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Abstract

Under the Bayesian brain hypothesis, behavioural variations can be attributed to different

priors over generative model parameters. This provides a formal explanation for why indi-

viduals exhibit inconsistent behavioural preferences when confronted with similar choices.

For example, greedy preferences are a consequence of confident (or precise) beliefs over

certain outcomes. Here, we offer an alternative account of behavioural variability using

Rényi divergences, and their associated variational bounds. Rényi bounds are analogous to

the variational free energy (or evidence lower bound), and can be derived under the same

assumptions. Importantly, these bounds provide a formal way to establish behavioural dif-

ferences through an α parameter, given fixed priors. This rests on changes in α that alter

the bound (on a continuous scale), inducing different posterior estimates, and consequent

variations in behaviour. Thus, it looks as if individuals have different priors, and have reached

different conclusions. More specifically, α → 0+ optimisation constrains the variational

posterior to be positive whenever the true posterior is positive. This leads to mass-covering

variational estimates and increased variability in choice behaviour. Furthermore, α→ +∞

optimisation constrains the variational posterior to be zero whenever the true posterior is zero.

This leads to mass-seeking variational posteriors, and greedy preferences. We exemplify

this formulation through simulations of the multi-armed bandit task. We note that these α

parameterisations may be especially relevant, i.e., shape preferences, when the true posterior

is not in the same family of distributions as the assumed (simpler) approximate density, which

may be the case in many real-world scenarios. The ensuing departure from vanilla variational

inference provides a potentially useful explanation for differences in behavioural preferences

of biological (or artificial) agents – under the assumption that the brain performs variational

Bayesian inference.
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1 Introduction

The notion that the brain is Bayesian—or more appropriately, Laplacian (Stigler (1986))—and

performs some form of inference has attracted enormous attention in neuroscience (Doya,

Ishii, Pouget, and Rao (2007); Knill and Pouget (2004)). It takes the view that the brain

embodies a model about causes of sensation, that allow for predictions about observations

(Dayan, Hinton, Neal, and Zemel (1995); Hohwy (2012); Schmidhuber (1992); Schmidhuber

and Heil (1995)) and future behaviour (K. Friston, FitzGerald, Rigoli, Schwartenbeck, and

Pezzulo (2017); Schmidhuber (1990)). Practically, this involves the optimisation of a free

energy functional (or evidence lower bound) (Bogacz (2017a); K. Friston et al. (2017); Penny

(2012)), using variational inference (Blei, Kucukelbir, and McAuliffe (2017); Wainwright and

Jordan (2008)), to make appropriate predictions. The free energy functional can be derived

from the Kullback-Leibler (KL)-divergence (Kullback and Leibler (1951)), which measures

the dissimilarity between true and approximate posterior densities. Under this formulation,

behavioural variations can be attributed to altered priors over the (hyper-)parameters of a

generative model, given the same (variational) free energy functional (K. Friston et al. (2014);

Schwartenbeck et al. (2015)). This has been used to simulate variations in choice behaviour

(FitzGerald, Schwartenbeck, Moutoussis, Dolan, and Friston (2015); K. Friston et al. (2014);

K. J. Friston et al. (2015); Storck, Hochreiter, and Schmidhuber (1995)) and behavioural

deficits (Sajid, Parr, Gajardo-Vidal, Price, and Friston (2020); Smith, Lane, Parr, and Friston

(2019)).

Conversely, distinct behavioural profiles could be attributed to differences in the variational

objective, given the same priors. In this paper, we consider this alternative account of

phenotypic variations in choice behaviour using Rényi divergences (S.-i. Amari (2012); S.-

i. Amari and Cichocki (2010); Phan, Abbasi-Yadkori, and Domke (2019); Rényi (1961);

Van Erven and Harremos (2014)). These are a general class of divergences, indexed by an α
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parameter, of which the KL-divergence is a special case. It is perfectly reasonable to diverge

from this special case since variational inference does not commit to the KL-divergence

(Wainwright and Jordan (2008)) (indeed, previous work has developed divergence-based

lower bounds that give tighter bounds e.g., (Barber and van de Laar (1999)), yet these may be

more difficult to optimise despite being better approximations). Broadly speaking, variational

inference is the process of approximating a posterior probability through application of

variational methods. This means finding the function (here, an approximate posterior), out

of a pre-defined family of functions, that extremizes an objective functional. In variational

inference, the key is choosing the objective such that the extreme value corresponds to the best

approximation. Rényi divergences can be used to derive a (generalised) variational inference

objective called the Rényi-bound (Li and Turner (2017)). The Rényi-bound is analogous

to the variational free energy functional and provides a formal way to establish phenotypic

differences despite consistent priors. This is accomplished by changes, on a continuous

scale, that give rise to different posterior estimates, and consequent behavioural variations

(Minka (2005)). Thus, changing the functional form of the bound will make it will look as

if individuals have different priors i.e., have reached different conclusions from the same

observations due to the distinct optimisation objective.

It is important to determine whether this formulation introduces fundamentally new

differences in behaviour that cannot be accounted for by altering priors under a standard

variational objective. Conversely, it may be possible to relate changes in prior beliefs to

changes in the variational objective. We investigate this for a simple Gaussian system by

examining the relationship between different parameterisations of the Rényi bound under

fixed priors and the variational free energy under different hyper-priors. It turns out that there

is no clear correspondence in most cases. This suggests that differences in behaviour caused

by changes in the divergence supplement standard accounts of behavioural differences under

changes of priors.
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The Rényi divergences depend on an α parameter that controls the strength of the bound1

and induces different posterior estimates. Consequently, the resulting system behaviour may

vary, and point towards different priors that could have altered the variational posterior form.

