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1. Introduction 

Understanding the brain functioning in visual process is one of the more active areas within 
neuroscience, modeling and computation. This great interest is due to the fact that vision 
provides us with the more important information about the surroundings. Oriented early 
filtering processes, perceptual clustering through emerging features, form and depth 
perception, figure-ground separation, and object recognition are all involved in the brain 
visual activity. Important researches have been undertaken to develop models simulating 
this brain behavior. So, neural models of visual perception biologically motivated in early 
vision tasks have been arisen versus others not biologically motivated computer vision 
algorithms. The knowledge about the early vision is notable and, accordingly, the neural 
modeling of the early vision tasks has been very scientifically productive. There are 
numerous visual models of the early visual perception (Kokkinos et al., 2007) (Neumann et 
al., 2007). One of the more significant is the BCS/FCS model of Grossberg and Mingolla 
(Grossberg & Mingolla, 1985). This model is composed of two systems, boundary contour 
system (BCS) and feature contour system (FCS), modeling processes given in the 
interactions among V1, V2 and V4 visual areas. Features so important in the human vision 
like illusory perception, emergent segmentations, diffusive filling-in are integrated in a 
coherent way in the BCS/FCS network. This system has experiment an important evolution 
in its modeling, integrating spatial and orientational competitive processes in a same stage 
(Mingolla et al., 1999). This model has been the framework of many other researchers in the 
development of their approaches. Kokkinos et al. (Kokkinos et al., 2008) have recently 
developed a computational simplification of the BCS/FCS model. They propound a three-
stage structure incorporating feature extraction with contrast normalization, boundary 
formation through a competitive stage of information of feature extraction, cooperative 
signal, anisotropic image smoothing and large scale signal. In their proposal, they include a 
comparison to Canny’s detector, a classical computer vision algorithm. Kokkinos’ 
architecture shows better results than Canny’s algorithm. Main contribution of Kokkinos’ is 
its simplification of the BCS/FCS model more than its evolution as it is somewhat complex. 
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Several neurophysiological studies show that the response modulation by stimuli beyond 
the receptive field is a common phenomenon in the V1 area (Petkov & Westenberg, 2003). 
There are evidences that 80% of the orientation selective cells perform a response 
suppression over a bar texture surround beyond its receptive field. Based on these studies 
Petkov and Westenberg (Petkov & Westenberg, 2003) proposed a surround suppression 
model for the complex cells and they also analyzed this effect by psychophysical 
experiments. This interesting inhibitory effect has been considered in the development of 
our proposal of boundary detection neural network. This surround suppression mechanism 
is not considered in the BCS. Nevertheless, Petrov and Westenberg’s network is limited to 
the simple and complex cells for evaluating the surround suppression effect. Competitive 
and cooperative processes generated by the V2 hypercomplex cells, are not considered in 
their proposal. Another important biological evidence is the existence of feedback 
interactions in the visual cortex (Hubel, 1995). BCS includes a competitive-cooperative loop 
where the completion boundary and the illusory contour extraction are performed. 
Neumann and Sepp (Neumann & Sepp, 1999) presented a V1-V2 recurrent process through 
the integration of the V1 activations from V2 receptive field elongated lobes. 
In the work presented in this paper, trying to obtain a model as simple as possible, we propose 
an architecture considering the more significant mechanisms of the human visual system early 
processing for color scene stimuli: chromatic and achromatic opponent channels, orientational 
filtering, surround suppression, V1-V2 recurrent interactions through competitive and 
cooperative fields. Additionally, we propose an inter-scale information fusion stage in order to 
obtain the boundary output with all the information gathered from the scene. In (Antón-
Rodríguez et al., 2009) we proposed a visual feature extraction architecture for color-texture 
identification corresponding to the color extension of the BCS/FCS system. In this work we 
presented a BCS system for processing signals from three channels, two opponent chromatic 
channels and a luminance one, and two FCS for diffusing the two chromatic channels. 
In the present work, we propose a new model with six opponent channels, four chromatic 
and two achromatic, emerged from the transformation of the RGB image. It also includes 
new mechanisms, like surround suppression and inter-scale fusion, to achieve the natural 
scene boundaries. 

