivals and systems with single arrivals only. The arrivals process
is modified such that the systems have as many features in common as possible, like
the load per class. In the system with joint batch arrivals we again take: p(0, 1) =
p(1, 0) = p(1, 1) = p(1, 2) = p(0, 2) = 1/5. In the system with batch arrivals of a
single type we have: p(1, 0) = 3/7, p(0, 1) = 2/7 and p(0, 2) = 2/7, and in the system
with single arrivals: p(1, 0) = 1/3 and p(0, 1) = 2/3. We simulate the mean queue
lengths of type-1 customers for different loads. The results are scaled by a factor
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Figure 5.3: Scaled mean queue lengths of type-1 customers in systems with different
arrival types.

(1− ρ) and plotted in Figure 5.3 (dashed lines). We see that the scaled mean queue
length is smaller if the batches are of a single type and smallest if there are only
single arrivals. This can be explained by the variability in the arrival process, where
an arrival process consisting of only single customers has the smallest variation. This
also explains why the convergence to the HT limits (solid lines) is faster in case of
single arrivals.

We conclude that the influence on the queue-length distributions of the joint batch ar-
rivals is significant and that the HT approximation works reasonably well for systems
with high loads.



Chapter 6

Access times in appointment-driven systems and level-
dependent MAP/G/1 queues

6.1 Introduction

This chapter is motivated by a real health care application. We consider a single-server
queue with two types of customers. The number of type-2 customers in the system
is infinite, so with queue length we refer to the queue length of type-1 customers.
Type-2 customers are only taken into service when the queue length is short enough,
taking away resources from type-1. As soon as the queue length of type-1 customers
becomes too long, type-2 customers are preempted. We are interested in the waiting
time of type-1 customers and the fraction of time that type 2 cannot receive service.
In the remainder of this chapter we omit any reference to type 2 or multi-class queues
and we only consider type 1. The model is motivated by the actual dynamics of a
health care appointment system, therefore, this section contains relevant information
and literature on health care and appointment systems.

Specifically, this chapter finds its motivation from problems of long access to ambu-
latory care. In [42], the authors describe various aspects and issues with respect to
waiting in the US health care domain, including the imbalance between supply and
demand; see also [111], [117], and references therein. Using programs as ‘Advanced
Access’ [111] and the Dutch program ‘Sneller Beter’ [14], health organizations aim to
improve the access to elective care. The impact of such programs is often temporary.
It is much more common that access times are stable through time and are in the
order of several weeks; see e.g., [42] and the Dutch article [130].

When designing waiting time standards, a natural question is the amount of capacity
required to meet such standards, viz. the desired utilization. This question is at
the realm of queueing theory, due to the randomness in the number of care requests
and available capacity [110]. In practice, we observe quite lengthy, but rather stable
waiting lists. The classical models suffer from their capability to display such behavior.
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For instance, using the Pollaczek-Khinchine formula for the M/D/1 queue, we may see
that the load has to be close to the critical region to give expected waiting times in the
order of weeks for an appointment system with daily operations (see also Subs. 6.5.1).
It is quite unlikely that so many health organizations operate just in this small region
of the load. Moreover, a consistent (but small) backlog is efficient for planning of
follow-up health activities. For example, scheduling of surgeries can be performed
efficiently when there is a manageable pool of surgeries to schedule from.

In our experience with Dutch hospitals, we have observed that the capacity is often
adapted to the current status of the waiting list. When the waiting list tends to
be (too) long, patients are scheduled in overtime or are squeezed in between other
appointments; we refer to this as overbooking, as patients are booked in excess of
the available time. Of course, this is at the cost of the tardiness and waiting time
on the day itself. Essentially, the capacity can be interpreted to be flexible and to
be adapted based on the level of congestion. It is even not uncommon that the
utilization of the outpatient capacity is over 100% for a prolonged period, resulting
from a structural deficit in capacity with respect to demand [22]. Overbookings have
been addressed from the domain of appointment scheduling as well [102; 105; 160],
where overbookings are used to counter no-shows.

The goal of this chapter is to develop queueing models that produce waiting-time
results that may be recognized in practice, i.e. provide considerable waiting for a
wider range of the load. We accomplish this by considering queues with queue-length
dependent features, e.g., the capacity, leading to level-dependent M/G/1 or MAP/G/1
queues. Although the motivation of our queueing model stems from health systems
with flexible capacity, the model also captures level-dependent arrivals reflecting the
decision to join the waiting list or not depending on its length. To the best of our
knowledge, waiting-list dependent overbookings in the context of access times have
not been considered before.

The aim of the current chapter is three-fold. First, we provide macro-scopic models
that describe access times in appointment systems. In these models, we take many
relevant features into account, including randomness in available capacity (e.g., due to
partial absence of the medical staff) and overbookings. Second, we derive exact and
intuitively appealing results for the level-dependent M/G/1 and MAP/G/1 queue.
We exploit that the queueing dynamics are level independent above some threshold.
And third, using some numerical experiments, we identify that these level-dependent
queues yield waiting times that may be observed in practice. In fact, these expe-
riments indicate that it is efficient for appointment systems to operate close to or
just above their level of stability, provided that some extra flexible capacity can be
used.

The literature on appointment systems and ambulatory care is primarily focused on
appointment scheduling rather than controlling access times; see e.g. [85; 117] for
an overview of advanced scheduling problems, and [77] for an excellent treatment of
appointment systems in health care. In [77] the authors distinguish between indirect
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and direct waiting; indirect waiting refers to the time between making an appointment
and the time of appointment, whereas direct waiting is the time between arrival and
the moment the actual appointment starts. In [111] the authors note that direct
waiting is an inconvenience for the patient, whereas indirect waiting involves patient
safety. This chapter focuses on indirect waiting.

We first discuss some related literature on access times (or indirect waiting) for am-
bulatory care and appointment systems. One of the pioneering papers on queueing
models for hospital waiting lists is [156]. The model in [156] assumes an M/G/s
queue with a linearly decreasing state-dependent arrival rate; the latter reflects a
feedback mechanism where patients are discouraged when they encounter a longer
waiting list. An interesting approach is the provision of a waiting time guarantee for
elective treatment, inspired by its introduction in Denmark; see [101]. The analysis
in [101] is based on CTMC in combination with discrete-event simulation. In our nu-
merical experiments, we see that the combination of appropriate capacity levels and
some flexible capacity can be effective in providing waiting-time guarantees.

An intuitive approach to model access times is to use discrete-time bulk service queues,
as in [86; 99]. A problem occurs when deriving access times in case of variable capacity
and overbookings. In [99], the available capacity is deterministic; Izady [86] considers
a model with random available capacity, but does not provide the access (or waiting)
time. Applying overbookings further complicates this issue. In [54; 55], advanced
queueing models are considered for the access time in appointment-driven systems.
Due to its structure of arrival and service sessions, the size of the waiting list is
analyzed using vacation models. These models do also not include variability in
available capacity and overbookings.

The authors in [65] study the reduction in access time by temporarily allowing extra
capacity to (partly) clear waiting lists. Adaptive allocation of capacity is studied in
[146] based on an extensive case analysis. Both papers rely on simulation. Also, in
[74; 89; 105; 160], access times (or indirect waiting) has been evaluated using queueing
models, typically of the M/D/1 type. Common in [74; 105; 160] is the role of no shows.
In [74; 105], the focus is on the panel size and in [160] the focus is on the relation
between the no-show probability and the corresponding access time. These papers do
not consider the control of the access time.

Second, state-dependent M/G/1 queues are studied in [2; 37; 152]. The paper [152]
considers a switch-over policy with two threshold levels, whereas the authors in [2]
focus on the general Mn/Gn/1 queue. Although the M/G/1 variant of our model is
a special case of [2], the representation of the results are considerably different. We
find the results in [37] most related to our M/G/1 case; the set-up in [37] is a one-
dimensional random walk having a similar structure as our level-dependent M/G/1
queue.

Moreover, there are some studies related to our level-dependent MAP/G/1 model.
In fact our model is a special case of [84], as we restrict ourselves to the case that
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the queueing dynamics are level-independent above some finite threshold. As a conse-
quence, we are able to obtain more explicit and intuitive results than those in [84]. The
model in [124] is also related to ours; the main difference is in the interpretation of the
model and intuitive presentation of the results. The author in [140] considers a multi-
type MMAP/PH/1 queue with adaptive arrivals, yielding level-dependent dynamics
as well. Finally, we mention [43] as a key paper on level-dependent QBD’s.

The organization of the chapter is now as follows. In Section 6.2 we propose two
models for studying the access time for appointment systems, yielding level-dependent
M/G/1 and MAP/G/1 queues. The former is analyzed in Section 6.3, whereas the
latter is analyzed in Section 6.4. The results for both queues follow a similar structure.
Some experiments in Section 6.5 give insight in the behavior of the system as a function
of the load.

6.2 Model description

We relate the access time for appointment systems to the dynamics of state-dependent
M/G/1 and MAP/G/1 queues. In Subsection 6.2.1 we describe the characteristics
of appointment systems and the elements that should be captured by the model.
Measuring the access time in slots, we propose a first model (model I) based on
M/D/1 queues in Subsection 6.2.2. In Subsection 6.2.3 we allow for a richer, but
more involved, model (model II) based on MAP/D/1 queues.

6.2.1 Characteristics of appointment systems

Most appointment systems have daily operations, meaning that a natural time unit
is days. In this chapter, we adhere to this situation. However, the modeling and
results carry over to other settings; e.g., by defining all quantities at the time scale of
weeks.

Arrivals Patients arrive randomly in time to make an appointment. In particular,
we assume that the requests for appointments arrive according to a Poisson process
with rate λ per day. The detailed scheduling of appointment requests in practice is
complicated by many (often personal) factors, such as preferences for certain times
or days. In the model, we abstract from these small scale details and assume that
arriving requests are scheduled on a FCFS basis; i.e. patients are assigned to the
first place available. Such a scheduling mechanism also represents the backlog in
slots.

Slots In the basic setting, patients are served in slots of deterministic length. Alt-
hough the actual duration of an appointment is random, the scheduled time for an
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appointment is known and deterministic. The length of the waiting list is not affected
by the randomness in service time, as possible overtime does not carry over to the
next day. Allowing for differences in scheduled service time can be accomplished by
assigning multiple slots to a single patient.

Capacity For outpatient departments, the available capacity is typically recorded in
a so-called blueprint (or basic capacity). The blueprint describes the number of slots
available for each day and is often drawn on a yearly basis. As such, unavailability
of staff is generally not taken into account, which usually adds up to 20% - 25%
of the capacity of the blueprint. Cancellation of the basic capacity is thus quite
common; in fact, we often encounter that the available capacity per day fluctuates,
leading to a random number of available slots. We define m1 as the number of
slots per day according to the blueprint, and assume that independently on each

day i slots are available with probability s
(1)
i , i = 1, . . . ,m1, with

∑m1

i=1 s
(1)
i = 1.

Let s(1) =
∑m1

i=1 is
(1)
i , such that s(1) represents the average offered basic capacity.

In periods of excessive congestion, overbooking occurs; this implies that additional
capacity is made available. Let m̃ be the potential extra capacity, yielding capacity
m2 = m1 +m̃ during such periods. The availability of capacity in case of overbooking

is s
(2)
i , i = 1, . . . ,m2, with s(2) defined accordingly.

Access time The time between the appointment request and the day the actual
appointment takes place is called the backlog or access time and is measured in days
to weeks. In [77] this is also referred to as indirect waiting time, as opposed to direct
waiting time which refers to physical waiting in the waiting room, and is measured
in minutes to hours. To control the access time, we assume a simple threshold type
of control; when the access time is at or below L, the system operates in the usual
mode, whereas overbooking is used when the access time exceeds L.

We assume that the system with extra capacity is stable, i.e. λ < s(2). The sy-
stem operating with basic capacity is not necessarily stable; we allow for λ ≥ s(1).
In practice, we encounter both doctors and specialisms that achieve utilizations of
the basic capacity exceeding 100%, implying that overbooking happens on a more
structural basis.

6.2.2 Model I: backlog in slots

To model the appointment system with a queue in continuous time, the intervals
during which the system is closed are cut out and the hours of operation are glued
together. Customers then arrive according to a continuous time Poisson process and
require a single slot as service time. Access time in appointment systems have been
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modeled using the M/D/1 queue, see e.g., [74; 105]. The state is

X(t) = backlog in slots for patients arriving at time t.

Equivalently, X(t) is the access time or number of slots at the waiting list for a
patient arriving at time t. Due this interpretation, the arrival rate is measured in
terms of slots. Hence, in basic capacity mode, the arrival rate is λ1 = λ/m1. With
extra capacity, the slots should be considered to be squeezed such that m2 slots now
represent a single day instead of m1. The arrival rate when the backlog exceeds L is
thus λ2 = λ/m2.

With this interpretation we see that the backlog in the appointment system {X(t), t ≥
0} can be modeled with an M/D/1 (or M/G/1) queue with state-dependent arrival
rates that continuously depend on the backlog. This model is analyzed in Section 6.3,
leading to intuitive results. When the backlog is small, appointment requests are
scheduled on a short notice leading to same day appointments. For outpatient de-
partments, this is not always realistic; for ambulatory services with a more urgent
character this is more common. We should note that (almost) empty waiting lists are
rather uncommon for outpatient departments in the Netherlands, and the impact of
this assumption seems limited.

One of the main disadvantages of the M/D/1 interpretation is that it remains unclear
how to incorporate the fluctuation in capacity. Moreover, the backlog is now measured
in slots whereas actual access times are measured in days. Although there evidently is
one-to-one relation, one should be careful with the interpretation due to the difference
in time scale of the process below and above level L.