For this, we assume that systems (or agents) sample their actions based upon posterior beliefs,

and those posterior beliefs depend on the form of the Rényi bound α parameter. This furnishes

a natural explanation for observed behavioural variation. To make the link to behaviour, we

assume actions are selected – based on variational estimates – that maximise the Sharpe

ratio (Sharpe (1994)) i.e., a variance-adjusted return. Accordingly, evaluation of behavioural

differences rests upon a separation between estimation of posterior beliefs over particular

(hidden) states and the action selection criterion. That is, actions are selected given posterior

estimates about states. This is contrary to other Bayesian sequential decision-making schemes

-— such as active inference (Da Costa et al. (2020); K. Friston et al. (2017)) -— where actions

are sampled from posterior beliefs about action sequences (i.e., policies). This effectively

separates action and perception into state estimation and planning as inference2. However, we

will use a simplification of action selection—using the Sharpe Ratio—to focus on inferences

about hidden states under different values. We reserve further details for later sections.

Intuitively, under the Rényi bound, high α values lead to mass-seeking approximate3

posteriors i.e., greedy preferences for a particular outcome. This happens because the

variational posterior is constrained to be zero whenever the true posterior is zero. Conversely,

1Here, strength of bound refers the closeness with which the variational functional bounds

the (negative) log evidence.
2Note that heuristics like the Sharpe Ratio are unnecessary in active inference (Da Costa et

al. (2020); K. Friston et al. (2017)) – that automatically accommodates uncertainty of this sort

—- however, it is a useful heuristic because it foregrounds the role of posterior uncertainty in

action selection.
3We use approximate and variational posterior interchangeably throughout.
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α→ 0+ can result in mass-covering approximate posteriors —- resulting in a greater range of

actions for which there are plausible outcomes consistent with prior preferences. In this case,

the variational posterior is constrained to be positive whenever the true posterior is positive.

Hence, variable individual preferences could be attributed to differences in the variational

optimisation objective. This contrasts with standard accounts of behavioural differences,

where the precision of some fixed priors is used to explain divergent behaviour profiles under

the same variational objective. In what follows, we present, and validate, this generalised kind

of variational inference that can explain the implicit preferences of biological and artificial

agents, under the assumption that the brain performs variational Bayesian inference.

The paper is structured as follows. First, we provide a primer on standard variational

inference using the KL-divergence (section 2). Section 3 introduces Rényi divergences and

the derivation for the Rényi bound using the same assumptions as the standard variational

objective. We then consider what (if any) sort of correspondence exists between the Rényi

bound and the variational free energy functional —- i.e., the evidence lower bound —-

under different priors (section 4). In section 5, we validate the approach through numerical

simulations of the multi-armed bandit (Auer, Cesa-Bianchi, and Fischer (2002); Lattimore

and Szepesvári (2020)) paradigm with multi-modal observation distribution. Our simulations

demonstrate that variational Bayesian agents, optimising a generalised variational bound (i.e.,

Rényi bound) can naturally account for variations in choice behaviour. We conclude with

a brief discussion of future directions and the implications of our work for understanding

behavioural variations.

2 Variational Inference

Variational inference is an inference scheme based on variational calculus (Parisi (1988)).

It identifies the posterior distribution as the solution to an optimisation problem, allowing
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otherwise intractable probability densities to be approximated (Jordan, Ghahramani, Jaakkola,

and Saul (1999); Wainwright and Jordan (2008)). For this, we define a family of approximate

densities over the hidden variables of the generative model (Beal (2003); Blei et al. (2017)).

From this, we can use gradient descent to find the member of that variational family that

minimises a divergence to the true conditional posterior. This variational density then serves

as a proxy for the true density. This formulation underwrites practical applications that

characterise the brain as performing Bayesian inference including predictive coding (Millidge,

Tschantz, and Buckley (2020); Perrykkad and Hohwy (2020); Schmidhuber and Heil (1995);

Spratling (2017); Whittington and Bogacz (2017)), and active inference (Da Costa et al.

(2020); K. Friston et al. (2017); Sajid, Ball, Parr, and Friston (2021); Storck et al. (1995);

Tschantz, Seth, and Buckley (2020)).

2.1 KL-divergence and the standard variational objective

To derive the standard variational objective -— known as the variational free energy, or

negative evidence lower bound (ELBO) —- we consider a simple system with two random

variables. These are s ∈ S denoting hidden states of the system (e.g., it rained last night) and

o ∈ O the observations (e.g., the grass is wet). The joint density over these variables:

p(s, o) = p(o|s)p(s) (1)

where, p(s) is the prior density over states and p(o|s) is the likelihood, is called the generative

model. Then, the inference problem is to compute the posterior – i.e., the conditional density

– of the states given the outcomes:
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p(s|o) =
p(o, s)

p(o)
. (2)

This quantity contains the evidence, p(o), that can be calculated by marginalising out the

states from the joint density. However, the evidence is notoriously difficult to compute, which

makes the posterior intractable in practical applications. This problem can be finessed with

variational inference4. For this, we introduce a variational density, q(·) that can be easily

integrated. The following equations illustrate how we can derive the quantities of interest. We

assume that both p(s|o) and q(s) are non-zero:

log p(o) = log p(o) +

∫
S

log
p(s|o)
p(s|o)

ds (3)

=

∫
S
q(s) log p(o) ds+

∫
S
q(s) log

p(s|o)
p(s|o)

ds =

∫
S
q(s) log

p(s, o)

p(s|o)
ds (4)

=

∫
S
q(s) log

q(s)

q(s)
ds+

∫
S
q(s) log p(s, o) ds+

∫
S
q(s) log

1

p(s|o)
ds (5)

=

∫
S
q(s) log

1

q(s)
ds+

∫
S
q(s) log p(s, o) ds︸ ︷︷ ︸

ELBO

+

∫
S
q(s) log

q(s)

p(s|o)
ds︸ ︷︷ ︸

KL Divergence

(6)

The first two summands of the last equality are the evidence lower bound (Welbourne,

Woollams, Crisp, and Lambon-Ralph (2011)), and the last summand presents the KL-

divergence between the approximate and true posterior. If q(·) and p(·) are of the same

exponential family, then their KL divergence can be computed using the formula provided in

4There are other methods to estimate the posterior that include sampling-based, or hybrid

approaches e.g., Markov Chain Monte Carlo (MCMC). However, variational inference is

considerably faster than sampling, by employing simpler variational posteriors, which lead to

a simpler optimisation procedure (Wainwright and Jordan (2008)).
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(Huzurbazar (1955)). Our variational objective of interest is the free energy functional (F)

which upper bounds the negative log evidence. Therefore, we rewrite the last equality:

− log p(o) = −

[∫
S
q(s) log

1

q(s)
ds+

∫
S
q(s) log p(s, o) ds+

∫
S
q(s) log

q(s)

p(s|o)
ds

]
(7)

=

∫
S
q(s) log q(s) ds−

∫
S
q(s) log p(s, o) ds−

∫
S
q(s) log

q(s)

p(s|o)
ds (8)

≤
∫
S
q(s) log q(s) ds−

∫
S
q(s) log p(s, o) ds (9)

= −Eq(s)[log p(s, o)]−H[q(s)] (10)

= DKL

[
q(s)||p(s)

]︸ ︷︷ ︸
complexity

−Eq(s)
[
log p(o|s)

]︸ ︷︷ ︸
accuracy

(11)

= −DKL[q(s)||p(s, o)] = F (12)

The second last line is the commonly presented decomposition of the variational free

energy summands: complexity and accuracy (K. Friston et al. (2017); Sajid, Ball, et al. (2021)).

The accuracy term represents how well observed data can be predicted, while complexity is a

regularisation term. The variational free energy objective favours accurate explanations for

sensory observations that are maximally consistent with prior beliefs. Additionally, the last

equality defines the variational free energy in terms of a KL-divergence between q(s) and

p(o, s). This may seem different to those used to dealing with variational free energy to see it

defined in terms of a KL divergence. Since, usually this notation is reserved for arguments

that are both normalised (Bishop (2006)). However, here the normalisation factors over p(·)

become an additive constant in the KL-divergence, which has no effect on the gradients used

in optimisation or inference. Contrariwise, the normalising constant of q(·) needs to be the

same across the variational family.

In this setting, illustrations of behavioural variations i.e., differences in variational posterior
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estimations can result from different priors over the (hyper-)parameters5 of the generative

model (Storck et al. (1995)), e.g., change in precision over the likelihood function (K. Friston

et al. (2014)). We reserve description of hyper-priors and their impact on belief updating for

section 4.

3 Rényi divergences, and their variational bound

We are interested in defining a (general) variational objective that can account for behavioural

variations alternate to a change of priors. For this, we can replace the KL divergence by a gen-

eral divergence objective, i.e., a non-negative functionD[·||·] that satisfiesD[q(s)||p(s|o)] = 0

if and only if q(s) = p(s|o) for all s ∈ S6. For our purposes, we focus on Rényi divergences,

a general class of divergences that includes the KL-divergence. Explicitly, we can derive

the KL-divergence from the Rényi divergence as α → 1, e.g., using L’Hôpital’s rule, or

the minimum description length as α → ∞ (Table 1). This has the advantage of being

computationally tractable, and satisfies many additional properties (S.-i. Amari (2012); Rényi

(1961); Van Erven and Harremos (2014)). Rényi-divergences are defined as (Li and Turner

(2017); Rényi (1961)):

Dα

[
q(s)||p(s|o)

]
:=

1

α− 1
log

∫
S
q(s)αp(s|o)1−α ds (13)

5Note that introducing hyper-priors (or precision priors) is standard part of the Bayesian

machinery (Gelman, Carlin, Stern, and Rubin (1995)). Intuitively, this involves scaling the

variance over the distribution of interest to make it more or less precise (or confident). For

example, a Gaussian distribution can become relatively flat (i.e., less precise) or a Dirac delta

function (i.e., infinitely precise) in the limits of high and low variance, respectively.
6Technically, this equality holds up to a set of measure zero.
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where α ∈ R+ \ {1}. An analogous definition holds for the discrete case, by replacing

the densities with probabilities and the integral by a sum (Rényi (1961)). This family of

divergences can provide different posterior estimates as the minimum of the divergence

with respect to q varies smoothly with α. These differences are possible only when the true

posterior, e.g., some multi-modal distribution, is not in the same family of distributions as the

approximate posterior, e.g., a Gaussian distribution. Note that other (non-Rényi) divergences

in the literature are also parameterized by α, which can lead to confusion: the I divergence,

Amari’s α-divergence and the Tsallis divergence. All of these divergences are equivalent

in that their values are related by simple formulas, see appendix A. This allows the results

presented in this paper to be generalised to these divergence families using the relationships

in appendix A.

3.1 Rényi bound

The accompanying variational bound for Rényi divergences can be derived using the same

procedures as for deriving the evidence lower bound (Eq. 3). This gives us the Rényi bound

introduced in (Li and Turner (2017)):

p(o) =
p(o, s)

p(s|o)
=⇒ (14)
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p(o)1−αp(s|o)1−α = p(o, s)1−α (15)∫
S
q(s)αp(o)1−αp(s|o)1−α ds =

∫
S
q(s)αp(o, s)1−α ds (16)

log

∫
S
q(s)αp(o)1−αp(s|o)1−α ds = log

∫
S
q(s)αp(o, s)1−α ds (17)

log p(o)1−α + log

∫
S
q(s)αp(s|o)1−α ds = log

∫
S
q(s)αp(o, s)1−α ds (18)

log p(o)1−α = log

∫
S
q(s)αp(o, s)1−α ds− log

∫
S
q(s)αp(s|o)1−α ds (19)

log p(o) =
1

1− α
log

∫
S
q(s)αp(o, s)1−α ds︸ ︷︷ ︸

Rényi Bound

+
1

α− 1
log

∫
S
q(s)αp(s|o)1−α ds︸ ︷︷ ︸

Rényi Divergence

(20)

log p(o) = −Dα[q(s)||p(o, s)] +Dα[q(s)||p(s|o)] (21)

We assume that q(s) and p(s|o) are non-zero and α ∈ R+ \ {1}. Additionally, we are

licensed to make the move from Eq.17 to Eq.18 because p(o) does not depend on s. The

negative Rényi bound can be regarded as being analogous to the variational free energy

objective (F) by providing an upper bound to the negative log evidence (Eq. 7):

− log p(o) =
1

α− 1
log

∫
S
q(s)αp(o, s)1−α ds− 1

α− 1
log

∫
S
q(s)αp(s|o)1−α ds (22)

≤ 1

α− 1
log

∫
S
q(s)αp(o, s)1−α ds = Dα[q(s)||p(o, s)] (23)

Similar to the Rényi divergence, we expect variations in the estimation of the approximate

posterior with α under the Rényi bound. Explicitly, when α < 1 the variational posterior

will aim to cover the entire true posterior— this is known as exclusivity (or zero-avoiding)

property. Thus, α → 0+ optimisation constrains the variational posterior to be positive

whenever the true posterior is positive. Formally, for all s : p(s, o) > 0 ⇒ q(s) > 0. This
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leads to mass-covering variational estimates and increased variability. Furthermore, α→ +∞

optimisation constrains the variational posterior to be zero whenever the true posterior is zero.