2. Perceptual boundary recurrent detection neural architecture 

The Perceptual boundaRy rEcurrent dEtection Neural (PREEN) proposed model (see Fig. 1) 
comprises five main components, respectively designated as Colour Opponent stage (CO), 
Chromatic Contour stage (CC), Competitive Fusion stage (CF), Contour Saliency stage (CS), 
and Inter-scale Competition (IC). The neural model processing is achieved through multiple 
spatial scales. 
The CO stage transforms the chromatic components of the input signals (RGB) into a bio-
inspired codification system, made up of various opponent chromatic channels and an 
achromatic channel. In order to do this, the CO stage firstly calculates the activations of the 
long- (L), middle- (M), and short- (S) wavelength retinal cones, and then, it generates the 
opponent processes, corresponding to the ON-OFF achromatic channel and the L+M-, M+L-, 
S+(L+M)- and (L+M)+S- chromatic opponencies. Studies of the human visual system have 
found that visual stimuli take part in the color opponent and enhancement processes located 
in retina and Lateral Geniculate Nucleus (LGN) cells of the mammalian visual system 
(Hubel, 1995; Wilson et al., 1990). 
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Fig. 1. Proposed model architecture 

CC stage is composed of simple and complex cells which filter and perform a surround 
suppression through multiple scales and orientations in order to extract the real boundaries 
of the scene. Simple cell multi-scale filtering extracts textural features from both the color 
opponent and the achromatic signals. 
Complex cells use a competition network with surround suppression, which attenuates the 
contour activities from inner texture areas where it appears a high concentration of false 
boundaries. Complex cells coherently fuse the color and texture activities, generated by the 
simple cells, with a behavior inspired in cells from the V1 visual area of the human visual 
system (Petrov & Westenberg, 2003). 
Biologically inspired V1-V2 recurrent interactions take place in the PREEN architecture. CF 
stage competitively fuses top-down and bottom-up signals, complex-CF-CS, defining and 
shaping the natural boundaries. CF and CS stages model competitive and cooperative 
behaviors exhibited in the V2 area of the human visual system (Hubel, 1995). 
Final output is constituted by a contour map image corresponding to the natural boundaries 
with perceptual significance. 
The PREEN model architecture includes competitive networks. We model these networks 
using the membrane potential network (Hodgkin & Huxley, 1990), whose simplified 
behavior can be expressed according to equation (1). 

 ( ) ( )M

dV
C AV V V g V V g

dt
+ + − −= − + − + −  (1) 

where V is the membrane potential, A is a decay constant, V+ and V- are the excitatory and 
inhibitory reversal potentials, and g+ and g- are the excitatory and inhibitory total input, 
respectively. 
In a stationary situation, the potential, V, would be defined by equation (2). This is the 
situation we consider in our model. 
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V g V g

V
A g g

+ + − −

+ −
+

=
+ +

 (2) 

where 0V + ≥  and 0V − ≤ . 

Equation (2) expresses the membrane potential as the normalization between the net input 
(difference between excitation and inhibition) and the total input (excitation plus inhibition). 
So, this normalization computes the ratio contrast and solves the noise-saturation dilemma. 

2.1 Colour opponent stage 
The CO stage performs chromatic and achromatic opponent competitive processes based on 
opponent mechanisms and luminance channel competitive enhancement to generate four 
chromatic signals shaping opponent pairs, L+M-, M+L-, S+(L+M)- and (L+M)+S-, and two 
achromatic signals, ON and OFF. This is observed as the generation of three channels of 
opponent pairs. In hierarchical levels of the human system there are evidences of manifold 
cases of opponent pairs, both in the motor and visual systems (Zrenner, 1990). 
The CO processing contains a previous stage in which luminance (I signal), activations of 
the long (L signal), middle (M signal), short (S signal) wavelength cones and (L+M) channel 
activation (Y signal) are generated from R, G and B input signals. 
Equations (3), (4) and (5) define the calculations of those activities (Antón-Rodríguez et al., 
2009). The luminance signal (I) is computed as a weighted sum; the L, M and S signals are 
obtained as the transformation matrix of the three chromatic components R, G and B. 

 0.299 0.587 0.114I R G B= + +  (3) 

 

0.293 0.603 0.104

0.134 0.704 0.162

0.046 0.099 0.854

L R

M G

S B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (4) 

 Y L M= +  (5) 

The CO stage models the behavior of the opponent cells whose main characteristics are their 
high sensibility and precision to contrasts contours. These attributes recommend their use as 
a previous step for image contour, shapes, and texture detection (Hubel, 1995). The 
opponent model for L+M- chromatic channels, following membrane competitive network is 
defined by equation (6). 