6.2.3 Model II: backlog in days

An alternative way of modeling the access time is by considering the backlog in days
directly. As we also need the available number of slots at the first available day
to maintain the Markov property, we consider the two-dimensional Markov process
{(X(t), J(t)), t ≥ 0}, with

X(t) = backlog in days for patients arriving at time t,

J(t) = number of patients scheduled on the first available day when arriving at

time t.

We have X(t) ∈ {0, 1, . . .} and J(t) ∈ {1, . . . ,m} with m the maximum available
capacity per day. For this process, we have the following dynamics. A service time
corresponds to the elapsing of a day, and is thus deterministic. When a new patient
arrives and the state before an arrival is (x, j), then there are two possible transitions
of the Markov process. Let i = 1 + 1(x > L) denote whether the system uses the

basic capacity (i = 1) or the extra capacity (i = 2). First, with probability p
(i)
j+1 the
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patient took the last available slot on that day and the next patient will be placed on
the next day; the Markov process moves to state (x+ 1, 0). Second, with probability

p̄
(i)
j+1 = 1− p(i)

j+1 there are more available slots left and the Markov process moves to

state (x, j+ 1). The probabilities p
(i)
j are linked to the availability of slots s

(i)
j via the

relation

p̄
(i)
j =

s
(i)
j∑

k≥j s
(i)
k

for i = 1, 2, and j = 1, . . . ,m− 1.

This implies that the access time can be modeled with a level-dependent MAP/D/1
(or MAP/G/1) queue. The arrival process is then defined by the m × m matrices

D
(i)
k , k = 0, 1 and i = 1, 2, where D

(i)
0 gives the phase transitions and D

(i)
1 represents

the arrival rate leading to an additional day of backlog. For the model as described
above, we have

D
(i)
0 =


−λi λip̄

(i)
1

−λi λip̄
(i)
2

. . .
. . .

−λi λip̄
(i)
m−1

−λi

 , D
(i)
1 =


λip

(i)
1 0 . . .

λip
(i)
2 0 . . .

...
...

. . .

λip
(i)
m−1

λi

 .

The matrices above imply that the interarrival times for an additional day of backlog
follow a mixed Erlang distribution. We allow for a more flexible setup, where these
matrices are just special cases. In particular, we allow for general level-dependent

matrices D
(i)
0 and D

(i)
1 , with i = 0, 1, . . . , L, which become level-independent D0 and

D1 above level L. Such a more general level-dependent MAP/G/1 queue is analyzed
in Section 6.4, where the results lead to similar intuitive findings as for the M/G/1
case.

Finally, we note that this model allows for many other features to be incorporated.
For example, we can model heterogeneous customer classes requiring multiple slots
by assuming that the phase can increase by more than one. Also, the arrival rate λi
may be level-dependent reflecting that customers balk when access times tend to be

longer. Such features will typically be reflected in the matrices D
(i)
0 and D

(i)
1 .

6.3 State-dependent M/G/1 queue

6.3.1 Model and method outline

We have an M/G/1 queue, where the arrival rate is λ1 when the number of customers
in the system is at most L, and the arrival rate is λ2 when there are more than L



122 CHAPTER 6. ANALYSIS OF LEVEL-DEPENDENT MAP/G/1 QUEUES

customers present. Note that this notation differs from the other chapters, where λi
typically refers to the arrival rate of class i. The arrival rate is continuously adjusted,
i.e. may change upon arrival and departure instants. We denote the service time
distribution by H(·) and its LST by H∗(·). We assume that λ2 E[H] = ρ2 < 1.

The analysis now proceeds along similar lines as in [17] for the workload process in
Lévy-driven queues. Let xn be the steady-state probability that n customers are left
behind by a departing customer. We then set up a set of equations using balancing
principles, which are utilized in the following procedure:

Step 1 Determine the distribution xn for n < L up to a constant, which is indepen-
dent of xn for n ≥ L.

Step 2 Using xn for n < L, the generating function (GF) is completely determined
upto a constant. Rewriting the GF and applying inversion, we determine xn for
n ≥ L.

Step 3 Find the remaining constant x0; this step can be included at the end of Step 1
(MAP/G/1) or Step 2 (M/G/1).

The method above typically leads to intuitively appealing results, where xn has a
clear interpretation both for n < L as well as n ≥ L. The derivation in Section 6.4
for the level-dependent MAP/G/1 queue is much along the same lines. We note that
in the subsequent analysis we do not treat Step 3 separately.

6.3.2 Performance analysis

We analyze the queueing model, embedded at departure instants; we refer to Theo-
rem 6.3 for the relation between queue lengths at arbitrary and departure instants.
Then,

xn =

n+1∑
i=1

xiα
(i)
n+1−i + x0α

(1)
n , (6.1)

where α
(n)
i is the probability of i arrivals during a service time when the number

of customers just after the previous service completion is n. These probabilities are
given by

α
(n)
i =



∫∞
t=0

(λ1t)
i

i! e−λ1t dH(t) =: αi if n+ i ≤ L∫∞
t=0

(λ2t)
i

i! e−λ2t dH(t) =: α̂i if n > L∫∞
t=0

∫ t
u=0

λL−n+1
1 uL−n

(L−n)! e−λ1u

× (λ2(t−u))n+i−(L+1)

(n+i−(L+1))! e−λ2(t−u) du dH(t) if n ≤ L, n+ i > L.

As the first two cases do not depend on n, we drop the n from the notation there.
The third case follows from conditioning on the moment that level L+ 1 is hit, when
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we start at level n, which follows an Erlang distribution consisting of L−n+1 phases
with rate λ1.

Step 1. We first determine xn for n < L. Observe that Equation (6.1) reads xn =∑n+1
i=1 xiαn+1−i + x0αn corresponding to the dynamics of an M/G/1/L queue with

arrival rate λ1. Intuitively, this naturally follows from the fact that at downcrossings
of level L the time until the next arrival is again exponential due to the lack-of-
memory property of the arrival process. Hence, restricting to the periods that there
are no more than L customers present, the sample path is indistinguishable from the
sample path in an isolated M/G/1/L queue. In particular, let XQ1 be the steady-
state number of customers in the M/G/1/L queue with arrival rate λ1 and service
time H, such that xn ∝ P(XQ1 = n). This gives the following lemma.

Lemma 6.1. The number of customers left behind by a departing customer is, for
n = 0, 1, . . . , L− 1,

xn = x0
P(XQ1 = n)

P(XQ1 = 0)
.

Remark 6.1. The analysis can be adapted to the case that the arrival rate at or below
L would be state-dependent as well. In that case, xn for n = 0, 1, . . . , L − 1 would
follow from a set of equations similar to the MAP/G/1 case analyzed in Section 6.4.
Moreover, from an up- and downcrossing argument, we may see that xL can be
obtained similar to xi, i = 0, . . . , L− 1 using the M/G/1/L+ 1 queue.

Step 2. Using the above and taking GF in (6.1), we may directly obtain the GF
of the number of customers left behind at service completions: X∗(z) =

∑∞
n=0 xnz

n.
To obtain intuitively appealing results for xn, we first consider the time between the
moment that the number of customers hits L + 1 until the first service completion.
Let Ti be the time between hitting L+1 from below until the next service completion,
given that i customers were present at the moment that this service started; this is
depicted in Figure 6.1. Ti is equal to zero if this service ended before the number of
customers reached L + 1. Moreover, let T̂i = Ti | Ti > 0 be the random variable Ti
conditioned that it is positive and denote T̂ ∗i (z) = E[e−zT̂i ] as its LST. Let P (s, x) be
the regularized gamma function, i.e.,

P (s, x) =
1

(s− 1)!

∫ x

t=0

ts−1e−t dt. (6.2)

Lemma 6.2. The conditional first time above L starting from i = 0, 1, . . . , L until
the first service completion T̂i has LST

T̂ ∗i (z) =
1

1− P(Ti = 0)

∫ ∞
t=0

e−zt
(

λ1

λ1 − z

)L−i+1

P (L− i+ 1, t(λ1 − z)) dH(t),
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L

i

H

Ti

Figure 6.1: Graphical representation of Ti.

where

P(Ti = 0) =

∫ ∞
t=0

L−i∑
n=0

(λ1t)
n

n!
e−λ1t dH(t). (6.3)

Proof. Let i = 0, 1, . . . , L be the starting level. Note that the probability that Ti is
0 is equal to the probability that at most L− i customers arrived during the service
time. Conditioning on the service time yields (6.3).

Now consider the LST of Ti. The conditional LST of T̂i then follows straightforwardly.
Let the service time be fixed at t; at the end we integrate over the service time.
Conditioning on the moment when level L + 1 is hit, the density of Ti, for u ∈
(0, t), reads fTi(u) = λ1(λ1(t−u))L−i

(L−i)! e−λ1(t−u). This follows from the fact that the

corresponding hitting time has an Erlang distribution consisting of L − i + 1 phases
with rate λ1. The LST of Ti for fixed service time t then equals

E[e−zTi ] = P(Ti = 0) +

∫ t

u=0

e−zue−λ1(t−u)λ1(λ1(t− u))L−i

(L− i)! du

= P(Ti = 0) + e−zt
∫ t

u=0

e−u(λ1−z)uL−i du
λL−i+1

1

(L− i)!

= P(Ti = 0) + e−zt
∫ t(λ1−z)

v=0

e−v
(

v

λ1 − z

)L−i
1

λ1 − z
dv
λL−i+1

1

(L− i)!

= P(Ti = 0) + e−zt
(

λ1

λ1 − z

)L−i+1

P (L− i+ 1, t(λ1 − z)). (6.4)

For the third equality we use the substitution v = u(λ1−z) and in the fourth equality
we use (6.2). Finally, integrating over the service time and using the conditional
expectation completes the proof.

Remark 6.2. In special cases, the expression for the LST of T̂i can be considerably
simplified depending on the service time distribution. When H is a mixture of expo-
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nentials, it is possible to work out all integrals and summations. If H is deterministic,
then the outer integral vanishes.

Since we already determined xn for n < L, we present the GF of the number of
customers as follows.

Theorem 6.1. The GF of the number of customers at departure moments is given
by

X∗(z) =

L−1∑
n=0

xnz
n + zLx0 P(T1 > 0)

H∗(λ2(1− z))− zT̂ ∗1 (λ2(1− z))
(H∗(λ2(1− z))− z)

+ zL
L∑
i=1

xi P(Ti > 0)
H∗(λ2(1− z))− zT̂ ∗i (λ2(1− z))

(H∗(λ2(1− z))− z) , (6.5)

with

x0 = P(XQ1 = 0)(1− ρ2)

×
(

(1− ρ2)

L−1∑
n=0

P(XQ1 = n) + P(XQ1 = 0)P(T1 > 0)(λ2 E[T̂1] + 1− ρ2)

+

L∑
i=1

P(XQ1 = i)P(Ti > 0)(λ2 E[T̂i] + 1− ρ2)

)−1

.

The proof can be found in Subsection 6.6.1 and follows by taking the GF in (6.1) and
some tedious rewriting. Here, we interpret the specific form of X∗(z). Specifically, the
first term at the rhs of (6.5) corresponds to the GF on the set {0, 1, . . . , L−1} which we
already obtained. The second and third term correspond to the GF on {L,L+1, . . .},
as those terms can be interpreted as the convolution of L (corresponding to zL) with
a non-negative random variable; hence, the convolution only has probability mass at
or above L. The quantity

H∗(λ2(1− z))− zT̂ ∗i (λ2(1− z))
(H∗(λ2(1− z))− z)

corresponds to an M/G/1 queue with arrival rate λ2, service time H, and exceptional

first service time T̂i in a busy period, see Takagi [126, p. 129]. Let XQ2
(i) be the

steady-state number of customers in such a queue.

Now, the second term at the right-hand side of (6.5) represents the probability that
the set {L+1, L+2, . . .} is entered from level 0 with probability x0 P(T1 > 0), in which

case the process above L behaves as XQ2
(1) , i.e., an M/G/1 queue with exceptional first

service time T̂1 in a busy period. Similarly, the third term provides the possibilities
of entering the set {L+ 1, L+ 2, . . .} starting a service time from level i. Combining
the above and inverting the GF in Theorem 6.1, yields the following corollary.
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Corollary 6.1. For the distribution of the number of customers at departure epochs,
we have, for n = 0, 1, . . . , L− 1,

xn = x0
P(XQ1 = n)

P(XQ1 = 0)

and, for n = 0, 1, . . ., with ci = (1− ρ2 + λ2 E T̂i)/(1− ρ2),

xL+n = x0c1 P(T1 > 0)P(XQ2
(1) = n) +

L∑
i=1

xici P(Ti > 0)P(XQ2
(i) = n).

6.4 Level-dependent MAP/G/1 queue

We consider the LD-MAP/G/1 queue. While analyzing this model, we will use the
standard queueing terminology. For our application, recall that an arriving patient
causes a change in the phase of the arrival process of the queueing model. An arrival
in the queueing model means that a new day is filled with appointments. The service
duration represents one day.

6.4.1 The arrival process

As described in Subsection 6.2.3, we have m×m matrices D
(k)
n , n = 0, 1 and k ∈ N0.

The matrix generating function is given by D(k)(z) = D
(k)
0 +D

(k)
1 z, for |z| ≤ 1. Since

the matrices D
(k)
n are level-independent for k > L, we drop the superscript form the

notation when the level is above L. Let π be the stationary probability vector of
D0 +D1 such that the arrival rate above L is given by λ2 = πD1e, with e a column
vector of ones. Again, denote ρ2 = λ2 E[H] < 1.