Here, the variational posterior will seek to fit the true posterior at its mode— this is known as

inclusivity (or zero-forcing) mode-seeking behaviour (Li and Turner (2017)) In this case, for

all s : p(s, o) = 0⇒ q(s) = 0. This leads to mass-seeking variational posteriors. Hence, the

Rényi bound should provide a formal account of behavioural differences through changes in

the α parameter. That is, we would expect a natural shift in behavioural preferences as we

move from small values to large positive α values, given fixed priors. Section 5 demonstrates

this shift in preferences in a multi-armed bandit setting.

Rényi Divergence Rényi Bound
α Dα[q(s)||p(s|o)] −Dα[q(s)||p(s, o)] Comment

α→ 1
∫
S q(s) log

q(s)
p(s|o) ds −DKL[q(s)||p(s)] + Eq(s) log p(o|s) Kullback-Leibler (KL) divergence: DKL[q||p]

−H[p(s, o)] + Ep(s,o) log q(s) or DKL[p||q]
α = 0.5 −2 log(1−Hel2(p(s|o), q(s))) 2 log(Hel2(p(s, o), q(s))) Function of the Hellinger distance or

−2 log
√
p(s|o)q(s) ds 2 log

√
p(s, o)q(s) ds the Bhattacharyya divergence.

Both are symmetric in their arguments

α = 2 log
[
1 + χ2[q(s)||p(s|o)]

]
− log

[
1 + χ2[q(s)||p(s, o)]

]
Proportional to χ2-divergence:

χ2(q, p) =
∫
S
q2

p d− 1

α→∞ logmaxs∈S
q(s)
p(s|o) − logmaxs∈S

q(s)
p(s,o) Minimum description length

Table 1: Examples of (normalised) Rényi divergences (Li and Turner (2017); Minka (2005);

Van Erven and Harremos (2014)) for different values of α, and the accompanying Rényi

bounds. We omit α→ 0 because the limit is not a divergence. These divergences have a non-

decreasing order i.e., Hel2(q, p) ≤ D 1
2
[q||p] ≤ D1[q||p] ≤ D2[q||p] ≤ χ2(q, p) (Van Erven

and Harremos (2014)).

4 Variational bounds, precision, and posteriors

It is important to determine whether this formulation of behaviour introduces fundamentally

new differences that cannot be accounted for by altering the priors under a standard variational
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objective. Thus, we compare the Rényi bound and the variational free energy on a simple

system to see whether the same kinds of inferences can be produced through the Rényi bound

(Eq. 15) with fixed prior beliefs but altered α value and through the standard variational

objective (Eq. 3) with altered prior beliefs. If this were to be the case, we would be able to

re-write the variational free energy under different precision hyper-priors as the Rényi bound,

where hyper-parameters now play the role of the α parameter. If this correspondence holds

true, the two variational bounds (i.e., Rényi and variational free energy) would share similar

optimisation landscapes (i.e., inflection or extrema), with respect to the posterior under some

different priors or α value.

Variations in these hyper-priors speak to different priors, under which agents can exhibit

conservative or greedy choice behaviour. Practically, this may be a result of either (i) lending

one contribution more precision through weighting the log probability under the standard

variational objective, or (ii) by altering the priors by taking the log of the probability to

the power of α. To illustrate this equivalence, we consider the following systems (Fig 1).

First, we formulate a Gaussian-Gamma system to derive the analytical (exact) form of the

variational free energy. Here, the system is Gaussian with Gamma priors over the variance that

allows us to alter prior beliefs. A Gamma prior is necessary to model an unknown variance.

Next, we introduce a system with a simple Gaussian parameterisation to derive the analytical

form of the Rényi bound. The difference in parameterisation is required to establish whether

changes in prior beliefs (or precision) are equivalent to the α parameter. In other words, this

formulation allows us to ask whether one can either alter the precision prior or the α value to

evince behavioural differences. If this were the case, we would expect equivalences between

the two analytical bounds, given the different parameterisations.

Though the problem setting is simple, it provides an intuition of what (if any) sort of

correspondence exists between the Rényi bound and the variational free energy functional

using different priors.
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4.1 Variational free energy for a Gaussian-Gamma system

To derive the variational free energy, we consider a simple system with two random variables:

s ∈ S denoting (hidden) states of the system, o ∈ O the observations (Figure 1 (A)). λk is

the precision parameter, Σk is the covariance and x the parameter governing the mean. The

variational family is parameterised as a Gaussian. This is formalised as:

p(s, λp) = N (s; 0, (λpσp)
−1)Gam(λp;αp, βp) (24)

p(o|s) = N (sx,Σl) (25)

q(s) = N (µq,Σq) (26)

where Σk = (λkσk)
−1, s are scalars, o has dimension n, and x has dimensionality n× 1.

Here, Σl represents the covariance over the likelihood, and Σk the general covariance where

k ∈ (p, l, q). In Eq. 24, µp = 0 and has been written as such. Additionally, Eq. 24 denotes the

joint probability distribution over p(s, λp) = p(s|λp)p(λp) (Bishop (2006); Murphy (2007)).