 
( ) ( )

( )

( ) ( )

s s
pq ij pq ijlm s

ij
s s

pq ij pq ij

D L D M
c

A D L D M

+ +

+ +

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦=
⎡ ⎤ ⎡ ⎤+ + −⎣ ⎦ ⎣ ⎦

∑ ∑
∑ ∑

 (6) 

where ( )lm s
ijc  is the L+M- channel cell activity for position (i,j), [ ] ( )max 0,c c

+ = , A is a decay 

constant, and ( )s
pqD is a difference of Gaussians (see Fig. 2) following equation (7). 

 
( ) ( )2 2 2 2

( )
( ) ( )2 2

exp exp
2 2

s
pq A s s

e i

p q p q
D D

σ σ

⎡ ⎤⎛ ⎞ ⎛ ⎞− + − +
⎢ ⎥⎜ ⎟ ⎜ ⎟= −
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (7) 
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where eσ  and iσ are the excitation and inhibition deviations and AD  is the amplitude 

constant. 
 
 

 
 

Fig. 2. Difference of Gaussians (dog) 

The remainder opponencies, M+L-, S+Y- and Y+S-, are calculated using equation (6) 

substituting Lij and Mij signals for the corresponding opponency signals. 

Analogously to the achromatic process accomplished in the LGN of the human visual 

system (Hubel, 1995), the neural architecture enhances the luminance signal, Iij, in a 

competitive network generating two opponent channels ON-center  and OFF-center under 

equation (6), similarly to the chromatic channels, replacing the chromatic signals by the 

luminance signal. ON channel processing is in charge of enhancing the information of 

regions with higher luminance intensity in relation to their surroundings, while OFF 

channel enhances regions with lower luminance intensity than their surroundings. 

These competitive processes, derived from equation (6), establish a gain control network 
over the inputs from chromatic and luminance channels, maintaining the sensibility of cells 
to contrasts, compensating variable illumination, and normalizing image intensity. 

These competitive networks are parallelly applied over three different spatial scales, with 

suitable values of eσ  and iσ  for the small, medium and large scales (s=0,1,2). 
Correlation studies about color codification systems based on trichromatic theory have 

proven the suitability of using the red-green and blue-yellow opponent signals (Ohta et al., 

1980), in all, opponencies of long-middle and short-long-middle wavelength. In like manner, 

the ganglionar opponent cells with higher presence rate in the retina correspond to L-M 

opponency, next higher rate is S-(L+M) (Zrenner et al., 1990), so we consider appropriate 

using the opponencies chosen. 

Biologically motivated models for boundary detection, as BCS/FCS (Grossberg et al., 1995) 

or Kokkinos’ model (Kokkinos et al., 2008) do not use chromatic channels for detecting 

boundaries. They only work with the luminance component. Nevertheless, they use images 

of natural scenes for validation. It is clearly that the human visual system operating has an 

essential chromatic component, based on the color opponencies. 
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2.2 Chromatic Contour (CC) 
The Chromatic Contour stage models V1 simple and complex cells. It undertakes the 
contour extraction and the merging with surround suppression of the simple cell signals, as 
it can be seen in Fig. 1. CC stage models behaviors of cells located in V1 visual area, 
orientation and spatial frequency selective cells and information fusion cells (Hubel, 1995). 
Simple cells extract contours from chromatic and achromatic CO channels through a Gabor 

filter bank, using even ( ( )s
ijkE ) and odd ( ( )s

ijkO ) components for position (i,j), deviation for 

multiple scales (s=0, 1, 2) and orientation (k=0, 1, 2, 3, 4, 5 corresponding to θ= 30º, 60º, 90º, 
120º, 150º). These cells respond to variations on the textural and color features. Complex 
Gabor filters have sensibility to orientation, spatial frequency and position (Daugman, 1980). 
Grossberg, Mingolla et al. (Grossberg et al., 1995) (Mingolla et al., 1999) modeled simple 
cells with an odd-type filtering in their BCS model. The inclusion of even fields is justified 
due to the importance of these profiles in texture detection (Landy & Bergen, 1991). 
Following the behavior indicated by the membrane potential shown in equation (2), simple 
cell activities are given by equations (8), (9), (10) and (11). 