The generator matrix Q is defined as follows, with empty entries representing ze-
ros:

Q =



D
(0)
0 D

(0)
1

D
(1)
0 D

(1)
1

. . .
. . .

D
(L)
0 D

(L)
1

D0 D1

D0
. . .

. . .


.

Let P
(k)
n (t) be the matrix whose entries P

(k)
n,ij(t) denote the conditional probability

that n arrivals occur in the interval (0, t] and the arrival phase at time t is j, given that
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the arrival phase at time 0 was i (and the number of customers present at time 0 was

k). According to Hofmann [84, Theorem 2.1], we have P
(k)
n (t) =

(
eQt
)
k,n+k

, where

(·)i,j denotes the (i, j)th block of the matrix. Note that the matrix Q has infinite
size, so we cannot compute the matrix exponential. To work around this, define, for
k = 0, 1, . . . , L, the finite matrix

Q̂(k) =


D

(k)
0 D

(k)
1

D
(k+1)
0 D

(k+1)
1
. . .

. . .
D

(L−1)
0 D

(L−1)
1

D
(L)
0

 .

We have P
(k)
n (t) =

(
eQ̂

(k)t
)

0,n
=
(
eQ̂

(0)t
)
k,n+k

, for n ≤ L − k. For n > L − k we

condition on the moment that there are L+ 1 customers in the system, starting from
level k:

P (k)
n (t) =

∫ t

v=0

P
(k)
L−k(v)D

(L)
1 Pn−(L−k+1)(t− v) dv, n > L− k. (6.6)

The matrix Pn−(L−k+1)(t) can be calculated using the standard method as described
by, e.g., Lucantoni [106], since the arrival process is level independent above L.

The matrix A
(k)
n , with entries A

(k)
n,ij , contains the probabilities of having n arrivals

during a service, and at the end of the service duration the arrival process is in phase j,
given that the arrival process started in phase i and the number of customers was k

at the beginning of the service. Using the definition of P
(k)
n (t), we see that

A(k)
n =

∫ ∞
t=0

P (k)
n (t) dH(t), k > 0. (6.7)

Note that in case of deterministic service durations of length b we have A
(k)
n = P

(k)
n (b).

The matrix transform of the matrix A
(k)
n is given by A(k)(z) =

∑∞
n=0 z

nA
(k)
n .

Using Equation (6.6) we get after some rewriting, for 0 < k ≤ L,

A(k)(z) =

∫ ∞
t=0

(
L−k∑
n=0

znP (k)
n (t) +

∫ t

v=0

zL−k+1P
(k)
L−k(v)D

(L)
1 e(t−v)D(z) dv

)
dH(t).

When k = 0, we have A(0)(z) = −D(0)−1
0 D

(0)
1 A(1)(z), because there has to be an

arrival before there can be a service. On the other hand, when k > L, we can use
the expression given in Lucantoni [106]: A(z) =

∫∞
t=0

eD(z)t dH(t). The matrix A(k)

is equal to A(k)(1).
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We will need the vector a(k), the mean number of arrivals during a service period,
given that the number of customers at the start of the service is k ≥ 1; we drop the
superscript again when k > L. For a(k), we take the derivative of A(k)(z) with respect
to z and evaluate at z = 1, then multiply by e:

a(k) =


−D(0)−1

0 D
(0)
1 a(1) k = 0

d
dzA

(k)(z)

∣∣∣∣
z=1

e 0 < k ≤ L

d
dz

∫∞
t=0

eD(z)t dH(t)

∣∣∣∣
z=1

e k > L.

6.4.2 Performance analysis

We derive the stationary distribution of the number of customers at departure instants
x = (x0,x1,x2, . . .). The derivation of xk at or below the threshold L is similar to
Shin and Pearce [124].

Starting point is the balance equation (note the similarity with (6.1))

xk = x0A
(0)
k +

k+1∑
i=1

xiA
(i)
k+1−i. (6.8)

Defining the vector generating function X∗(z) =
∑∞
n=0 xnz

n, we obtain with standard
techniques that the GF satisfies

X∗(z) [zI −A(z)] = x0A
(0)(z)(z − 1) +

L∑
i=0

xiz
i
[
A(i)(z)−A(z)

]
, (6.9)

see also Equation (3.1) in [124].

Step 1. The matrix G is defined as in Lucantoni [106]; the entries Gi,j are the
probabilities to enter level n− 1 in phase j, given that the process started in level n
and phase i for n > L. The matrix can be computed iteratively using

G =

∞∑
ν=0

AνG
ν =

∫ ∞
t=0

eD[G]t dH(t),

with

D[G] =

∞∑
j=0

DjG
j = D0 +D1G.

The probabilities xn for n = 0, 1, . . . , L − 1 are given in the following lemma, based

on [124, Lemma 1]; the difference with [124] are the matrices at the boundary Ā
(0)
L

and Ā
(i)
L+1−i, i = 1, . . . , L. The first moment of X is given in Subsection 6.6.3.
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Lemma 6.3. Let (X∗,J∗) = {(X∗n, J∗n), n ≥ 0} denote the censored Markov chain
obtained by embedding {(X∗n, J∗n), n ≥ 0} at the epochs when it visits the set of states
{(i, j) : 0 ≤ i ≤ L, 1 ≤ j ≤ m}. Then the transition probability matrix Q∗ of
(X∗,J∗) is given by

Q∗ =



A
(0)
0 A

(0)
1 A

(0)
2 · · · A

(0)
L−1 Ā

(0)
L

A
(1)
0 A

(1)
1 A

(1)
2 · · · A

(1)
L−1 Ā

(1)
L

0 A
(2)
0 A

(2)
1 · · · A

(2)
L−2 Ā

(2)
L−1

0 0 A
(3)
0 · · · A

(3)
L−3 Ā

(3)
L−2

...
...

...
. . .

...
...

0 0 0 · · · A
(L)
0 Ā

(L)
1


,

with

Ā
(k)
L−k+1 =

∫ ∞
t=0

∫ t

v=0

P
(k)
L−k(v)D

(L)
1 eD[G](t−v) dv dH(t), 0 < k ≤ L, (6.10)

and
Ā

(0)
L = −D(0)−1

0 D
(0)
1 Ā

(1)
L .

If the invariant probability vector of Q∗ is, in partitioned form, p = [p0,p1, · · · ,pL],
where pi is an m-vector, then the vectors xi take the form

xi = cpi, 0 ≤ i ≤ L,
where

c = (1− ρ2)/

(
Up(1)(I −A+ eπ)−1a + p0e +

L∑
i=0

pi(a
(i) − a)

)

and Up(1) =
∑L
i=0 pi(A

(i) −A).

Proof. The matrix Ā
(k)
n is given by Ā

(k)
n =

∑∞
ν=nA

(k)
ν
∏ν−n−1
j=0 G(k+ν−1−j), with G(l)

the level-dependent version of G, see [84]. This matrix contains the probabilities to
go from level k to k + n − 1 during a service with n or more arrivals, with respect

to the arrival phases. The specific matrices we need are Ā
(k)
L−k+1, k ≥ 1; using the

definition we have

Ā
(k)
L−k+1 =

∞∑
ν=0

A
(k)
ν+L−k+1

ν−1∏
j=0

G(ν+L−j)

=

∞∑
ν=0

A
(k)
ν+L−k+1G

ν

=

∞∑
ν=0

∫ ∞
t=0

∫ t

v=0

P
(k)
L−k(v)D

(L)
1 Pν(t− v) dv dH(t)Gν .
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For the second equality, we use the fact that ν + L − j ≥ L + 1. Rearranging terms
and using the equality

∑∞
ν=0 Pν(t− v)Gν = eD[G](t−v) gives the final result.

Step 2. The generating function X∗(z) for the distribution of x, as derived by Shin
and Pearce [124], is given in Equation (6.9). Our goal is to obtain an intuitively more
appealing form analogous to the M/G/1 case, for the distribution of x. To do so,
we use the following representation of its GF (see Subsection 6.6.2 for the derivation
using tedious calculus):

Theorem 6.2. The GF of the number of customers at departure instants is

X∗(z) =

L−1∑
n=0

xnz
n + zLx0Ā

(0)
L

[
zB(0)(z)−A(z)

]
[zI −A(z)]

−1

+ zL
L∑
i=1

xiĀ
(i)
L+1−i

[
zB(i)(z)−A(z)

]
[zI −A(z)]

−1
,

with Ā
(i)
L+1−i given in Equation (6.10) and

B(i)(z) = (Ā
(i)
L+1−i)

−1

∫ ∞
t=0

∫ t

v=0

P
(i)
L−i(v)D

(L)
1 eD(z)(t−v) dv dH(t).

Ā
(0)
L and B(0)(z) are defined similarly.

The expression in Theorem 6.2 can be interpreted similar to the M/G/1 case. The

corresponding GF can be decomposed into two parts. The first term
∑L−1
n=0 xnz

n

contains all stationary probabilities with less than L customers. The other terms at
the rhs correspond to situations with at least L customers. This follows from the
term zL times the GF of a specific MAP/G/1 queue, similar as in Equation (20)
from Lucantoni [106], which only has probability mass on the non-negative real line.
Using this interpretation we obtain the following corollary.

Corollary 6.2. Let x(i) be the stationary probability vector of the number of cu-
stomers at departure instants in an MAP/G/1 queue with B̃(z) = B(i)(z), for

i = 0, 1, . . . , L, x
(0)
0 = x0Ā

(0)
L , and x

(i)
0 = xiĀ

(i)
L+1−i, for i = 1, . . . , L. Then, for

n = 1, 2, . . . ,

xL+n =

L∑
i=0

x(i)
n .

Hence, the stationary probability vector above L is a mixture of stationary probabilities
of MAP/G/1 queues with exceptional first service times.
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6.4.3 Queue length at arbitrary moments

The queue length at arbitrary moments is typically determined using the key rene-
wal theorem, followed by lengthy calculations, see e.g., [84] for the level-dependent
MAP/G/1 queue. Here, we use a more direct derivation based on Palm theory to re-
late functionals of the queue length at arbitrary moments to that of the queue length
upon service completions. A similar approach has been used for the state-dependent
G/G/1 queue [16] to relate the virtual waiting time at arbitrary moments to those at
arrival epochs. Let Y denote the queue length at an arbitrary moment and let f(·)
be some positive function such that E[f(Y )] is well defined; for convenience we here
assume that f(0) = 0. Moreover, let Hr be the stationary excess random variable of
H.

Theorem 6.3. Suppose that E[f(Y )] is well defined. Then,

E[f(Y )] =
E[H]

E[H]− x0D
(0)−1
0 e

( ∞∑
l=1

xl

∞∑
k=0

P
(l)
k (Hr)ef(l + k)

− x0D
(0)−1
0 D

(0)
1

∞∑
k=0

P
(1)
k (Hr)ef(k + 1)

)
.

The choice of f(·) depends on the performance measure of interest. For instance,
for the marginal distribution of the number of customers, take f(x) = 1(x = k)
with k = 1, 2, . . .. Using this function, we may readily rederive the distribution of Y
according to Hofmann [84]. We note that in [84], the author considers both the level
and the phase, whereas Theorem 6.3 only provides the level. To determine the nth
moment, take f(x) = xn. In particular, let the vector of the phase-dependent mean
number of arrivals in time t, starting from level k, be defined by (see [84])

n(k)(t) =

∞∑
n=1

nP (k)
n (t)e.

The first moment of Y in terms of E[X] and the mean number of arrivals is presented
in the following corollary.

Corollary 6.3. The expected number of customers at arbitrary moments is given by

E[Y ] =
E[H]

E[H]− x0D
(0)−1
0 e

(
E[X] +

∞∑
l=1

xln
(l)(Hr)− x0D

(0)−1
0 D

(0)
1 (n(1)(Hr) + 1)

)
.

Proof of Theorem 6.3. The proof is based on Palm theory, relating time averages to
event averages. Let the events be the departures of customers from the queue and let
I denote a generic interdeparture time. Note that interdeparture times correspond to
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service times in case the level is positive, whereas an additional arrival is required in

case the level is zero. Hence, we have E[I] = E[H]− x0D
(0)−1
0 e.

Now, the key identity that we exploit is (see, e.g., [13, Section 1.3]),

E[f(Y )] =
1

E[I]
E

[∫ I

0

f(Xt) dt

]
,

where Xt is the number of customers at time t and time 0 is a departure epoch. In
case X0 > 0, then I corresponds to a service time. Conditioning on the service time,
we have

E

[∫ H

0

f(Xt) dt

]
= E

[∫ ∞
x=0

∫ x

t=0

f(Xt) dt dH(x)

]
= E

[∫ ∞
t=0

P(H ≥ t)f(Xt) dt

]
= E[H]E[f(XHr )],

where the second equality follows from interchanging integrals. Noting that Xt only
increases between (0, I) by arrivals, we have

E[f(Xt);X0 > 0] =

∞∑
l=1

∞∑
k=0

xlP
(l)
k (t)ef(l + k).

For the case that X0 = 0, note that the (i, j)th element of −x0D
(0)−1
0 D

(0)
1 corresponds

to the probability that starting at level 0 in phase i, the first arrival occurs when the
process moves to state j. Thus,

E[f(Xt);X0 = 0] = −x0D
(0)−1
0 D

(0)
1

∞∑
k=0

P
(1)
k (t)ef(k + 1).

Combining the above completes the proof.