We use these quantities to derive the variational free energy (Appendix B for the deriva-

tion):

−DKL[q(s)||p(s, o)] =
1

2
log

(
|Σq|

(2π)n|Σp||Σl|

)
(27)

− 1

2

(
oTΣ−1

l o+ µ2
qΣ
−1
p + µ2

qx
TΣ−1

l x− 2µqx
TΣ−1

l o
)

(28)

− 1

2

(
Σqx

TΣ−1
l x+ ΣqΣ

−1
p − 1

)
(29)

− log
λ
αp−1
p β

αp
p

Γ(αp)
− λpβp (30)

Here, Eq. 30 are the additional terms introduced via the Gamma prior.
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Figure 1: Graphical model for the Gaussian-Gamma (A), and Gaussian (B) system. Here

white circles represent random variables, grey circles represent priors and x is the parameter

governing the mean. The difference between these models is that in model (A), the precision

parameters over hidden states λp are random variables that follow a Gamma distribution with

parameters αp, βp, while in model (B) the precision is held fixed. Here, the scalar parameter

σp has been deliberately omitted from the figure.

16



4.2 Rényi bound for a Gaussian system

Next, we consider a similar system for deriving the Rényi-bound. Unlike for the system in

Section 4.1 the densities are parameterised as a Gaussian distribution (Figure 1 (B)):

p(s) = N (0,Σp) (31)

p(o|s) = N (sx,Σl) (32)

q(s) = N (µq,Σq) (33)

where s is a scalar, o has dimension n, and x has dimensionality n × 1. Additionally,

µp = 0 and has been written as such. We use these quantities to derive the Rényi bound

(Appendix B for the derivation):

−Dα[q(s)||p(s, o)] =
1

2
log

(
|Σq|

(2π)n|Σp||Σl|

)
(34)

− α

2(ΣqΣ−1
α )

(
oTΣ−1

l o+ µ2
qΣ
−1
p + µ2

qx
TΣ−1

l x− 2µqx
TΣ−1

l o
)

(35)

− 1

2(1− α)
log
(
1 + (1− α)(Σqx

TΣ−1
l x+ ΣqΣ

−1
p − 1)

)
(36)

− 1

2Σ−1
α

(
(1− α)Σ−1

p oTΣ−1
l o
)

(37)

where, Σα :=
(

(1 − α)(Σ−1
p + xTΣ−1

l x) + αΣ−1
q

)−1

, under the assumption that Σα is

positive-definite. Since Σα is a scalar, this is equivalent to satisfying the following condition:

Σα � 0 ⇐⇒ (α−1)(Σ−1
p +xTΣ−1

l x)Σq < α. Importantly, if α ≤ 1 the condition is always

true for any choice of Σq. However, for α > 1 we must impose Σq <
α
α−1

Σp

1+ΣpxTΣ−1
l x

=

α
α−1

Cov(p(s|o)) (Burbea (1984); Metelli, Papini, Faccio, and Restelli (2018)).

17



4.3 Correspondence between variational free energy & the Rényi bound

Using the derived bounds above, we examine the correspondence between the variational free

energy and the Rényi bound.

First, we consider the case when α→ 1. Here, we expect to find an exact correspondence

between the variational free energy and the Rényi bound as the Rényi divergence tends

towards the KL-divergence as α→ 1. Our derivations confirm this, upon comparison of the

equivalent terms for each objective. The first terms in each objective, Eq. 27 and Eq. 34 are

the same. Interestingly, the second term in the Rényi bound (Eq. 35) is a scalar multiple of the

second term in variational free energy (Eq. 28), where the scalar quantity α
ΣqΣ

−1
α

tends to 1 for

α→ 1. The third term in Eq. 36, for α→ 1, is a limit of the form limx→0
1
x

log(1 +xw) = w,

resulting exactly in Eq. 29. Finally, the last term in the Rényi bound tends to zero as α→ 1

(Eq. 37).

Next, we evaluate the correspondence between the variational free energy and Rényi

bound when α ∈ R+ \ {1}. Now, the α values scale the terms in the Rényi bound with

Eq. 37 having an influence on the final bound estimate. For comparability, we introduced the

Gamma prior to a simple Gaussian system. As shown in Eq. 30, this introduces additional

terms that scale the free energy F . We expect the scaling from the α parameter to have some

correspondence to the precision priors in the Gaussian-Gamma system. To assess this, we plot

the variational objectives as a function of their estimated sufficient statistics for this simple

system (Fig. 2). The numerical simulation illustrates that optimisation of these objectives,

for appropriate priors (αp, βp) or the α value, can lead to (extremely) different variational

densities.

Interestingly, the two variational objectives do exhibit a similar optimisation landscape

under specific parameterisations. For example, a striking (local) minimum of -33.14 nats is

observed when αp is approximately 1, βp is greater than 0.8 and α < 5. However, this is

constrained to a small space of posterior µq estimates. Outside these posterior parameters,
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the optimisation landscape differs. Importantly, this difference becomes more acute when

considering σq. This suggests hyper-priors may be particularly important in shaping the

correspondence between the two variational objectives. However, the optimisation profile can

differ under inappropriate priors (i.e., a misalignment between prior beliefs and α value), and

lead to divergences in the estimated variational density (Fig. 2).

Briefly, we do not observe a direct correspondence in the optimisation landscapes (and the

variational posterior) for certain priors or α value. These numerical analyses demonstrate that

the Rényi divergences account for behavioural differences in a way that is formally distinct

from a change in priors, through manipulation of the α parameter. Conversely the standard

variational objective could require multiple alterations to the (hyper-)parameters to exhibit

a similar functional form in some cases. Further investigation in more complex systems is

required to quantify the correspondence (if any) between the two variational objectives.

5 Multi-armed bandit simulation

In this section, we illustrate the differential preferences that arise naturally under the Rényi

bound. For this, we simulated the multi-armed bandit (MAB) paradigm (Auer et al. (2002);

Lattimore and Szepesvári (2020)) using 3 arms. The MAB environment was formulated as a

one-state Markov Decision Process (MDP) i.e., the environment remains in the same state

independently of agents’ actions. At each time-step t, the agent could pull one arm and a

corresponding outcome (i.e., score) Rt was observed. The agent’s objective was to identify,

and select, the arm with the highest Sharpe ratio (Sharpe (1994)) through its interactions with

the environment across X trials.

