22 research outputs found

    Modules or mean-fields?

    Get PDF
    The segregation of neural processing into distinct streams has been interpreted by some as evidence in favour of a modular view of brain function. This implies a set of specialised 'modules', each of which performs a specific kind of computation in isolation of other brain systems, before sharing the result of this operation with other modules. In light of a modern understanding of stochastic non-equilibrium systems, like the brain, a simpler and more parsimonious explanation presents itself. Formulating the evolution of a non-equilibrium steady state system in terms of its density dynamics reveals that such systems appear on average to perform a gradient ascent on their steady state density. If this steady state implies a sufficiently sparse conditional independency structure, this endorses a mean-field dynamical formulation. This decomposes the density over all states in a system into the product of marginal probabilities for those states. This factorisation lends the system a modular appearance, in the sense that we can interpret the dynamics of each factor independently. However, the argument here is that it is factorisation, as opposed to modularisation, that gives rise to the functional anatomy of the brain or, indeed, any sentient system. In the following, we briefly overview mean-field theory and its applications to stochastic dynamical systems. We then unpack the consequences of this factorisation through simple numerical simulations and highlight the implications for neuronal message passing and the computational architecture of sentience

    Paradoxical lesions, plasticity and active inference

    Get PDF
    Paradoxical lesions are secondary brain lesions that ameliorate functional deficits caused by the initial insult. This effect has been explained in several ways; particularly by the reduction of functional inhibition, or by increases in the excitatory-to-inhibitory synaptic balance within perilesional tissue. In this article, we simulate how and when a modification of the excitatory–inhibitory balance triggers the reversal of a functional deficit caused by a primary lesion. For this, we introduce in-silico lesions to an active inference model of auditory word repetition. The first in-silico lesion simulated damage to the extrinsic (between regions) connectivity causing a functional deficit that did not fully resolve over 100 trials of a word repetition task. The second lesion was implemented in the intrinsic (within region) connectivity, compromising the model’s ability to rebalance excitatory–inhibitory connections during learning. We found that when the second lesion was mild, there was an increase in experience-dependent plasticity that enhanced performance relative to a single lesion. This paradoxical lesion effect disappeared when the second lesion was more severe because plasticity-related changes were disproportionately amplified in the intrinsic connectivity, relative to lesioned extrinsic connections. Finally, this framework was used to predict the physiological correlates of paradoxical lesions. This formal approach provides new insights into the computational and neurophysiological mechanisms that allow some patients to recover after large or multiple lesions

    Cancer Niches and Their Kikuchi Free Energy

    Get PDF
    Biological forms depend on a progressive specialization of pluripotent stem cells. The differentiation of these cells in their spatial and functional environment defines the organism itself; however, cellular mutations may disrupt the mutual balance between a cell and its niche, where cell proliferation and specialization are released from their autopoietic homeostasis. This induces the construction of cancer niches and maintains their survival. In this paper, we characterise cancer niche construction as a direct consequence of interactions between clusters of cancer and healthy cells. Explicitly, we evaluate these higher-order interactions between niches of cancer and healthy cells using Kikuchi approximations to the free energy. Kikuchi’s free energy is measured in terms of changes to the sum of energies of baseline clusters of cells (or nodes) minus the energies of overcounted cluster intersections (and interactions of interactions, etc.). We posit that these changes in energy node clusters correspond to a long-term reduction in the complexity of the system conducive to cancer niche survival. We validate this formulation through numerical simulations of apoptosis, local cancer growth, and metastasis, and highlight its implications for a computational understanding of the etiopathology of cancer

    Bayesian Brains and the Rényi Divergence

    Get PDF
    Under the Bayesian brain hypothesis, behavioral variations can be attributed to different priors over generative model parameters. This provides a formal explanation for why individuals exhibit inconsistent behavioral preferences when confronted with similar choices. For example, greedy preferences are a consequence of confident (or precise) beliefs over certain outcomes. Here, we offer an alternative account of behavioral variability using Rényi divergences and their associated variational bounds. Rényi bounds are analogous to the variational free energy (or evidence lower bound) and can be derived under the same assumptions. Importantly, these bounds provide a formal way to establish behavioral differences through an α parameter, given fixed priors. This rests on changes in α that alter the bound (on a continuous scale), inducing different posterior estimates and consequent variations in behavior. Thus, it looks as if individuals have different priors and have reached different conclusions. More specifically, α→0+ optimization constrains the variational posterior to be positive whenever the true posterior is positive. This leads to mass-covering variational estimates and increased variability in choice behavior. Furthermore, α→+∞ optimization constrains the variational posterior to be zero whenever the true posterior is zero. This leads to mass-seeking variational posteriors and greedy preferences. We exemplify this formulation through simulations of the multiarmed bandit task. We note that these α parameterizations may be especially relevant (i.e., shape preferences) when the true posterior is not in the same family of distributions as the assumed (simpler) approximate density, which may be the case in many real-world scenarios. The ensuing departure from vanilla variational inference provides a potentially useful explanation for differences in behavioral preferences of biological (or artificial) agents under the assumption that the brain performs variational Bayesian inference

    Control flow in active inference systems Part I: Classical and quantum formulations of active inference