6.5 Numerical experiments

We consider an outpatient department and study the impact of varying the load of
the system for various scenarios. Our interest is in the expected waiting time and the
probability that extra capacity is used. For all experiments, we fix the service time
at exactly 1 (representing one slot or one day) and vary λ yielding different traffic
loads expressed in terms of the basic capacity s(1); this means we express the load as
λ/s(1) × 100%. The performance measures are at the beginning of the day, i.e., at
departure instants in the corresponding queueing model.
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6.5.1 Level-independent case

First assume that an outpatient department does not use overbooking of capacity,
i.e. m ≡ m1 = m2. In the first set of experiments, the capacity exactly equals five
(and six, see Subs 6.5.2, respectively). For this case, the M/D/1 queue (model I)
should give a good approximation. For model II, this means that the arrival process
actually follows an Erlang distribution with m phases. Since, the service time are
deterministic, the variability in the offered traffic is relatively small. This implies
that the system can operate at relatively large values of the load with acceptable
waiting times. This can also be seen in Figure 6.2a, where the expected waiting time
is plotted against the load λ/s(1) × 100% by varying λ. We see that the expected
waiting time is small for low loads and increases slowly with the load until a load of
about 90%. When the load gets close to 100%, the expected waiting time increases
sharply. Once the load reaches 100% (or more), the available capacity is not sufficient
to handle all patients in the long run and the waiting time will explode. We see that
the difference between having a capacity of five or six is small, the waiting time in
the case of m = 5 is only slightly higher than for the case m = 6. Also, the M/D/1
approximation fits nicely.

The second experiment is the situation in which the available capacity is random, e.g.,
due to unavailability of staff. We assume a maximum capacity of nine, whereas the
mean number of slots available per day, E[m], is equal to five (and six, respectively).
The arrival process for model II (the time for filling a day) is then based on a Coxian
(or mixed-Erlang) distribution. In Figure 6.2b, we see that the shape of the expected
waiting time as a function of the load is similar as in Figure 6.2a (and for the Pollaczek-
Khinchine formula); however, the expected waiting time is considerably larger for
loads above 90% compared to the situation without randomness in the capacity. We
also see that the M/D/1 approximation is not able to capture the variability in the
capacity available. Note that the effect of having one extra slot available (E[m] = 6)
decreases the expected waiting time somewhat.

From these two experiments, we observe that M/D/1 queues severely underestimate
the waiting time when the capacity is random. Moreover, the range of load values
where the expected waiting time is in the order of several weeks (say, between 10 and
30 days) is small, showing that level-dependent features are required to model access
times in actual appointment systems.

6.5.2 Level-dependent case

We analyze the level-dependent case using similar experiments as in Subsection 6.5.1.
The basic capacity is again equal to five; when the waiting time is more than ten, the
capacity is increased to either six or seven. This is denoted by (5, 6) and (5, 7) in the
legends of Figures 6.3 and 6.4. First, we consider the case that the basic capcity is
always used and is thus deterministic. This situation can be well approximated with
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Figure 6.2: Expected waiting times for different loads in the level-independent case.

model I (M/D/1 type of system), as shown in Figures 6.3a and 6.4a. The second
experiment is for the case with variability in the basic capacity, i.e. where some slots
might be unavailable. The results for this case are depicted in Figures 6.3b and
6.4b.

Figure 6.3 illustrates the effect of the load on the expected waiting time. When the
load is roughly between 90% and 100%, the waiting time increases sharply. However,
the expected waiting time then stabilizes for loads above 100%, in contrast with the
level-independent situation. Hence, there is a much larger range of loads leading to
expected waiting times in the order of several weeks, as we also observe in practice.
Of course, when the load approaches λ/s(2)×100% the system becomes unstable and
the waiting time tends to explode. With more extra capacity (m2 is 7 compared to
6), this will happen for higher load values.

Comparing the situations with and without randomness in available capacity, i.e.
Figures 6.3a and 6.3b, then we see that the expected waiting time is (somewhat) larger
in case of random capacity. Also, the behavior of the expected waiting time around
100% evolves more gradually for random capacity compared to fixed capacity. For
random capacity, we omitted the comparison with model I due to the poor fit.

Another interesting performance measure is the probability that extra capacity is
used; these probabilities can be found in Figure 6.4. We see that the extra capacity
is only used if the load is close to 100%, or higher. When the available capacity is
deterministic, the extra capacity is typically always used or not used at all (depending
on the load); there is only a small range of loads where the probability of using extra
capacity is between 0 and 1 (Figure 6.4a). With more variability in the capacity,
the probability of using extra capacity is less steep, especially if there is more extra
capacity available (Figure 6.4b).
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Figure 6.3: Expected waiting times for different loads in the level-dependent case.
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Figure 6.4: Probability of overbooking for different loads in the level-dependent case.
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Costs
L m1 m2 SCV1 SCV2 E[X] P(X ≥ L) c2 = 1 c2 = 1.5

5

5

7 0.45 0.25 5.62 0.89 6.79 7.68
8 0.45 0.21 5.03 0.84 7.53 8.79
9 0.45 0.17 4.88 0.82 8.30 9.95

10 0.45 0.15 4.82 0.82 9.08 11.12

6

7 0.40 0.30 5.40 0.69 6.69 7.03
8 0.40 0.24 4.28 0.53 7.06 7.59
9 0.40 0.20 4.08 0.48 7.44 8.17

10 0.40 0.17 4.01 0.46 7.86 8.78

7

7 0.37 0.37 4.13 0.34 7.00 7.00
8 0.37 0.29 2.40 0.14 7.14 7.21
9 0.37 0.23 2.27 0.11 7.22 7.34

10 0.37 0.19 2.22 0.10 7.31 7.46

10

5

7 0.45 0.25 10.62 0.89 6.79 7.68
8 0.45 0.21 10.03 0.84 7.53 8.79
9 0.45 0.17 9.88 0.82 8.30 9.95

10 0.45 0.15 9.82 0.82 9.08 11.12

6

7 0.40 0.30 10.23 0.67 6.67 7.01
8 0.40 0.24 9.07 0.51 7.02 7.52
9 0.40 0.20 8.85 0.46 7.38 8.07

10 0.40 0.17 8.78 0.44 7.77 8.66

7

7 0.37 0.37 4.13 0.10 7.00 7.00
8 0.37 0.29 3.38 0.03 7.03 7.05
9 0.37 0.23 3.31 0.03 7.05 7.08

10 0.37 0.19 3.29 0.02 7.07 7.10

Table 6.1: Performance measures and costs for different scenarios.

6.5.3 Optimization

The experiments above indicate that outpatient departments can operate at high load
while maintaining acceptable waiting times. Now, we set up an experiment for finding
an optimal capacity configuration. To capture some variability in capacity, we assume
here that 75% of the base capacity m1 will be available on average. For example, if
the base capacity is 5, there are on average 3.75 slots available per day. The extra
capacity, (m2 −m1), is always used, so the expected number of available slots above
L is given by 0.75m1 + (m2−m1) = m2− 0.25m1. We are interested in the expected
waiting time E[X] and the probability that extra capacity is used P(X ≥ L). Suppose
that every unit of basic capacity has cost c1 = 1, and extra capacity costs c2 if it is
used. The total costs are then equal to m1 + c2(m2 − m1)P(X ≥ L). These costs
are calculated for different values of L, m1, m2 and c2. The results can be found in
Table 6.1.

From Table 6.1 it can be seen that E[X] lies around L, so if we have a constraint
E[X] ≤ 6, we can set L = 5. If c2 = 1, the cheapest option is to have a basic capacity
of six and add one extra slot if the waiting time exceeds L. If L is chosen higher, extra
capacity is used less often, reducing the costs, but increasing the expected waiting
time. If c2 = 1.5, we see that the cheapest solution is not to use overbookings. With
a basic capacity of seven, it holds that λ/s(1) = 5/(0.75 × 7) = 20/21 ≈ 95.2%. In
this case, roughly 5% of the slots will remain unfilled. Using a lower basic capacity
and adding extra capacity if needed reduces this idle time and could be a reasonable
choice.



6.6. APPENDIX 137

6.6 Appendix

6.6.1 Proof of Theorem 6.1

Using the balance equations (6.1) and taking GF’s, we may write
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Rearranging terms gives
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We now rewrite the final term of (6.11) using probabilistic arguments. Note that

the α
(i)
n+1−i in the final term of (6.11) is the probability of going from i ≤ L to

n + 1 > L + 1 customers during a service time. This is equal to the probability of
having n− L arrivals during Ti, given that Ti is positive, i.e.,

α
(i)
n+1−i = P(A(0, H) = n+ 1− i|X(0) = i)

= P(A(0, Ti) = n− L|X(0) = i, Ti > 0)P(Ti > 0),
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where A(0, t) denotes the number of arrivals during (0, t). Using the above, we may
write
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For the term with the summation, we obtain
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Based on these probabilistic arguments, we can rewrite (6.11) as
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Rearranging terms in (6.1) yields the relation

xL = xL+1α̂0 + x0 P(T1 > 0)P(A(0, T1) = 0|T1 > 0)

+

L∑
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xi P(Ti > 0)P(A(0, Ti) = 0|Ti > 0).

Using this in Equation (6.12) and multiplying by −z, gives
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6.6. APPENDIX 139

Finally, we use another type of level crossing argument; the rate of moving from L+1
to L (that is xL) should be equal to the rate of moving from L to L+ 1,

xL = x0 P(T1 > 0) +

L∑
i=1

xi P(Ti > 0). (6.14)

We add zLH∗(λ2(1 − z))(x0 P(T1 > 0) +
∑L
i=1 xi P(Ti > 0)) to Equation (6.13)

and subtract zLH∗(λ2(1 − z))xL, which is equal by (6.14). Rearranging terms gives
Equation (6.5).

Now it remains to determine x0, because the generating function in Equation (6.5)
is completely determined in terms of x0, due to Corollary 6.1. Using the fact that
X∗(1) = 1, we see that
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For the limit we use l’Hôpital’s rule . Some rewriting gives the result for x0, completing
the proof.

6.6.2 Proof of Theorem 6.2

Using (6.8) and similar steps as for the M/G/1 case, we obtain
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i = 0, 1, . . . , L. To do this, we focus on the final three terms at the right-hand side of
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(6.15). First, rearranging terms in (6.8), yields

xL+1A0 = xL − x0A
(0)
L −

L∑
i=1

xiA
(i)
L+1−i.

Using the above to rewrite the final three terms at the rhs of (6.15), we have

−zL+1xL+1A0 + zx0

∞∑
n=L+1

A(0)
n zn + z

L∑
i=1

xi

∞∑
n=L+1

A
(i)
n+1−iz

n

= −zL+1xL + zL+1x0

(
A

(0)
L +

∞∑
n=L+1

A(0)
n zn−L

)

+zL+1
L∑
i=1

xi

(
A

(i)
L+1−i +

∞∑
n=L+1

A
(i)
n+1−iz

n−L
)

= −zL+1xL + zL+1x0

∞∑
n=0

A
(0)
L+nz

n + zL+1
L∑
i=1

xi

∞∑
n=0

A
(i)
L−i+1+nz

n.

Now, we use the level-dependent version of the equation at the bottom of page 186
of Ramaswami [119]:
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Now, rewriting (6.17) yields the result. Conditioning on the moment that the process
hits level L+ 1 twice yields more explicit expressions for B(i)(z).

6.6.3 Mean queue length for LD-MAP/G/1

The stationary mean queue length at departure epochs is (cf. [124]),
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Chapter 7

Waiting-time distributions in call blending models
with abandonments

7.1 Introduction

In this chapter we consider a multi-server queue with two types of customers. Just
like in the previous chapter, the server can handle both types of customers and there
is an infinite supply of the second type. Here type-2 customers are only taken into
service if there are no type-1 customers waiting and there are enough free servers
to handle incoming type-1 jobs immediately. This chapter is motivated from a call
center perspective. We refer to the system as a blended system, where homogeneous
servers handle two classes of customers: urgent and best effort. The question is to
determine the performance of such a blended system. Such a performance analysis is
key to determine appropriate staffing levels as well as the control of assigning servers
to customers. Motivated by practice and theoretical optimality results, we use a
threshold structure for the number of servers that should always be kept available
for the ‘urgent’ class. We derive the probability to abandon and the waiting-time
distribution by considering the waiting time process of the first customer in line.
Herewith, we extend the method in [18] by incorporating elements of the so-called
system-point method due to Brill and Posner [45; 44]. As such, we avoid to analyze
quantities involving the number of customers, which are typically less relevant for the
management of the system.

The idea of studying the waiting time of the first customer in line directly was addres-
sed in [18], but is now more involved as the total service rate depends on the types of
customers in service and due to abandonments. The method in this chapter is thus
an extension of the method followed in [18]. We see a dichotomy in results depending
on the service rates of the urgent and best effort class. If these are the same, the
performance measures have a similar structure as for the M/M/s+G model. If the
service rates are different, the waiting time distribution of the first customer in line
can iteratively be found as solutions of second-order differential equations. In the case
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of infinite patience, the waiting times can be expressed as a mixture of exponential
terms. The required constants follow from a set of linear equations.

We envisage two streams of related literature: (1) queueing models for blended call
centers, and (2) multi-server queues with setup and/or vacation times. Regarding
(1), the literature related to queueing models for multi-class call centers is extensive;
we will only highlight the literature that is most closely connected to the current
chapter. The performance of a blended call center has been analyzed in [23; 60; 118];
[23; 118] use simulation, whereas [60] developed approximative models using Markov
chains. Blending policies have been considered in [25; 72; 104]; the models in those
papers are related to ours. In their analysis, both [25; 72] use a Markov decision
process framework to determine the structure of effective routing policies. They
both conclude that threshold control is optimal when the expected service times
are identical for the two classes, but this is no longer necessarily true if the expected
service times are different. In [104], the authors assume a threshold policy. They first
obtain the steady-state number of customers in the system and exploit that result to
give involved expressions for the waiting time. Note that these papers all assume that
customers do not abandon.