The Sharpe ratio is a well-known financial measure for risk-adjusted return. It is an

appropriate heuristic for action selection because it measures the expected return after ad-

justing for the variance of return distribution i.e., return to variability ratio. In particular,
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Figure 2: Heat map of variational bounds as a function of estimated sufficient statistics: µq

(a) and σq (b). These graphics plot the optimisation landscape for changing priors or α values.

The first column plots the Rényi bound, as a function of α on the x-axis and µq (a) or σq (b)

on the y-axis. Similarly, the next two columns plot the free energy, as a function of αp (center

column) or βp (right column) on the x-axis and µq (a) or σq (b) on the y-axis. The variational

bound range from -33 (yellow) to -47 nats (blue). The empty region in (b) for different α

values in the Renyi bound is a consequence of the (positive definiteness) constraint imposed

on Σq for α > 1 restricting the possible values to be < α
α−1

Σp

1+σpxT σ
−1
l x

. When not varying,

hyper-parameters are fixed with µq = 0.4, σq = 1e − 4, αp = 0.8, βp = 0.8, λp = 0.8,

x = {r : r = 1.1× n , n ∈ {0, 1, . . . 19}}, y = 0.4× x, Σl = I20.
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given the expected return of an arm R = E[Rt], the Sharpe ratio is defined as SR := E[Rt]
V[Rt]

– where V[Rt] is the variance of return distribution for a specific arm. This heuristic was

chosen because it nicely illustrates how changes in α influence the sufficient statistics of

the variational posterior, and ensuing behaviour. Practically, this means we sample from the

posterior distribution for each state (i.e., arm) and select actions that maximise the Sharpe

ratio. The Sharpe ratio affords an action selection criterion that accommodates posterior

uncertainty about hidden states, which underwrites choice behaviour. For example, posterior

estimates for some (sub-optimal) arms may have high variance, meaning the expected reward

is obtained with less certainty. If actions were selected to sample from the arm with the

highest reward, then sub-optimal arms with uncertain payoff may be selected with unduly high

probability. The Sharpe Ratio precludes this, penalising arms with high posterior uncertainty.

We modelled each arm with a fixed multi-modal distribution (a mixture of Gaussians)

unknown to the agent; characterising this as stationary stochastic bandit setting. Explicitly,

this entailed the following parameterisation for each arm:

p(s) =
2∑
i

ωiN (µi,Σi) (38)

p(o|s) = N (s, 1.0) (39)

q(s) = N(µq,Σq) (40)
2∑
i

ωi = 1, ωi > 0 (41)

where, s denotes the hidden state over the arm distribution and o the observed return (R)

from an arm. The variational density q(s) was constrained as a Gaussian with an arbitrary

mean and variance, under a mean-field assumption7. However, due to the multi-modal prior,

7That is a fully factorised variational distribution. For further details see (Minka (2005);
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Figure 3: Score distribution for each arm. The figures plot the score distributions for each arm.

The x-axis is the s ∼ q(s) and y-axis the score density. Arm 1 has a multi-modal distribution

of µ1
1 = 10 (Σ1

1 = 1) and µ1
2 = 22 (Σ1

2 = 1) with ω1
1 = 0.97 and ω1

2 = 0.03, respectively.

Arm 2 has a Gaussian distribution with µ2
1 = 16 (Σ2

1 = 3), and Arm 3 has a multi-modal

distribution of µ3
1 = 18 (Σ3

1 = 1) and µ3
2 = 10 (Σ3

2 = 1) with ω3
1 = 0.97 and ω3

2 = 0.03,

respectively.

the true posterior could take a complex form that might not be in the variational family

of distributions. This introduces differences in posteriors that are evident under different

Rényi bounds. In Fig. 3, we show the true distribution for each arm that is unknown to the

agent. The Sharpe ratio for arm 1 was SR = 2.03; arm 2 was SR = 1.76; and arm 3 was

SR = 6.20. Thus, arm 3 was the best choice in our paradigm as the arm with the maximal

Sharpe ratio. Accordingly, we measured performance using accumulated regret,R, defined

as: R =
∑X

t=1(SR∗ − SRt). Here, SR∗ is the maximal Sharpe ratio from arm 3, and SRt

the Sharpe ratio for the arm pulled at iteration t.

Optimising the Rényi bound under different α values led to varying posterior estimates

and accompanying behavioural differences manifested by distinct arm choices. To show this,

Parr, Sajid, and Friston (2020); Sajid, Convertino, and Friston (2021))
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Figure 4: Regret (a) and Sharpe ratio (b) under the Rényi bound. (a) The line plot illustrates

the cumulative regret across the 4000 iterations for each agent optimising a particular Rényi

bound. The x-axis denotes the iteration and y-axis the accompanying cumulative regret.

(b) The line plot illustrates the average achieved Sharpe ratio of an agent across the 4000

iterations, for each particular Rényi bound. The x-axis denotes the iteration and y-axis the

Sharpe ratio. Here, blue is for agents optimising Rényi Bound for α → +∞, orange for

α = 10, green for α = 2, red for α → +1−, purple for α = 0.5 and brown for α → 0+.

Dashed black line represents regret under a random policy (i.e., any arm). Each agent was

simulated 20 times (95% confidence interval). In our simulations, the agents with α→ +1−

and α = 2 obtained the best performance.
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we simulated 6 agents optimising the Rényi bound for distinct α values: → +∞, 10, 2,→

1−, 0.5,→ 0+ – across 4000 iterations, repeated 20 times for each agent. Throughout, the

agents selected an arm according to the following strategy. At each iteration, the Sharpe ratio

(Sharpe (1994)) was calculated for each arm by dividing a sampled point from the estimated

posterior with its variance. The arm with the highest Sharpe ratio was pulled. Formally, we

sample one si ∼ q(·|µiq,Σi
q) for each arm i and pull arm:

i∗ = arg max
i

si
Σi
q

, (42)

where Σi
q is the variance of the variational posterior for arm i. In this setting, we sampled

from the posterior to calculate the Sharpe ratio instead of using the parameter µq optimised

under each bound. This avoided premature convergence to sub-optimal policies that selected

the greedy arm – and therefore encouraged exploration.