    Get PDF
    Living systems face both environmental complexity and limited access to free-energy resources. Survival under these conditions requires a control system that can activate, or deploy, available perception and action resources in a context specific way. In this Part I, we introduce the free-energy principle (FEP) and the idea of active inference as Bayesian prediction-error minimization, and show how the control problem arises in active inference systems. We then review classical and quantum formulations of the FEP, with the former being the classical limit of the latter. In the accompanying Part II, we show that when systems are described as executing active inference driven by the FEP, their control flow systems can always be represented as tensor networks (TNs). We show how TNs as control systems can be implemented within the general framework of quantum topological neural networks, and discuss the implications of these results for modeling biological systems at multiple scales

    Hierarchical generative modelling for autonomous robots

    Get PDF
    Humans generate intricate whole-body motions by planning, executing and combining individual limb movements. We investigated this fundamental aspect of motor control and approached the problem of autonomous task completion by hierarchical generative modelling with multi-level planning, emulating the deep temporal architecture of human motor control. We explored the temporal depth of nested timescales, where successive levels of a forward or generative model unfold, for example, object delivery requires both global planning and local coordination of limb movements. This separation of temporal scales suggests the advantage of hierarchically organizing the global planning and local control of individual limbs. We validated our proposed formulation extensively through physics simulation. Using a hierarchical generative model, we showcase that an embodied artificial intelligence system, a humanoid robot, can autonomously complete a complex task requiring a holistic use of locomotion, manipulation and grasping: the robot adeptly retrieves and transports a box, opens and walks through a door, kicks a football and exhibits robust performance even in the presence of body damage and ground irregularities. Our findings demonstrated the efficacy and feasibility of human-inspired motor control for an embodied artificial intelligence robot, highlighting the viability of the formulized hierarchical architecture for achieving autonomous completion of challenging goal-directed tasks

    The evolution of brain architectures for predictive coding and active inference

    Get PDF
    This article considers the evolution of brain architectures for predictive processing. We argue that brain mechanisms for predictive perception and action are not late evolutionary additions of advanced creatures like us. Rather, they emerged gradually from simpler predictive loops (e.g. autonomic and motor reflexes) that were a legacy from our earlier evolutionary ancestors-and were key to solving their fundamental problems of adaptive regulation. We characterize simpler-to-more-complex brains formally, in terms of generative models that include predictive loops of increasing hierarchical breadth and depth. These may start from a simple homeostatic motif and be elaborated during evolution in four main ways: these include the multimodal expansion of predictive control into an allostatic loop; its duplication to form multiple sensorimotor loops that expand an animal's behavioural repertoire; and the gradual endowment of generative models with hierarchical depth (to deal with aspects of the world that unfold at different spatial scales) and temporal depth (to select plans in a future-oriented manner). In turn, these elaborations underwrite the solution to biological regulation problems faced by increasingly sophisticated animals. Our proposal aligns neuroscientific theorising-about predictive processing-with evolutionary and comparative data on brain architectures in different animal species. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'

    Dynamic causal modelling of immune heterogeneity

    Get PDF
    An interesting inference drawn by some COVID-19 epidemiological models is that there exists a proportion of the population who are not susceptible to infection-even at the start of the current pandemic. This paper introduces a model of the immune response to a virus. This is based upon the same sort of mean-field dynamics as used in epidemiology. However, in place of the location, clinical status, and other attributes of people in an epidemiological model, we consider the state of a virus, B and T-lymphocytes, and the antibodies they generate. Our aim is to formalise some key hypotheses as to the mechanism of resistance. We present a series of simple simulations illustrating changes to the dynamics of the immune response under these hypotheses. These include attenuated viral cell entry, pre-existing cross-reactive humoral (antibody-mediated) immunity, and enhanced T-cell dependent immunity. Finally, we illustrate the potential application of this sort of model by illustrating variational inversion (using simulated data) of this model to illustrate its use in testing hypotheses. In principle, this furnishes a fast and efficient immunological assay-based on sequential serology-that provides a (1) quantitative measure of latent immunological responses and (2) a Bayes optimal classification of the different kinds of immunological response (c.f., glucose tolerance tests used to test for insulin resistance). This may be especially useful in assessing SARS-CoV-2 vaccines

    Hierarchical generative modelling for autonomous robots

    Full text link
    Humans can produce complex whole-body motions when interacting with their surroundings, by planning, executing and combining individual limb movements. We investigated this fundamental aspect of motor control in the setting of autonomous robotic operations. We approach this problem by hierarchical generative modelling equipped with multi-level planning-for autonomous task completion-that mimics the deep temporal architecture of human motor control. Here, temporal depth refers to the nested time scales at which successive levels of a forward or generative model unfold, for example, delivering an object requires a global plan to contextualise the fast coordination of multiple local movements of limbs. This separation of temporal scales also motivates robotics and control. Specifically, to achieve versatile sensorimotor control, it is advantageous to hierarchically structure the planning and low-level motor control of individual limbs. We use numerical and physical simulation to conduct experiments and to establish the efficacy of this formulation. Using a hierarchical generative model, we show how a humanoid robot can autonomously complete a complex task that necessitates a holistic use of locomotion, manipulation, and grasping. Specifically, we demonstrate the ability of a humanoid robot that can retrieve and transport a box, open and walk through a door to reach the destination, approach and kick a football, while showing robust performance in presence of body damage and ground irregularities. Our findings demonstrated the effectiveness of using human-inspired motor control algorithms, and our method provides a viable hierarchical architecture for the autonomous completion of challenging goal-directed tasks
    corecore