In the call center literature, many papers haven been devoted to an asymptotic ana-
lysis of multi-server queues, often in the many-server heavy-traffic regime. Here, we
only refer to settings with homogeneous servers. In that case, the models in [8; 9]
consider a system with call backs, i.e., the customer is given the opportunity to be
called back, which is advantageous for customers that do not need a swift response
(and are essentially best effort customers). In addition to the asymptotic analysis,
the callback option also leads to a modified model with state-dependent arrival ra-
tes. The papers [78; 109] consider service-level differentiation in queues with fully
flexible (or homogeneous) servers; in [78] the authors derive asymptotically optimal
staffing and scheduling schemes, whereas [109] considers minimal staffing subject to
SL constraints. The authors in [116] consider a system that is closely related to ours;
the model only differs with respect to the patience distribution, as [116] requires ex-
ponential patience. The key difference with [116], however, is that they consider a
many-server heavy traffic scaling, whereas we focus on exact analysis of the waiting
time.

Using the analysis of the waiting time of the first customer in line does not occur
frequently in the literature. The method in this chapter builds on [18], where a consi-
derably different model is studied. Another example is the working paper [103], where
the authors use a similar idea to study a multi-server queue with generally distribu-
ted abandonment times. The latter paper however is geared towards optimization by
considering a discrete state space. Moreover, there is only a single class of customers,
whereas they do not obtain any closed-form results for performance measures.

For (2), we note that the dynamics of the urgent class show similarities with M/M/s
(or actually M/M/s+G) queues with setup times or vacations; if an urgent customer
arrives and the server has to switch between classes, this could be interpreted as
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a setup time or vacation. The literature on multi-server queues with vacations is
limited; see [92] for a short survey. Moreover, these systems do typically assume that
customers do not abandon. The authors of [161] study a vacation queue, where the
server that completes a service will take a vacation, but only if there are less than d
servers already on vacation. This model is closely related to our blended system, albeit
without abandonments. The authors find the waiting time in terms of its Laplace-
Stieltjes transform by analyzing the number of customers first. Models with different
vacation scenarios, less relevant to our model, can be found in [128; 24; 157]. A study
where abandoments do occur is [5], which considers an M/M/s model with server
vacations and abandonments; a key assumption in [5] is though that abandonments
only occur when the server is absent.

Finally, there is also little literature on multi-server queues with set-up times. In [10]
the number of customers and the waiting-time distributions are derived, but their
model assumptions are somewhat restrictive. In [70; 71], M/M/s queues with set-up
times are analyzed, but the performance is either approximate or not closed-form. We
refer to [71] for additional references, also related to multi-server queues with vacati-
ons. Moreover, all these papers assume that customers have infinite patience.

The remainder of the chapter is organized as follows. The model for blending of traffic
is introduced in Section 7.2. For the analysis we distinguish two cases depending on
the average service times of both classes; when they are equal the analysis is much
simpler and can be found in Section 7.3, the analysis in case of unequal mean service
times can be found in Section 7.4.

7.2 Model description

We consider a multi-server queue with two types of traffic, type 1 and type 2, see
Figure 1.4. We refer to traffic as jobs, but they may equivalently be interpreted as
customers, calls, or patients, depending on the specific application. Jobs of type i
have independent exponentially distributed service requirements with rate µi. Type-1
jobs arrive according to a Poisson process with rate λ, and there is an infinite supply
of type-2 jobs. There are s identical servers and there is an infinite waiting room for
type 1. Let ρ = λ/(sµ1). Type-1 jobs have general patience of length G, which is
a random variable with cumulative distribution function G(·) and hazard rate hG(·).
The hazard rate function is assumed to be continuous. If the waiting time in the
queue of a type-1 job exceeds its patience, the job abandons the queue and will not
receive service. In case customers have infinite patience, we let G(·) ≡ 0 and hG(·) ≡ 0
and assume that ρ < 1 for stability of type 1.

Type 1 represents the class of ‘urgent’ jobs. They typically have to meet a traditional
service level (SL) target in terms of the waiting time distribution. Let W denote the
stationary waiting time for type-1 jobs. Then the objective is to evaluate P(W > t)
for some constant t indicating whether the SL is met. The probability to abandon is
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another performance measure of interest. For type 2 the performance measure is its
throughput, i.e., the long-term average number of type-2 jobs that are served. This
may be equivalently interpreted as the long-term average amount of time available
for type 2.

To benefit from blending the two traffic classes, we consider a simple threshold type of
control. Let N ∈ {0, 1, . . . , s} denote the threshold specifying the number of servers
that we keep available for type 1. This is in contrast to Chapters 2–5, where N
denotes the number of queues. Since N servers are always kept available for type 1,
at most s − N type-2 jobs can be simultaneously in service. The threshold policy
takes the following actions:

� Type-1 jobs are taken into service as soon as a server is available.

� When the type-1 queue is empty and there are no more than s−N type-1 jobs
in service, as many type-2 jobs are taken into service such that N servers remain
idle (to handle future type-1 traffic); type-2 traffic only starts to be served after
the (N + 1)-th server becomes available. The number of type-1 jobs in service
does not play a role (as long as this does not exceed s−N). If l = 0, 1, . . . , s−N
type 1 jobs are in service, s−N − l type-2 jobs are taken into service.

� Preemption of service is not allowed; if preemption would be allowed it would
always be preferred to serve a type-2 job over being idle.

Type 1 is protected from type 2 by N > 0, whereas the utilization of the service
facility is increased compared to a single type-1 system by letting N < s. Finally,
we note that optimal control for this system has been investigated in [25] in case the
target for type 1 is in terms of the average waiting time instead of the tail distribution
(the latter being considerably more involved). For µ1 = µ2, the authors show that
threshold control is optimal in that setting, whereas numerical experiments indicate
that threshold control is near optimal for unequal service requirements; the authors
do not consider abandonments in their model.

7.3 Analysis for equal service requirements

In this section we assume that µ := µ1 = µ2, which considerably simplifies the
analysis. In this case, the analysis could follow the lines of the M/M/s+G model.
However, we propose a more direct approach by directly considering the waiting time,
or more specifically, the waiting time of the first type-1 job in line (FIL), see, e.g.,
[18]. This approach turns out to be extremely valuable in the next section as well,
where µ1 6= µ2. Now, we first give a description of the process in Subsection 7.3.1.
Then we give the analysis of the FIL distribution in Subsection 7.3.2 and we conclude
the section with our performance measures in Subsection 7.3.3.
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Figure 7.1: Sample path of Vt.

7.3.1 Process description

Let Vt denote the waiting time of the first job in line at time t (e.g. with Vt = 0
if the queue is empty) and let Nt denote the number of free servers. The process
(Vt, Nt)t≥0 is then a piecewise deterministic Markov process as considered in [56].
Note that Vt > 0 if and only if Nt = 0, i.e. free servers only occur when there are no
type-1 jobs waiting. For convenience, we omit Nt and extend Vt to the non-positive
integers, where Vt ≤ 0 denotes that the queue is empty and −Vt servers are free. The
state space then consists of all negative integers not smaller than −N and all positive
real numbers

{−N,−N + 1, ...,−1, 0} ∪ (0,∞).

A sample path of the process (Vt)t≥0 is depicted in Figure 7.1 for the case N = 2;
the black dots represent jobs that abandoned before they became the first job in line.
For Vt > 0, the process increases linearly at rate 1 until the first job in line leaves the
queue; this can either be due to a service completion, occurring with rate sµ, or due
to this job becoming impatient. If the first job in line leaves the queue, the next job
that did not abandon (if any) moves to the first position.

For this situation, suppose that at time t, the n-th arrival leaves the first position in
the queue and thus the (n+ 1)-th arrival is the next candidate to become first in line.
Note that the interarrival time between jobs n and n+ 1 is exponentially distributed
and let Aλ denote an exponentially distributed random variable with rate λ. Now,
different situations may occur. First, with probability P(Aλ > Vt−) the (n+ 1)-th job
has not arrived at time t, meaning that at time t+ the queue is empty whereas all
servers are occupied, i.e. V (t+) = 0. Second, if job n+ 1 has arrived his accumulated
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waiting time would be Vt− − Aλ. With probability 1 − G(Vt− − Aλ), this time does
not exceed his patience and job n+ 1 becomes first in line. Finally, with probability
G(Vt− − Aλ) customer n + 1 abandoned and customer n + 2 is the next candidate
to become first in line. Now, the scenarios above apply for customer n + 2 and this
procedure repeats.

Consequently, when the first job in line leaves the queue at time t, it holds that

Vt+ = max{Vt− − Ãλ, 0}, (7.1)

with Ãλ the jump size, a sum of one or more interarrival times depending on the num-
ber of customers that abandoned. The distribution of Ãλ is considered in Lemma 7.1
below. As indicated, if there are no arrivals before t that did not abandon, the process
moves to state 0; the fact that at time t− a customer is waiting implies that all servers
are occupied. In the boundary case that Vt = 0 an arrival may occur with rate λ, in
which case Vt starts to increase linearly again. The other boundary transitions are
standard; in state −l, l = 1, . . . , N , jobs arrive with rate λ moving the process to
state −l + 1, and in state −l, l = 0, . . . , N − 1, jobs depart at rate (s − l)µ moving
the process to state −l − 1.

Since interarrival times and service times are exponentially distributed, the process
(Vt)t≥0 has the Markov property. In addition, it is a regenerative process and thus
has a steady-state distribution. We will use the abbreviation ‘FIL’ for ‘first in line’.
Let WFIL(x) = limt→∞ P(Vt ≤ x) be the steady-state distribution with density
wFIL(x). For the boundary states we write: wFIL(−l) = limt→∞ P(Vt = −l), for
l = 0, . . . , N .

In Lemma 7.1 we present the distribution function of the jump size Ãλ. Specifically,
let Fx(y) be the probability that the FIL process is smaller than y ∈ [0, x], when right
before the jump the process was at x and a jump occurred.

Lemma 7.1. The distribution function Fx(y), 0 ≤ y ≤ x, of the jump size with
starting position x is given by

Fx(y) = exp

{
−λ
∫ x

y

Ḡ(u) du

}
.

Proof. Define W+
x as the FIL process just after a jump, when the FIL process right

before the jump is equal to x. We are interested in

Fx(y) = P(W+
x ≤ y).

Conditioning gives

Fx(y) = e−λ(x−y) +

∫ x

y

λe−λ(x−u)G(u)Fu(y) du

= e−λ(x−y) + e−λxλ
∫ x

y

eλuG(u)Fu(y) du.
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Now we take the derivative with respect to x, leading to

d

dx
Fx(y) = −λe−λ(x−y) − λe−λxλ

∫ x

y

eλuG(u)Fu(y) du+ λe−λxeλxG(x)Fx(y)

= −λFx(y) + λG(x)Fx(y)

= −λḠ(x)Fx(y),

where Ḡ(x) = 1 − G(x). We now have a first-order ordinary differential equation
(DE), with solution

Fx(y) = C exp

{
−
∫ x

0

λḠ(u) du

}
.

Using the boundary condition Fy(y) = 1, we can determine the constant C. This
gives C = exp

{∫ y
0
λḠ(u) du

}
, completing the proof.

7.3.2 Analysis of FIL distribution

For convenience, define ρi = λ/((s − i)µ), i = 0, 1, . . . , N , and let an empty product
be equal to 1. The next theorem provides the steady-state distribution of the FIL
process.

Proposition 7.1. The density of the FIL process is, for x > 0,

wFIL(x) = λwFIL(0)Ḡ(x) exp

{∫ x

0

λḠ(u) du− sµx
}
,

where

wFIL(0) =

∫ ∞
0

λḠ(x) exp

{∫ x

0

λḠ(u) du− sµx
}

dx+

N∑
k=0

k−1∏
j=0

1

ρj

−1

,

For the boundary states, we have, k = 1, . . . , N ,

wFIL(−k) = wFIL(0)

k−1∏
j=0

1

ρj
. (7.2)

Proof. For x > 0, it follows from level crossings that

wFIL(x) =

∫ ∞
x

Fy(x)(sµ+ hG(y))wFIL(y) dy. (7.3)

The left-hand side corresponds to upcrossings of level x and the right-hand side corre-
sponds to the long-run average number of downcrossings through level x. Observe that
we have continuous upcrossings of waiting-time levels and downcrossings by jumps,
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where the jump sizes correspond to (multiple) interarrival times between successive
customers (in contrast to workloads in single-server queues). Filling in Fy(x) as given
in Lemma 7.1 and some rewriting, we get

wFIL(x) = exp

{
λ

∫ x

0

Ḡ(u) du

}∫ ∞
x

exp

{
−λ
∫ y

0

Ḡ(u) du

}
(sµ+hG(y))wFIL(y) dy.

Taking derivatives with respect to x yields

dwFIL(x)

dx
= λḠ(x) exp

{
λ

∫ x

0

Ḡ(u) du

}
×
∫ ∞
x

exp

{
−λ
∫ y

0

Ḡ(u) du

}
(sµ+ hG(y))wFIL(y) dy

− exp

{
λ

∫ x

0

Ḡ(u) du

}
exp

{
−λ
∫ x

0

Ḡ(u) du

}
(sµ+ hG(x))wFIL(x)

= λḠ(x)wFIL(x)− (sµ+ hG(x))wFIL(x)

= (λḠ(x)− sµ− hG(x))wFIL(x).