In contrast with Section 4.2, for these simulations we do not compute the analytical

expression for the Rényi bound. Instead, at each iteration we used 300 Monte-Carlo samples

to estimate the gradient of the bound which would otherwise be intractable for a multi-modal

distribution. Practically, we employed sampling to estimate the gradient updates. This

necessitates a stochastic gradient descent method, where – at each iteration -— the Monte-

Carlo samples were used to calculate the posterior estimate (as introduced in (Li and Turner

(2017))). For this, we used ADAM (as implemented in pytorch (Paszke et al. (2019))) as

the optimizer because it is known to adequately escape local minima during optimization.

However, other optimisation strategies could be used here (e.g., Momentum or RMSProp

(Soydaner (2020))). Additionally, for each arm there was a separate memory buffer and

optimisation process. The agent learnt the score distribution through the memory buffer that

stored the previous 1000 observations. At each iteration the observations in memory were

used to optimise the variational posterior estimate. We then selected the appropriate arm by
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sampling the variational posterior estimate, at each iteration, for each arm and using it to

compute a sample estimate of the Sharpe Ratio. This provided an adequate trade-off between

exploration and exploitation. Appendix C provides further experimental details.

The only variable varying across simulations was the α parameter. To assess the perfor-

mance of each α we plot the accumulated regret, and the accompanying Sharpe ratio in Fig. 4.

We observe that optimising α → +1−; 2 leads to the lowest cumulative regret and a high

Sharpe ratio. Conversely, optimising α→ 0+;→ +∞; leads to the highest cumulative regret

and lowest Sharpe ratio.

To investigate this further, we plot the variational bounds for arm 1 under different α

parameters (Fig. 5). Recall from Fig. 3 that if the variational posterior fits the right-hand-side

mode, this results in sub-optimal arm selection and the highest regret. This is because the

agent would wrongly infer a high Sharpe ratio for this particular arm — while it is in fact low

— increasing the probability that it was selected. We can explain the high regret of agents

with α → +∞;→ 0+ from the property of their variational bound: For agents optimising

α→ +∞, the approximate posterior fit the right-hand-side mode of the distribution due to its

lower variance (i.e., mode-seeking behaviour). Conversely, agents with α→ 0+ would exhibit

mass-covering, high-variance posterior estimates. In contrast, agents optimising α→ 1−; 0.5

covered the left-hand-side mode and thus estimated a lower Sharpe ratio for this particular

arm, which decreased the probability of it being selected (Fig 5).

These numerical experiments suggest that if agents sample their actions from posterior

beliefs about what they are sampling, and those posterior beliefs depend on the form of the

Rényi bound α parameterisation, then there is a natural space and explanation for behavioural

variations. In short, the shape of the posterior — that underwrites ensuing behaviour —

depends sensitively on the functional form of the variational bound.
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Figure 5: The Rényi bound as a function of the variational posterior. The contour plots show

the optimisation landscape for each α. For α = 1e9 we observe two optima; for small α

(1e− 6) the optimal solution exhibits high variance.
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6 Discussion

This paper accounts for behavioural variations among agents using Rényi divergences and

their associated variational bounds. These divergences are Rényi relative entropies8, and

satisfy similar properties as the KL divergence (Rényi (1961); Van Erven and Harremos

(2014)). Rényi divergences depend on an α parameter that controls the strength of the bound

and induces different posterior estimates about the state of the world. In turn, different beliefs

about the world lead to differences in behaviour. This provides a natural explanation as to

why some people are more risk averse than others. For this alternative account to hold, we

assumed throughout that agents sample their actions from posterior beliefs about the world,

and those posterior beliefs depend on the form of the Rényi bound’s α parameter. Yet, note

that a similar account is possible if actions depended upon an expected free energy functional

(K. Friston et al. (2017); Han, Doya, and Tani (2021); Parr and Friston (2019); van de Laar,

Senoz, Özçelikkale, and Wymeersch (2021)), intrinsic reward (Schmidhuber (1991, 2006);

Storck et al. (1995); Sun, Gomez, and Schmidhuber (2011)) or any class of objective functions

that incorporates beliefs about the environment.

This space of Rényi bounds can provide different posterior estimates (and consequent

behavioural variations) that vary smoothly with α. As illustrated, in the bi-modal scenario

under our Rényi divergence definition, large positive α values will approximate the mode

with the largest mass. This happens because α ≥ 1 forces the approximate posterior to be

small (i.e., q(·) = 0), whenever the true posterior is small (i.e., zero-forcing). This causes

parts of the true posterior to be excluded, i.e., those parts with small total mass. Thus, the

estimated variational posterior might be underestimated. Conversely, with small α values, the

approximation tries to cover the entire distribution, eventually forming an upper bound when

8The Rényi entropy provides a parametric family of measures of information (Rényi

(1961))
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α→ 1 (Table 1). This happens because α→ 1 forces the approximate posterior to be positive

(i.e., q(·) > 0 ) whenever the true posterior is positive (i.e., zero-avoiding). This implies that

all parts of the true posterior are included, and the variational posterior may be overestimated.

Crucially, Rényi divergences account for posterior differences in a way that is formally

distinct from a change in prior beliefs. This stems from the ability to disentangle different

preference modes by varying the bound’s α parameter. Explicitly, we demonstrate that the

Rényi bounds influences the posterior estimate over particular states (i.e., inference procedure).

However, by selecting actions based on these inferences, the Rényi parameterisation shapes

the preferences of the model. We observe this in our simple multi-armed bandit setting where

large α values seek to fit the posterior modes that lead to greater consistency in preferences

over which arm to select. Conversely, small α values try to cover the posterior distribution

that led to greater flexibility over the choice of arm.

This contrasts with formal explanations based upon adjusting the precision or form of the

prior under a variational bound based upon the KL divergence (i.e., α = 1). Under active

inference Da Costa et al. (2020); K. Friston et al. (2017), multiple behavioural deficits have

been illustrated by manipulation of the precision over the priors (Parr and Friston (2017);

Sajid et al. (2020)). Although there has been some focus upon priors and on the form of the

variational posterior (Schwöbel, Kiebel, and Marković (2018)), relatively little attention has

been paid to the nature of the bound itself in determining behaviour.

