6 research outputs found

    Dual-Band Transmitter and Receiver with Bowtie-Antenna in 0.13 μm SiGe BiCMOS for Gas Spectroscopy at 222 - 270 GHz

    Get PDF
    This paper presents a transmitter (TX) and a receiver (RX) with bowtie-antenna and silicon lens for gas spectroscopy at 222-270 GHz, which are fabricated in IHP’s 0.13 μm SiGe BiCMOS technology. The TX and RX use two integrated local oscillators for 222 – 256 GHz and 250 – 270 GHz, which are switched for dual-band operation. Due to its directivity of about 27 dBi, the single integrated bowtie-antenna with silicon lens enables an EIRP of about 25 dBm for the TX, and therefore a considerably higher EIRP for the 2-band TX compared to previously reported systems. The double sideband noise temperature of the RX is 20,000 K (18.5 dB noise figure) as measured by the Y-factor method. Absorption spectroscopy of gaseous methanol is used as a measure for the performance of the gas spectroscopy system with TX- and RX-modules

    Dual-Band Transmitter and Receiver With Bowtie-Antenna in 0.13 μm SiGe BiCMOS for Gas Spectroscopy at 222 - 270 GHz

    Get PDF
    This paper presents a transmitter (TX) and a receiver (RX) with bowtie-antenna and silicon lens for gas spectroscopy at 222-270 GHz, which are fabricated in IHP's 0.13 μm SiGe BiCMOS technology. The TX and RX use two integrated local oscillators for 222 - 256 GHz and 250 - 270 GHz, which are switched for dual-band operation. Due to its directivity of about 27 dBi, the single integrated bowtie-antenna with silicon lens enables an EIRP of about 25 dBm for the TX, and therefore a considerably higher EIRP for the 2-band TX compared to previously reported systems. The double sideband noise temperature of the RX is 20,000 K (18.5 dB noise figure) as measured by the Y-factor method. Absorption spectroscopy of gaseous methanol is used as a measure for the performance of the gas spectroscopy system with TX- and RX-modules

    Millimeter-wave gas spectroscopy for breath analysis of COPD patients in comparison to GC-MS

    Get PDF
    The analysis of human breath is a very active area of research, driven by the vision of a fast, easy, and non-invasive tool for medical diagnoses at the point of care. Millimeter-wave gas spectroscopy (MMWGS) is a novel, well-suited technique for this application as it provides high sensitivity, specificity and selectivity. Most of all, it offers the perspective of compact low-cost systems to be used in doctors' offices or hospitals. In this work, we demonstrate the analysis of breath samples acquired in a medical environment using MMWGS and evaluate validity, reliability, as well as limitations and perspectives of the method. To this end, we investigated 28 duplicate samples from chronic obstructive lung disease patients and compared the results to gas chromatography-mass spectrometry (GC-MS). The quantification of the data was conducted using a calibration-free fit model, which describes the data precisely and delivers absolute quantities. For ethanol, acetone, and acetonitrile, the results agree well with the GC-MS measurements and are as reliable as GC-MS. The duplicate samples deviate from the mean values by only 6% to 18%. Detection limits of MMWGS depend strongly on the molecular species. For example, acetonitrile can be traced down to 1.8 × 10−12 mol by the MMWGS system, which is comparable to the GC-MS system. We observed correlations of abundances between formaldehyde and acetaldehyde as well as between acetonitrile and acetaldehyde, which demonstrates the potential of MMWGS for breath research.Deutsche Forschungsgemeinschafthttp://dx.doi.org/10.13039/501100001659Deutsches Zentrum für Lungenforschunghttp://dx.doi.org/10.13039/501100010564Peer Reviewe
    corecore