This is a first-order differential equation, which is easily solved as

wFIL(x) = D exp

{∫ x

0

λḠ(u)− sµ− hG(u) du

}
. (7.4)

Now we find the constant D. Balancing the transitions in and out of (0,∞) results in

λwFIL(0) =

∫ ∞
0

Fy(0)(sµ+ hG(y))wFIL(y) dy. (7.5)

From (7.3) and (7.5) we get limx↓0 wFIL(x) = λwFIL(0) and from we get (7.4)
limx↓0 wFIL(x) = D. Hence, D = λwFIL(0), implying

wFIL(x) = λwFIL(0) exp

{∫ x

0

λḠ(u)− sµ− hG(u) du

}
.

Due to properties of the hazard rate, this can be rewritten using
∫ x

0
hG(u) du =

− log Ḡ(x).

Moreover, for the boundary states (with free servers), we have the well-known balance
equations, for i = 1, . . . , N ,

λwFIL(−i) = (s− i+ 1)µwFIL(−i+ 1).

Expressing the constants in terms of wFIL(0) yields Equation (7.2). The result follows
by normalization.
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7.3.3 Performance measures

From the FIL process we may obtain the actual performance measures of interest: the
waiting time W of served customers, the probability to abandon, and the throughput
of the best-effort class. The derivation of the waiting-time distribution from the FIL
process follows from a generalization of PASTA; the actual waiting time of a served
customer corresponds to the value of the FIL process embedded at moments when a
new customer is taken into service. In particular, the waiting time is zero when there
are idle agents available upon arrival such that a customer can be directly taken into
service. Using the PASTA property, we have

P(W = 0) =

N∑
k=1

wFIL(−k) = wFIL(0)

N∑
k=1

k−1∏
j=0

1

ρj
.

We define the empty sum to be equal to 0 for the case N = 0.

Given that a served customer has to wait, the waiting time is the value of the FIL
process at epochs just before a downward jump due to a service completion. Before
addressing these positive waiting times, we first consider the probability to receive
service (and thus also the probability to abandon).

Corollary 7.1 (Probability of service). The probability that a customer receives ser-
vice is given by

P(service) = wFIL(0)

 N∑
k=1

k−1∏
j=0

1

ρj
+ sµ

∫ ∞
0

Ḡ(x) exp

{∫ x

0

λḠ(u) du− sµx
}

dx

 ,

with wFIL(0) given in Proposition 7.1.

Proof. If we divide the rate at which customers are taken into service by the total
arrival rate, we can calculate the probability that a customer receives service. The
rate at which customers are taken into service is given by:

λ∗ = λP(W = 0) +

∫ ∞
0

sµwFIL(x) dx

= λwFIL(0)

 N∑
k=1

k−1∏
j=0

1

ρj
+ sµ

∫ ∞
0

Ḡ(x) exp

{∫ x

0

λḠ(u) du− sµx
}

dx

 . (7.6)

Dividing by λ completes the proof.

The stationary waiting time distribution is given in the following theoreom.
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Theorem 7.1 (Waiting time type 1). The tail of the steady-state waiting time dis-
tribution of a job that received service is

P(W > α|service) =
sµ
∫∞
α
Ḡ(v) exp

{∫ v
0
λḠ(u) du− sµv

}
dv∑N

k=1

∏k−1
j=0

1
ρj

+ sµ
∫∞

0
Ḡ(x) exp

{∫ x
0
λḠ(u) du− sµx

}
dx
.

Proof. We denote with N(a, b) the number of customers taken into service between
moments a and b. Let us consider the infinitesimal interval (t, t + h], where h > 0.
Note that

P(Vt > v,N(t, t+ h) = 1) =

∫ ∞
v

sµhwFIL(x) dx+ o(h).

In addition, limh→0 P(N(t, t+h) = 1)/h = λ∗, in stationarity, since the rate at which
customers are taken into service is equal to the arrival rate of customers that are
served for a stable system. Then, we may compute

P(W > α|service) = lim
h→0

P(Vt > α|N(t, t+ h) = 1) = lim
h→0

P(Vt > α,N(t, t+ h) = 1)

P(N(t, t+ h) = 1)

=
1

λ∗

∫ ∞
α

sµwFIL(v) dv =
1

ρP(service)

∫ ∞
α

wFIL(v) dv.

Using Proposition 7.1, we obtain the result.

Remark 7.1. If N = s, our model represents a regular M/M/s+G queue with no
blending, as studied by Zeltyn and Mandelbaum [159]. In this case, we can rewrite
P(service) to equal their expression for the same probability. In [90], more performance
measures for this model are derived, including P(W > α|service), which coincides with
our expression in the case N = s.

The throughput of type 2 may also be obtained from Proposition 7.1 after some
straightforward calculations; see [25] for the case of infinite patience.

Corollary 7.2 (Throughput type 2). The throughput for type-2 traffic is

TH = wFIL(0)

 N∑
k=1

((s− k)µ− λ)

k−1∏
j=0

1

ρj
+ sµ

 ,

with wFIL(0) given in Proposition 7.1.

Proof. First, observe that the fraction of time that all servers are busy is

wFIL(0) +

∫ ∞
0

wFIL(y)dy.
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Now, the throughput of type 2 is the total throughput minus the type-1 throughput.
The long-run average service rate is

N∑
k=1

(s− k)µwFIL(−k) + sµwFIL(0) + sµ

∫ ∞
0

wFIL(y) dy.

Using (7.2), the fact that the type-1 throughput is λ∗, cf. (7.6), and some rewriting,
we obtain the result.

7.4 Analysis for different service requirements

In this section, we consider the much more involved case µ1 6= µ2. We describe
the model and derive the level crossing equations in Subsection 7.4.1. Our aim is
to derive the type-1 waiting-time distribution (Theorem 7.2) and the throughput of
type 2 (Corollary 7.4); both results can be found in Subsection 7.4.5. We do this by
directly considering the waiting time of the first job in line, as in the previous section.
In Subsections 7.4.2 and 7.4.3, we derive the steady state distribution of the FIL
process, for general and infinite impatience, respectively. Situations with idle servers
are addressed in Subsection 7.4.4 providing a linear set of equations for obtaining the
remaining constants. With this approach, we avoid the analysis of the number of
customers in the system. Note that it is a non-trivial step to obtain the waiting-time
distribution from the number of customers present.

7.4.1 Level crossings

Let us define the stochastic process (Xt)t≥0 as the vector of two stochastic processes
(Vt, Yt)t≥0; for a fixed t, Xt = (Vt, Yt) where (Vt)t≥0 is the waiting time of the first
in line customer or the number of free servers when the queue is empty, as in Sub-
section 7.3.1, and (Yt)t≥0 is the number of type-2 jobs in service. Again, for (Vt)t≥0,
we denote the number of empty servers as non-positive integers: 0,−1,−2, ...,−N .
The two-dimensional state space is given by

({−N,−N + 1, ...,−1, 0} ∪ (0,∞))× {0, ..., s−N}.

The process (Xt)t≥0 is again a piecewise-deterministic Markov process as in [56]. We
will refer to the state of Yt as “page”. If Yt = k during some interval, the sample
path of the FIL process evolves as in Section 7.3 (see Figure 7.1 for an example).
As soon as Yt changes, the FIL process jumps to a different page, implying that the
overall service rate changes. This is in line with the ‘System Point’ method of Brill
and Posner [45; 44].

We introduce the steady-state version of the FIL process with k type-2 jobs in ser-
vice as WFIL(v, k) = limt→∞ P(Vt ≤ v, Yt = k). The joint steady-state density is
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wFIL(v, k), for v > 0. For cases when there are no customers waiting, wFIL(−l, k)
denotes the steady-state probability that there are l idle servers and k type-2 jobs in
service, l ∈ {0, 1, . . . , N} and k ∈ {0, 1, . . . , s−N}. Also, let ξk = limt→∞ P(Yt = k).
The total service rate is determined by the number of type-2 jobs in service. For
convenience, define

rk = (s− k)µ1 + kµ2

as the total service rate at page k if all servers are occupied.

The analysis proceeds as follows. First, we derive level-crossing equations for the
FIL process. Using these equations we recursively determine the FIL distribution in
Subsections 7.4.2 and 7.4.3.

Lemma 7.2. We consider the level-crossing equations at page k with upcrossings of
level v on the left-hand side and downcrossings on the right-hand for two different
cases.

(i) For k ∈ {0, 1, . . . , s−N − 1} and v > 0

wFIL(v, k) + (k + 1)µ2

∫ ∞
v

(1− Fu(v))wFIL(u, k + 1)du

= kµ2

(
ξk −WFIL(v, k)

)
+

∫ ∞
v

wFIL(u, k)((s− k)µ1 + hG(u))Fu(v)du.

(ii) For k = s−N and v > 0

wFIL(v, s−N) =(s−N)µ2

(
ξs−N −WFIL(v, s−N)

)
+

∫ ∞
v

wFIL(u, s−N)(Nµ1 + hG(u))Fu(v)du.

Proof. Consider case (i) and fix page k ∈ {0, 1, . . . , s − N − 1}. Using standard
infinitesimal arguments and (7.1) gives us, for h > 0 small,

P(Vt+h > v + h, Yt+h = k) =∫ ∞
v

(1− hkµ2 − h(s− k)µ1 − hhG(u)) dP(Vt ≤ u, Yt = k)

+

∫ ∞
v

h((s− k)µ1 + hG(u))P(Ãλ ≤ u− v) dP(Vt ≤ u, Yt = k)

+ h(k + 1)µ2P(Vt − Ãλ > v, Yt = k + 1) + o(h).

Subtracting P(Vt > v + h, Yt = k) from both sides, dividing by h, and letting h ↓ 0,
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we obtain:

d

dt
P(Vt > v, Yt = k) =− d

dv
P(Vt > v, Yt = k)

−
∫ ∞
v

(kµ2 + (s− k)µ1 + hG(u)) dP(Vt ≤ u, Yt = k)

+

∫ ∞
v

((s− k)µ1 + hG(u))(1− Fu(v)) dP(Vt ≤ u, Yt = k)

+ (k + 1)µ2P(Vt − Ãλ > v, Yt = k + 1).

Now, let t→∞ and note that, for l = k + 1,

P(V − Ãλ ≤ v, Y = l) = WFIL(v, l) +

∫ ∞
v

Fu(v)wFIL(u, l)du.

The above yields

0 = wFIL(v, k)−
∫ ∞
v

(kµ2 + (s− k)µ1 + hG(u))w(u, k) du

+

∫ ∞
v

((s− k)µ1 + hG(u))(1− Fu(v))w(u, k) du

+ (k + 1)µ2

(
ξk+1 −WFIL(v, k + 1)−

∫ ∞
v

Fu(v)wFIL(u, k + 1) du

)
.

Using the fact that ∫ ∞
v

w(u, k) du = ξk −WFIL(v, k),

and some rewriting, gives

wFIL(v, k) = kµ2

(
ξk −WFIL(v, k)

)
+

∫ ∞
v

((s− k)µ1 + hG(u))wFIL(u, k)Fu(v)du

− (k + 1)µ2

(
ξk+1 −WFIL(v, k + 1)

)
+ (k + 1)µ2

∫ ∞
v

wFIL(u, k + 1)Fu(v)du.

Rewriting ξk+1 −WFIL(v, k + 1) in terms of its density provides the level crossing
equation for case (i). For case (ii), the term involving page k + 1 disappears.

7.4.2 General impatience

In this subsection, we show that the steady-state distribution of the FIL process can
be iteratively solved and written as the solution of linear second-order differential
equations; this is next presented in Proposition 7.2. We exclude the case that N = s,
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as no type-2 traffic is taken into service in that case. In fact, this case can be directly
obtained from the results in Section 7.3.

Before we present the result, we define, for k ∈ {1, . . . , s−N},

ak(v) = rk + hG(v)− λḠ(v),

bk(v) = −λḠ(v)µ2k.

For the FIL distribution, we need solutions of linear second-order DE’s. Let w̃k(v) be
the solution of the homogeneous second-order DE

w′′(v) + ak(v)w′(v) + bk(v)w(v) = 0, with w(0) = 1, w(∞) = 0. (7.7)

Let, for j = k + 1, . . . , s−N , w̃part
k,j (v) be a particular solution of

w′′(v) + ak(v)w′(v) + bk(v)w(v) = −λḠ(v)(k + 1)µ2w̃
part
k+1,j(v), (7.8)

where we define w̃part
j,j (v) = w̃j(v).

In specific cases, the second-order DE’s may be solved analytically. A primary ex-
ample is the case of infinite patience, see Subsection 7.4.3. In general, there are
no closed-form solutions of linear second-order DE’s, but packages are available for
numerical solutions. An alternative representation can be obtained by rewriting a
linear second-order DE with boundary condition as a Fredholm integral equation of
the second kind, see e.g. [100]. Such a Fredholm integral equation may be solved
by successive substitutions leading to solutions of an infinite sum of iterated kernels.
As such a solution does not provide any additional insight, we present our results in
terms of solutions of DE’s.

Proposition 7.2. The tail distribution of the FIL process at page k ∈ {1, . . . , s−N}
is

W̄FIL(v, k) = Ckw̃k(v) +

s−N∑
j=k+1

Cjw̃
part
k,j (v),

with w̃k(·) and w̃part
k,j (·) as defined according to (7.7) and (7.8), respectively. At page

0, the FIL density is

wFIL(v, 0) = C0Ḡ(v) exp

{∫ v

0

λḠ(u) du− sµ1v

}
+

∫ v

t=0

Ḡ(v) exp

{∫ v

t

λḠ(u) du− sµ1(v − t)
}
λµ2W̄

FIL(t, 1) dt.