6.1 Implications for the Bayesian brain hypothesis

Our work is predicated on the idea that the brain is Bayesian and performs some sort of

variational inference to infer its environment from its sensations. Practically, this entails the

optimisation of a variational functional to make appropriate predictions. However, there are

no unique functional forms for implementing such systems, and what variables account for

differences in observed behaviour. On the basis of the above, we appeal to Rényi bounds,
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in addition to altered priors, to model behavioural variations. By committing to the Rényi

bound, we provide an alternative perspective on how variant (or sub-optimal) behaviour

can be modelled. This leads to a conceptual reversal of the standard variational free energy

schemes, including predictive processing, etc (Bogacz (2017b); Buckley, Kim, McGregor,

and Seth (2017)). That is, we can illustrate behavioural variations to be due to different

variational objectives given particular priors, instead of different priors given the variational

free energy. This has implications for how we model implementations of variational inference

in the brain. That is, do we model sub-optimal inferences using altered generative models

or alternative variational bounds? This turns out to be significant in light of our numerical

analysis (section 4.3) that show no formal correspondence between these formulations.

In a deep temporal system like the brain, one might ask if different cortical hierarchies

might be performing inference under different variational objectives. It might be possible that

variational objectives for lower levels to be modulated by higher levels through priors over

α values – a procedure of meta-inference. This is analogous to including precision priors

over model parameters that have been associated with different neuromodulatory systems e.g.,

state transition precision with noradrenergic and sensory precision with cholinergic systems

(Fountas, Sajid, Mediano, and Friston (2020); Parr and Friston (2017)). Consequently, this

temporal separation of α parameterisations may provide an interesting research avenue

for understanding the role of neuromodulatory systems and how they facilitate particular

behaviours (Angela and Dayan (2002, 2005)).

6.2 Generalised variational inference

The Rényi bound provides a generalised variational inference objective derived from the

Rényi divergence. This is because Rényi divergences comprise the KL divergence as a special

case (Minka (2005)). These divergences allow us to naturally account for multiple behavioural

preferences, directly via the optimisation objective, without changing prior beliefs. Other
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variational objectives can be derived from other general families of divergences such as

f-divergences, Wasserstein distances (Ambrogioni et al. (2018); Dieng, Tran, Ranganath,

Paisley, and Blei (2016); Regli and Silva (2018)), etc., which can improve the statistical

properties of the variational bounds for particular applications (Wan, Li, and Hovakimyan

(2020); Zhang, Bird, Habib, Xu, and Barber (2019)). Future work could generalise the

arguments presented here and examine how these different divergences shape behaviour when

planning as inference.

6.3 Limitations and future directions

We do not observe a direct correspondence between the Rényi bound and the variational free

energy under particular priors. However, our evaluations are based on a restricted Gaussian

system. Therefore, future work should investigate this in more complex systems to show what

sorts of prior modifications are critical in establishing similar optimisation landscapes for

different variational bounds, in order to understand the relationship between the two. This

will entail further exploring the association between the variational posterior and β or α value.

Implementations of the Rényi bound are constrained by sampling biases and interesting

differences in optimisation landscape. Indeed, when α is extremely large, even if the approxi-

mate posterior distribution belongs to the same family as the true posterior the optimisation

becomes very difficult, causing the bound to be too conservative and introduce convergence

issues. However, it must be noted that instances of this are due to the numerics of optimising

the Rényi bound, rather than a failure of the bound itself. Practically, this means that careful

consideration needs to be given to both the learning rate and stopping procedures during the

optimisation of the Rényi bound.

Our work includes implicit constraints on the form of the variational posterior. We have

assumed a mean-field approximation in our simulations. However, this does not necessarily

have to be the case. Interestingly, richer parameterisations of the variational posterior might
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negate the impact of the α values. Specifically, we noted that if the true posterior is in the same

family of distributions as the variational posterior, then changing the α value does not impact

the shape of the variational posterior — and consequently the system’s behaviour. However,

complex parameterisations are computationally expensive and can still be inappropriate.

Therefore, this departure from vanilla variational inference provides a useful explanation for

different behaviours that biological (or artificial) agents might adopt — under the assumption

that the brain performs variational Bayesian inference. Orthogonal to this, an interesting future

direction is investigating the connections between the variational posterior form and how it

may impact the variational bound. This has direct consequences for the types of message

passing schemes that might be implemented in the brain (Minka (2005); Parr, Markovic,

Kiebel, and Friston (2019)).

We illustrate that the Rényi divergences, and their associated bounds, provide a com-

plementary (but alternate) formulation to manipulation of priors for evaluating behavioural

variations. Empirically, this poses an interesting question: are observed differences in choice

behaviour a consequence of α values (i.e., optimisation objective difference) or specific

priors—when the variational family is not in the same family of distributions as the true pos-

terior? Formally, Rényi bound with α→ 0 values provide a more graceful way of accounting

for uncertainty or ‘keeping options open’ whilst making inferences about hidden states. We

leave further links to human choice behaviour for future work.

7 Conclusion

We offer an account of behavioural variations using Rényi divergences and their associated

variational bounds that complement usual formulations in terms of different prior beliefs. We

show how different Rényi bounds induce behavioural differences for a fixed generative model

that are formally distinct from a change of priors. This is accomplished by changes in an
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α parameter that alters the bound’s strength, inducing different inferences and consequent

behavioural variations. Crucially, the inferences produced in this way do not seem to be

accounted for by a change in priors under the standard variational objective. We emphasise

that the Rényi bounds are analogous to the variational free energy (or evidence lower bound)

and can be derived using the same assumptions. This formulation is illustrated through

numerical analysis and demonstrates that α > 1 values give rise to mode-seeking behaviours

and α < 1 values to mode-covering behaviours when priors are held constant.

Software note The code required to reproduce the simulations and figures is available here:

https://github.com/ucbtns/renyibounds
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