969 research outputs found

    Piecewise Linear Patch Reconstruction for Segmentation and Description of Non-smooth Image Structures

    Full text link
    In this paper, we propose a unified energy minimization model for the segmentation of non-smooth image structures. The energy of piecewise linear patch reconstruction is considered as an objective measure of the quality of the segmentation of non-smooth structures. The segmentation is achieved by minimizing the single energy without any separate process of feature extraction. We also prove that the error of segmentation is bounded by the proposed energy functional, meaning that minimizing the proposed energy leads to reducing the error of segmentation. As a by-product, our method produces a dictionary of optimized orthonormal descriptors for each segmented region. The unique feature of our method is that it achieves the simultaneous segmentation and description for non-smooth image structures under the same optimization framework. The experiments validate our theoretical claims and show the clear superior performance of our methods over other related methods for segmentation of various image textures. We show that our model can be coupled with the piecewise smooth model to handle both smooth and non-smooth structures, and we demonstrate that the proposed model is capable of coping with multiple different regions through the one-against-all strategy

    Generalized Flooding and Multicue PDE-Based Image Segmentation

    Full text link

    Self-adjusted active contours using multi-directional texture cues

    Full text link
    Parameterization is an open issue in active contour research, associated with the cumbersome and time-consuming process of empirical adjustment. This work introduces a novel framework for self-adjustment of region-based active contours, based on multi-directional texture cues. The latter are mined by applying filtering transforms characterized by multi-resolution, anisotropy, localization and directionality. This process yields to entropy-based image “heatmaps”, used to weight the regularization and data fidelity terms, which guide contour evolution. Experimental evaluation is performed on a large benchmark dataset as well as on textured images. Τhe segmentation results demonstrate that the proposed framework is capable of accelerating contour convergence, maintaining a segmentation quality which is comparable to the one obtained by empirically adjusted active contours

    Crystal image analysis using 2D2D synchrosqueezed transforms

    Full text link
    We propose efficient algorithms based on a band-limited version of 2D synchrosqueezed transforms to extract mesoscopic and microscopic information from atomic crystal images. The methods analyze atomic crystal images as an assemblage of non-overlapping segments of 2D general intrinsic mode type functions, which are superpositions of non-linear wave-like components. In particular, crystal defects are interpreted as the irregularity of local energy; crystal rotations are described as the angle deviation of local wave vectors from their references; the gradient of a crystal elastic deformation can be obtained by a linear system generated by local wave vectors. Several numerical examples of synthetic and real crystal images are provided to illustrate the efficiency, robustness, and reliability of our methods.Comment: 27 pages, 17 figure

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Novel Approaches for Nondestructive Testing and Evaluation

    Get PDF
    Nondestructive testing and evaluation (NDT&E) is one of the most important techniques for determining the quality and safety of materials, components, devices, and structures. NDT&E technologies include ultrasonic testing (UT), magnetic particle testing (MT), magnetic flux leakage testing (MFLT), eddy current testing (ECT), radiation testing (RT), penetrant testing (PT), and visual testing (VT), and these are widely used throughout the modern industry. However, some NDT processes, such as those for cleaning specimens and removing paint, cause environmental pollution and must only be considered in limited environments (time, space, and sensor selection). Thus, NDT&E is classified as a typical 3D (dirty, dangerous, and difficult) job. In addition, NDT operators judge the presence of damage based on experience and subjective judgment, so in some cases, a flaw may not be detected during the test. Therefore, to obtain clearer test results, a means for the operator to determine flaws more easily should be provided. In addition, the test results should be organized systemically in order to identify the cause of the abnormality in the test specimen and to identify the progress of the damage quantitatively

    Information Extraction and Modeling from Remote Sensing Images: Application to the Enhancement of Digital Elevation Models

    Get PDF
    To deal with high complexity data such as remote sensing images presenting metric resolution over large areas, an innovative, fast and robust image processing system is presented. The modeling of increasing level of information is used to extract, represent and link image features to semantic content. The potential of the proposed techniques is demonstrated with an application to enhance and regularize digital elevation models based on information collected from RS images

    Classification and Segmentation of Galactic Structuresin Large Multi-spectral Images

    Get PDF
    Extensive and exhaustive cataloguing of astronomical objects is imperative for studies seeking to understand mechanisms which drive the universe. Such cataloguing tasks can be tedious, time consuming and demand a high level of domain specific knowledge. Past astronomical imaging surveys have been catalogued through mostly manual effort. Immi-nent imaging surveys, however, will produce a magnitude of data that cannot be feasibly processed through manual cataloguing. Furthermore, these surveys will capture objects fainter than the night sky, termed low surface brightness objects, and at unprecedented spatial resolution owing to advancements in astronomical imaging. In this thesis, we in-vestigate the use of deep learning to automate cataloguing processes, such as detection, classification and segmentation of objects. A common theme throughout this work is the adaptation of machine learning methods to challenges specific to the domain of low surface brightness imaging.We begin with creating an annotated dataset of structures in low surface brightness images. To facilitate supervised learning in neural networks, a dataset comprised of input and corresponding ground truth target labels is required. An online tool is presented, allowing astronomers to classify and draw over objects in large multi-spectral images. A dataset produced using the tool is then detailed, containing 227 low surface brightness images from the MATLAS survey and labels made by four annotators. We then present a method for synthesising images of galactic cirrus which appear similar to MATLAS images, allowing pretraining of neural networks.A method for integrating sensitivity to orientation in convolutional neural networks is then presented. Objects in astronomical images can present in any given orientation, and thus the ability for neural networks to handle rotations is desirable. We modify con-volutional filters with sets of Gabor filters with different orientations. These orientations are learned alongside network parameters during backpropagation, allowing exact optimal orientations to be captured. The method is validated extensively on multiple datasets and use cases.We propose an attention based neural network architecture to process global contami-nants in large images. Performing analysis of low surface brightness images requires plenty of contextual information and local textual patterns. As a result, a network for processing low surface brightness images should ideally be able to accommodate large high resolu-tion images without compromising on either local or global features. We utilise attention to capture long range dependencies, and propose an efficient attention operator which significantly reduces computational cost, allowing the input of large images. We also use Gabor filters to build an attention mechanism to better capture long range orientational patterns. These techniques are validated on the task of cirrus segmentation in MAT-LAS images, and cloud segmentation on the SWIMSEG database, where state of the art performance is achieved.Following, cirrus segmentation in MATLAS images is further investigated, and a com-prehensive study is performed on the task. We discuss challenges associated with cirrus segmentation and low surface brightness images in general, and present several tech-niques to accommodate them. A novel loss function is proposed to facilitate training of the segmentation model on probabilistic targets. Results are presented on the annotated MATLAS images, with extensive ablation studies and a final benchmark to test the limits of the detailed segmentation pipeline.Finally, we develop a pipeline for multi-class segmentation of galactic structures and surrounding contaminants. Techniques of previous chapters are combined with a popu-lar instance segmentation architecture to create a neural network capable of segmenting localised objects and extended amorphous regions. The process of data preparation for training instance segmentation models is thoroughly detailed. The method is tested on segmentation of five object classes in MATLAS images. We find that unifying the tasks of galactic structure segmentation and contaminant segmentation improves model perfor-mance in comparison to isolating each task
    corecore