Here Cj, j = 0, . . . , s − N , are constants that are determined in Subsection 7.4.4
below.

Observe that the proposition provides an iterative scheme to determine the FIL dis-
tribution. Starting at page s −N , the tail of the FIL distribution can be iteratively
solved at page k using the analysis at pages k + 1, . . . , s−N .
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Proof. To derive the FIL distribution, we start at page s − N and then iteratively
determine the FIL distribution at page k given its tail distribution at page k + 1.

Page s − N : Let us start with page s − N , for which we need the solution of
case (ii) in Lemma 7.2. Using Lemma 7.1 for the distribution of the jumps, taking
the derivative with respect to v in (ii) of Lemma 7.2 and applying similar arguments
as in the proof of Proposition 7.1, yields

d

dv
wFIL(v, s−N) = −(s−N)µ2w

FIL(v, s−N)− (Nµ1 + hG(v))wFIL(v, s−N)

+ λḠ(v)

[∫ ∞
v

(Nµ1 + hG(u))wFIL(u, s−N) exp

{
−λ
∫ u

v

Ḡ(z) dz

}
du

]
.

Observe that the terms in square brackets may be rewritten using the equation in (ii)
of Lemma 7.2, from which we obtain

d

dv
wFIL(v, s−N) + (rs−N + hG(v)− λḠ(v))wFIL(v, s−N)

= λḠ(v)(s−N)µ2W
FIL(v, s−N)− λḠ(v)(s−N)µ2ξs−N . (7.9)

As wFIL(v, s−N) is the derivative of WFIL(v, s−N), we have a linear second-order
differential equation. For convenience, we consider the tail of the FIL distribution
W̄FIL(v, k) = ξk−WFIL(v, k). Using the fact that d/dv(W̄FIL(v, k)) = −wFIL(v, k),
Equation (7.9) may be written as the following linear second-order differential equa-
tion:

d2

dv2
W̄FIL(v, s−N) + as−N (v)

d

dv
W̄FIL(v, s−N) + bs−N (v)W̄FIL(v, s−N) = 0.

If customers have infinite patience, the coefficients are constant and there is a direct
way to solve these equations; this case will be treated separately in the next subsection.
For the boundary conditions, it should hold that limv→∞ W̄FIL(v, k) = 0. The second
boundary condition (at v = 0) is determined later in Subsection 7.4.4 as the solution
of a linear system of equations. Hence, the general solution of the above DE is

W̄FIL(v, k) = Cs−N w̃s−N (v),

where Cs−N is the remaining unknown constant. This completes the FIL distribution
at page s−N .
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Page k ∈ {1, . . . , s − N − 1}: The approach is similar to the approach for page
s−N . First we rewrite (i) of Lemma 7.2, yielding

wFIL(v, k) + (k + 1)µ2

∫ ∞
v

wFIL(u, k + 1) du

− (k + 1)µ2 exp

{
λ

∫ v

0

Ḡ(z) dz

}∫ ∞
v

exp

{
−λ
∫ u

0

Ḡ(z) dz

}
wFIL(u, k + 1) du

= kµ2(ξk −WFIL(v, k)) + exp

{
λ

∫ v

0

Ḡ(z) dz

}
×
∫ ∞
v

exp

{
−λ
∫ u

0

Ḡ(z) dz

}
((s− k)µ1 + hG(u))wFIL(u, k) du.

Again, we take the derivative with respect to v and use the level crossing equation of
Lemma 7.2 to rewrite the remaining integrals, providing (after some tedious rewriting)

d

dv
wFIL(v, k) + (rk + hG(v)− λḠ(v))wFIL(v, k)− λḠ(v)kµ2W

FIL(v, k)

= −λḠ(v)kµ2ξk + λḠ(v)µ2(k + 1)
(
ξk+1 −WFIL(v, k + 1)

)
. (7.10)

Note that the above corresponds to a linear second-order differential equation again,
but now involving an inhomogeneous term due to page k + 1. As at page s − N ,
the coefficients are constant for the appealing special case in which customers have
infinite patience, see Subsection 7.4.3. For the case of impatient customers, we follow
the procedure at page s−N . Considering the tail of the FIL distribution W̄FIL(v, k)
again, Equation (7.10) may be written as the following linear second-order differential
equation:

d2

dv2
W̄FIL(v, k) + ak(v)

d

dv
W̄FIL(v, k) + bk(v)W̄FIL(v, k)

= −λḠ(v)µ2(k + 1)W̄FIL(v, k + 1), (7.11)

We now show by induction that the tail of the FIL distribution can be iteratively
determined by

W̄FIL(v, k) = Ckw̃k(v) +

s−N∑
j=k+1

Cjw̃
part
k,j (v), (7.12)

with w̃k(·) and w̃part
k,j (·) as defined in (7.7) and (7.8), respectively. For k = s−N the

result follows directly from the analysis at page s −N above. Assuming that (7.12)
is valid for k + 1, we show that W̄FIL(v, k) also satisfies (7.12).

Observe that W̄FIL(v, k) satisfies an inhomogeneous second-order DE, cf. (7.11).
Using (7.7), the general solution of the complementary homogeneous DE is Ckw̃k(x).
For the particular solution we rely on the iterative scheme of calculating the tail of
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the FIL distribution. Due to the induction hypothesis, we need particular solutions
of

w′′(v) + ak(v)w′(v) + bk(v)w(v) =

− λḠ(v)µ2(k + 1)

Ck+1w̃k+1(v) +

s−N∑
j=k+2

Cjw̃
part
k+1,j(v)

 .

Now, using that w̃k+1(v) = w̃part
k+1,k+1(v), w̃part

k,k+1(·) is a particular solution of

w′′(v) + ak(v)w′(v) + bk(v)w(v) = −λḠ(v)µ2(k + 1)w̃part
k+1,k+1(v).

Also, for j = k + 2, . . . , s−N , w̃part
k,j (·) is a particular solution of

w′′(v) + ak(v)w′(v) + bk(v)w(v) = −λḠ(v)µ2(k + 1)w̃part
k+1,j(v).

Using standard arguments about DE’s, it follows that a particular solution of (7.11)

is given by
∑s−N
j=k+1 Cjw̃

part
k,j (v). Combining the above, the induction step is shown.

Page 0: We use the same approach as for page k, for k ∈ {1, . . . , s−N−1}, yielding
Equation (7.10). As k = 0 in this case, we now obtain a first-order inhomogeneous
DE for the FIL-density (instead of the FIL-distribution),

d

dv
wFIL(v, k) + (sµ1 + hG(v)− λḠ(v))wFIL(v, k) = (7.13)

λḠ(v)µ2

(
ξ1 −WFIL(v, 1)

)
.

The solution to the corresponding homogeneous equation is equivalent to the situation
of Section 7.3. Specifically, the solution to the homogeneous equation is, cf. (7.4),

C0 exp

{∫ v

0

λḠ(u)− sµ1 − hG(u) du

}
,

corresponding to the FIL waiting time in a corresponding M/M/s+G system. Using
standard analysis, the general solution to (7.13) is

wFIL(v, 0) = C0 exp

{∫ v

0

λḠ(u)− sµ1 − hG(u) du

}
+

∫ v

t=0

exp

{∫ v

t

λḠ(u)− sµ1 − hG(u) du

}
λḠ(t)µ2W̄

FIL(t, 1) dt.

Using that −
∫ v
t
hG(u) du = log(Ḡ(v)/Ḡ(t)) and some rewriting completes the proof.
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7.4.3 Infinite patience

The steady-state distribution of the FIL process can be found explicitly in terms of
the mixture of exponential terms in case customers have infinite patience, as pre-
sented in Proposition 7.3. Define φk as the negative root of the following quadratic
equation

φ2 + (rk − λ)φ− λkµ2 = 0, (7.14)

that is,

φk =
λ− rk −

√
(rk − λ)2 + 4λkµ2

2
. (7.15)

For convenience, we assume that λ 6= s(µ1 − µ2), such that all φk are different, for
different k’s, see also Remark 7.2.

Proposition 7.3. The distribution of the FIL process at page k is

WFIL(v, k) =


ξk +

∑s−N
j=k Cj,ke

φjv, for k ∈ {1, . . . , s−N};

ξ0 − C̃0,0

sµ1(1−ρ)e
−sµ1(1−ρ)v +

∑s−N
j=1 Cj,0e

φjv, for k = 0,

where, for j ∈ {k + 1, . . . , s−N},

Cj,k = (−1)j−kCj,j

j−1∏
l=k

λ(l + 1)µ2

φ2
j + (rl − λ)φj − λlµ2

(7.16)

and C̃0,0 = C0,0φ0.

We note that φ0 = λ − sµ1 = −sµ1(1 − ρ). For convenience, we may write C0,0 =

C̃0,0/φ0.

Proof. Again, for the derivation we start at page s−N and then iteratively determine
the FIL distribution at page k given its distribution at page k + 1.

Page s − N : Using the infinite patience assumption, it holds that ak(v) = rk − λ
and bk = −λkµ2. Thus (7.7) is a second-order differential equation with constant
coefficients. Using standard calculus, the general solution for the FIL distribution is

ξs−N + C
(1)
s−Ne

φ
(1)
s−Nv + C

(2)
s−Ne

φ
(2)
s−Nv,

where φ
(1)
s−N and φ

(2)
s−N are the negative and positive root of Equation (7.14) with

k = s − N . Since eφ
(2)
s−Nv → ∞, as v → ∞ (due to φ

(2)
s−N being positive), and

WFIL(v, s − N) is a distribution function, it should hold that C
(2)
s−N = 0. This

completes the FIL distribution at page s−N .



7.4. ANALYSIS FOR DIFFERENT SERVICE REQUIREMENTS 161

Page k ∈ {1, . . . , s − N − 1}: For infinite patience, the second-order differential
equation of (7.10) can be written as

d

dv
wFIL(v, k) + (rk − λ)wFIL(v, k)− λkµ2W

FIL(v, k)

= −λkµ2ξk + λ(k + 1)µ2

(
ξk+1 −WFIL(v, k + 1)

)
. (7.17)

We now show by induction that the FIL distribution is a mixture of exponentials:

WFIL(v, k) = ξk +

s−N∑
j=k

Cj,ke
φjv,

with Cj,k given by (7.16). Note that the result holds for k = s−N from the analysis
of page s −N above. Assuming the above FIL-distribution for page k + 1, we show
that this provides the FIL-distribution for page k.

Note that (7.17) is again an inhomogeneous second-order DE with constant coeffi-
cients, where the homogeneous part is similar to that of page s − N . Hence, the
solution of the complementary homogeneous DE is

C
(1)
k eφ

(1)
k v + C

(2)
k eφ

(2)
k v,

with φ
(1)
k and φ

(2)
k the negative and positive root of Equation (7.14). As for page

s−N , it should hold that C
(2)
k = 0, as WFIL(v, k) is a distribution function, leaving

Ck,k exp(φkv) as solution to the homogeneous DE.

For the particular solution, we rely on the iterative scheme of calculating the FIL
distribution, i.e., the induction assumption. Trying particular solutions of the type
WFIL
p (v, k) = ξk +

∑s−N
j=k+1Aje

φjv, gives expressions for Aj (representing Cj,k) in
terms of Cj,j :

Aj = −Cj,k+1
λ(k + 1)µ2

φ2
j + (rk − λ)φj − λkµ2

= (−1)× (−1)j−k−1Cj,j

j−1∏
l=k+1

λ(l + 1)µ2

φ2
j + (rl − λ)φj − λlµ2

× λ(k + 1)µ2

φ2
j + (rk − λ)φj − λkµ2

,

where the second equality follows from the induction hypothesis. The general solution
of (7.17) is then

WFIL(v, k) = ξk + Ck,ke
φkv +

s−N∑
j=k+1

Cj,ke
φjv,

where, for j ∈ {k + 1, . . . , s − N}, Cj,k is given by Equation (7.16). This shows the
results for WFIL(v, k).
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Page 0: For infinite patience, Equation (7.13) reads

d

dv
wFIL(v, 0) + (sµ1 − λ)wFIL(v, k) = λµ2

(
ξ1 −WFIL(v, 1)

)
.

The solution to the corresponding homogeneous equation is directly seen to be

C̃0,0e
(λ−sµ1)v,

corresponding to the waiting time density in a corresponding Erlang delay model. For
the particular solution, we use the FIL-distribution at page 1. Hence, we look for a
solution of the type wFILp (v, 0) =

∑s−N
j=1 Aje

φjv, showing that

Aj = −Cj,1
λµ2

φj + sµ1 − λ
.

The general solution of the FIL-density then is

wFIL(v, 0) = C̃0,0e
−sµ1(1−ρ)v +

s−N∑
j=1

Aje
φjv.

We now obtain the distribution function from the density:

WFIL(v, 0) = ξ0 −
∫ ∞
v

wFIL(u, 0)du

= ξ0 −
C̃0,0

sµ1(1− ρ)
e−sµ1(1−ρ)v +

s−N∑
j=1

Aj
φj
eφjv.

Finally, note that the constant Cj,0 := Aj/φj , for j ∈ {1, . . . , s − N}, also follows
from the recursion (7.16).

Remark 7.2. We note that for λ = s(µ1−µ2), it holds that all φk are identical to φ0.

In that case, the FIL distribution WFIL(v, k) is of the form
∑s−N
j=k Ĉj,kv

s−N−jeφ0v

instead of a mixture of exponential terms.

7.4.4 Constants and boundary conditions

To complete the FIL distribution, we consider the ‘boundary’ case in which there are
no type 1 customers waiting. In particular, we present the boundary equations in the
lemma below, which are essentially flow balance equations. These equations are used
to construct a set of linear equations to find the full FIL distribution.

Lemma 7.3. We consider the boundary equations for state (−l, k), with l the number
of idle servers.
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Figure 7.2: System dynamics in case of idle servers.

(i) For l = 0 and k ∈ {0, 1, . . . , s−N}

(λ+ kµ2 + (s− k)µ1)wFIL(0, k) (7.18)

= λwFIL(−1, k) +

∫ ∞
0

((s− k)µ1 + hG(u))wFIL(u, k)Fu(0)du

+ 1{k<s−N}(k + 1)µ2

∫ ∞
0

wFIL(u, k + 1)Fu(0)du.

(ii) For l ∈ {1, . . . , N − 1} and k ∈ {0, 1, . . . , s−N}

(λ+ kµ2 + (s− k − l)µ1)wFIL(−l, k) (7.19)

= λwFIL(−l − 1, k) + (s− k − l + 1)µ1w
FIL(−l + 1, k)

+ 1{k<s−N}(k + 1)µ2w
FIL(−l + 1, k + 1).

(iii) For l = N and k ∈ {0, 1, . . . , s−N}

(λ+ (s−N − k)µ1)wFIL(−N, k) (7.20)

= (s−N − k + 1)µ1

[
1{k>0}w

FIL(−N, k − 1) + wFIL(−N + 1, k)
]

+ 1{k<s−N}(k + 1)µ2w
FIL(−N + 1, k + 1).

Proof. The flow balance equations for the states (−l, k) ∈ {1, . . . , N}×{0, . . . , s−N}
follow directly from Figure 7.2. Now consider states (0, k) with k ∈ {0, . . . , s−N−1}.
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Using infinitesimal arguments, we obtain

P(Vt+h = 0, Yt+h = k) = (1− λh− kµ2h− (s− k)µ1h)P(Vt = 0, Yt = k)

+ λhP(Vt = −1, Yt = k)

+

∫ ∞
0

h((s− k)µ1 + hG(u))P(Ãλ > u) dP(Vt ≤ u, Yt = k)

+ (k + 1)µ2hP(Vt ≤ Ãλ, Yt = k + 1) + o(h).

Note that P(Ãλ > u) = Fu(0). Subtracting P(Vt = 0, Yt = k), dividing by h and
taking the limits h → 0 and t → ∞, yields the result. For state (0, s −N), the final
term vanishes.

Note that the terms wFIL(u, k) appear in the integrals; this can be obtained as the
derivative of the solutions to the differential equations. Now, it remains to determine
the (s−N + 1)(N + 3) unknowns: Ck, ξk and wFIL(−l, k), with k = 0, 1, . . . , s−N
and l = 0, 1, . . . , N . The required number of (s−N + 1)(N + 3) equations to find the
unknowns are then as follows:

1. (s−N + 1)(N + 1) boundary equations in Lemma 7.3;

2. Letting v ↓ 0 in Proposition 7.2 and using w̃k(0) = 1, yields the following
(s−N + 1) equations:

ξk −
N∑
l=0

wFIL(−l, k) = Ck +

s−N∑
j=k+1

Cjw̃
part
k,j (0), k = 1, 2, . . . , s−N, (7.21)

and, with wFIL(u, 0) a linear function of Cj , j = 0, . . . , s−N ,

ξ0 −
N∑
l=0

wFIL(−l, 0) =

∫ ∞
0

wFIL(u, 0) du;

3. (s−N) set balance equations for page k ∈ {0, 1, . . . , s−N − 1}:
wFIL(−N, k)(s−N − k)µ1 + 1{k>0}

(
ξk − wFIL(−N, k)

)
kµ2 =(

ξk+1 − wFIL(−N, k + 1)
)

(k + 1)µ2 (7.22)

+ 1{k>0}w
FIL(−N, k − 1)(s−N − k + 1)µ1;

4. Normalization equation
s−N∑
k=0

ξk = 1. (7.23)

Remark 7.3 (Constants and equations for infinite patience). When the patience of
the jobs is infinite, we have unknown constants Ck,k, instead of Ck, k = 0, 1, . . . , s−N .
Equation (7.18) can be more explicit, by writing out the integrals using the form of
WFIL(v, k) given in Proposition 7.3.
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7.4.5 Performance measures

The waiting-time distribution follows from the FIL process by considering specific
epochs, i.e., moments of service completions. Our main result is presented in Theo-
rem 7.2 and gives the tail of the steady-state waiting-time distribution, for customers
that do not abandon. The constants follow from a system of linear equations repre-
senting the boundary conditions.

Theorem 7.2 (Waiting time type 1). The tail of the steady-state waiting-time dis-
tribution is

P(W > α|service) =

∑s−N
k=0 rkW̄

FIL(α, k)

λP(W = 0) +
∑s−N
k=0 rkW̄FIL(0, k)

,

where W̄FIL(α, k) follows from Proposition 7.2, and an atom in 0,

P(W = 0) =

s−N∑
k=0

N∑
l=1

wFIL(−l, k). (7.24)

Here, W̄FIL(0, k) and wFIL(−l, k) follow from Proposition 7.2 and the system of
linear equations (7.18)–(7.23).

Proof. We use the same method as in the proof of Theorem 7.1. Specifically, the
waiting time is zero when there are idle servers upon arrival. The PASTA property
yields (7.24). The arrival rate of customers that are taken into service is given by

λ∗ = λP(W = 0) +

s−N∑
k=0

rkW̄
FIL(0, k). (7.25)

For positive waiting times, we consider the moments at which jobs are taken into
service:

P(Vt > α,N(t, t+ h) = 1) =

s−N∑
k=0

P(Vt > α, Yt = k,N(t, t+ h) = 1)

=

s−N∑
k=0

rkhW̄
FIL(α, k) + o(h).

Now,

P(W > α|service) = lim
h→0

P(Vt > α|N(t, t+ h) = 1) = lim
h→0

P(Vt > α,N(t, t+ h) = 1)

P(N(t, t+ h) = 1)

=
1

λ∗

s−N∑
k=0

rkW̄
FIL(α, k).

Filling in λ∗ (into Equation (7.25)) completes the proof.
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We also directly have another relevant performance measure, the probability that a
customer receives service.

Corollary 7.3 (Probability of service). The probability that a customer receives ser-
vice is given by

P(service) = λ∗/λ,

with λ∗ given in (7.25).

The throughput of type 2 follows directly from the analysis of the FIL process.

Corollary 7.4 (Throughput type 2). The throughput for type-2 traffic is

TH =

s−N∑
k=0

ξkkµ2.

This formula for the throughput also holds if the patience of type-1 jobs is infinite.
The following corollary gives the waiting-time distribution for type-1 jobs in the case
of infinite patience, leading to more explicit expressions.

Corollary 7.5 (Waiting time for infinite patience). The tail of the steady-state
waiting-time distribution of type 1 jobs is

P(W > α) = e−sµ1(1−ρ)α × −C0,0

ρ
+

s−N∑
j=1

eφjα × −
∑j
k=0 rkCj,k
λ

,

with Cj,k and φk given in (7.16) and (7.15), respectively, and an atom in 0 given in
Equation (7.24). See also Remark 7.3.

Remark 7.4 (Numerical results). We did some numerical experiments for the model
with infinite patience. Figure 7.3 shows the tail probability of the waiting time and
the throughput of type-2 jobs for a specific set of parameters. On the left axis, the
probability of waiting less than 1/3, the required service level (SL) can be found,
where the dotted line gives the required SL. The throughput of type-2 jobs is plotted
on the right axis. We see that the SL increases with N and the throughput of type-2
jobs decreases. As N increases, the ascent in SL decreases, i.e., the SL increases in a
concave manner. The decrease in throughput is for intermediate values of N roughly
linear. If P(W < α) is above the dotted line, the 80-20 service level is met, 80% of
the jobs is served within 20 seconds (1/3 minutes). For N = 3, the SL requirement is
met and the throughput of type-2 jobs is equal to 1.42.
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Summary

Queueing models are typically used to analyze stochastic systems where congestion
occurs. Prominent examples are grocery stores, amusement parks and road networks
(visible queues), and call centers, communication networks, manufacturing and com-
puter systems (at a more abstract level). In this thesis, we study multi-class queues,
or more specifically, we consider a single queueing node that is used by multiple cus-
tomer classes. Three common types of multi-class queues are: priority queues, polling
models, and Processor Sharing queues. In priority queues, the customer classes are
subject to a priority structure in which high priority classes have preferential treat-
ment over lower priority classes. In polling models, customers of different classes arrive
in different queues. There is a single server that can serve only one queue at a time
and then switches to a different queue. Finally, Processor Sharing queues are cha-
racterized by the fact that all customers receive service simultaneously. Nonetheless,
high priority customers may receive a larger share of the server. Following this hier-
archy, priority queues are found in Chapters 6 and 7, polling models in Chapters 2–4,
and Process Sharing queues in Chapter 5.

In Chapter 2 we analyze polling models with gated and globally gated service disci-
plines. We consider the following five local scheduling policies: FCFS, LCFS, ROS,
PS and SJF (see Table 1.1 for a description). For each configuration, we derive the
distribution of the waiting time in the heavy-traffic (HT) regime, i.e., when the load
tends to 1. We show that the waiting-time distribution in HT is the product of two
random variables. The first random variable captures the impact of the local sche-
duling policy, whereas the second random variable has a gamma distribution with
known parameters and is the same for all local scheduling policies. These asymptotic
results, combined with low-traffic results, are used to derive closed-form approxima-
tions for the waiting-time distributions in polling models with arbitrary load. The
performance of these approximations is evaluated with simulations. The numerical
results show that the approximations are accurate for all possible load values.

The model and type of results of Chapter 3 are similar to those in Chapter 2, but
now the service discipline is exhaustive. This policy is more challenging to analyze
than the gated policies, since we now have to deal with customers arriving during
the service of the queue. We derive new closed-form expressions for the asymptotic
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waiting-time distribution under exhaustive service. The waiting-time distribution in
HT is the product of two random variables, where the first random variable captures
the impact of the local scheduling policy. The second random variable has a gamma
distribution and is the same for all local scheduling policies. The difference with the
gated case is the fact that the first random variables are generally more complicated.
The results lead again to closed-form approximations for the waiting-time distribu-
tions in polling models with arbitrary loads, which are evaluated using simulations.
The approximations are accurate for all systems with reasonable loads.

In Chapter 4 we study polling systems with globally gated or gated service disciplines
and FCFS as local scheduling policy. We are interested in the transient behavior of
the cycle lengths. By deriving the joint LST of x cycles in terms of the first cycle,
we are able to analyze the dependency structure between the different cycles. This is
useful in, e.g., systems where breakdowns or other disruptions might occur, leading
to long cycle lengths. The time to recover from such events is a primary performance
measure. From the joint LST, we derive first and second moments and correlation
coefficients between different cycles. Numerical results show the influence of cycle
lengths on subsequent cycle lengths.

In Chapter 5 we analyze a Discriminatory Processor Sharing (DPS) queue. This is
a queue, where all jobs that are present are served simultaneously. The different job
types are assigned different weights and, depending on those weights, each job receives
a share of the server’s capacity. Jobs with higher weights receive more server capacity
than jobs with lower weights and thus are served relatively fast. We assume that the
service times are exponential and batches of jobs of various types arrive according to
a Poisson process. We are interested in the joint queue-length distribution. We show
that, in the HT regime, the scaled distribution is given by a vector of known con-
stants multiplied by a single exponentially distributed random variable (with known
parameter), also referred to as a state-space collapse. This simple result can be used
to approximate the joint queue-length distribution in stable DPS systems. Numerical
results show the usefulness of the asymptotic results for stable systems.

In Chapter 6 we study a specific single-server priority queue with two types of jobs.
This chapter is motivated by a health-care application, more specifically, by access
times for an appointment at a hospital’s outpatient department. The type-1 jobs are
patients arriving according to a Poisson process and the type-2 jobs are other tasks
(e.g., administration tasks). We assume that there is an infinite number of type-2 jobs.
If the queue length of type-1 jobs is above a certain threshold level, then more type-1
jobs are taken into service, by doing less type-2 jobs. This causes type-1 to be served
faster. If the queue length of type-1 jobs drops below the threshold, more type-2 jobs
will be taken into service again. We are interested in the waiting-time distribution of
type-1 jobs and the fraction of time that less type-2 jobs can be done. To this end,
we develop two different models, where the second model also allows for randomness
in the number of type-2 jobs that can be done. Based on numerical experiments, we
see that such systems may efficiently operate at high loads of type 1.
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In Chapter 7 we study a specific multi-server priority queue with two types of jobs.
This chapter is motivated by a call center application. Type-1 jobs (e.g., inbound calls)
arrive according to a Poisson process and have non-preemptive priority over type-2
jobs (e.g., emails, outbound calls). We assume again an infinite number of type-2 jobs
and the service-time distribution is exponential, with different means for the different
job types. Type-1 jobs have a general patience distribution, they abandon the queue
if their patience is smaller than their waiting time. If there is no queue of type-1 jobs,
some of the servers will be kept idle, so that they are able to immediately handle
arriving type-1 jobs. For the type-1 jobs, we derive the waiting-time distribution and
the probability to abandon. The waiting-time distribution is given by the solution
of second-order differential equations. When customers have infinite patience, the
waiting-time distribution can be written as a mixture of exponentials. For the type-2
jobs, we determine the throughput.
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