 

( )( ) ( )

( )

( )( ) ( )

off ss on s
ij ijpqk

s
ijk

off ss on s
ij ijpqk

E c c

a

A E c c

++

++

⎛ ⎞⎡ ⎤⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠=
⎛ ⎞⎡ ⎤⎡ ⎤+ +⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

∑

∑
 (8) 

 

( )( ) ( )

( )

( )( ) ( )

off ss on s
ij ijpqk

s
ijk

off ss on s
ij ijpqk

O c c

b

A O c c

++

++

⎛ ⎞⎡ ⎤⎡ ⎤ −⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠=
⎛ ⎞⎡ ⎤⎡ ⎤+ +⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

∑

∑
 (9) 

 

( ) ( )
( )

( ) ( )| |

s lm s
ijpqklm s

ijk s lm s
ijpqk

E c
e

A E c
=

+
∑
∑

 (10) 

 

( ) ( )
( )

( ) ( )| |

s lm s
ijpqklm s

ijk s lm s
ijpqk

O c
f

A O c
=

+
∑
∑

 (11) 

where ( )s
ijka , ( )s

ijkb  are the even and odd simple cell activities for the luminance channel, and 

( )lm s
ijke , ( )lm s

ijkf  are the simple cell activities for chromatic channel L+M-, position (i,j) and 

orientation k for even and odd filters respectively, |.| represents the absolute value, 

[ ] ( )max 0,c c
+ = , and A is a decay constant. 

For the remainder chromatic channels, the activity equations to use are equations (10) and 
(11) replacing L+M- channel signal by the appropriate channel signal (M+L-, S+Y-, Y+S-). 
For each perceptual position (i,j) a hyper column of simple cells varying in filter type (filter 
profile) and orientation k is applied to each channel. 
The complex cell stage, using two cellular layers, fuses information from simple cells giving 
rise to a map which contains real contours for each of the three scales used (see Fig. 1). 
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The first layer of cells is in charge of combining responses from different Gabor filters at each 
opponent and luminance channel at their three scales (s=0,1,2), as shown in equation (12). 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

s s s lm s lm s
ijk ijk ijk ijk ijk

slm s slm s ml s ml s lms s lms s
ijk ijk ijk ijk ijk ijk

h a b e f

e f e f e f

+ + + +

+ + + + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + + + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (12) 

where [ ] ( )max 0,c c
+ = is a half-wave rectifier. 

The second complex cell layer models a competition network with surround suppression 
(see Fig. 3).  
 

 
 

Fig. 3. Surround suppression receptive field of CC complex cells ( ( )s
ijkS ). 

The behavior of layer 2 complex cells is modeled by equation (13): 

 

( ) ( ) ( )
( )

( ) ( ) ( )

s s s
ijijk pqks

ijk s s lm s
ijijk pqk

h S h
H

A h S h

λ
+

⎡ ⎤−
⎢ ⎥=
⎢ ⎥+ +⎣ ⎦

∑
∑

 (13) 

being ( )s
ijkH  the CC complex cells output; ( )s

ijkh  is the first layer activity, ( ) ( )[ ]s s
ijijkS D += −  is the 

surround suppression receptive field with ( )s
ijD a dog following equation (7), as it is shown 

in Fig. 3, for each of the scales defined by s=0,1,2; A is a decay constant, λ > 0 is the 

suppression constant and [ ] ( )max 0,c c
+ = . Equation (13) determines the anisotropic 

surround suppression, as the removal is performed according to the orientations. 
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In their work, Petrov and Westenberg (Petrov & Westenberg, 2003) observed various 

manifestations of perceptual modulation by the context. They used image sets of letters and 

bars, and objects icons (of different sizes and orientations) with superimposed band-

spectrum noise. They observed the effects of the surround in contrast for different noise 

frequencies. The inhibitory effect was modeled designing a non-classical receptive field 

(non-CRF) defined by a weighting function with a normalized difference of Gaussians 

profile. This idea is taken in the present paper but with an important difference.  

Model proposed of CC complex cells exhibits a positional competition between a position 

(i,j) and its surroundings. These competitive processes establish a gain control network over 

the fusion channel input, maintaining the sensibility of cells to contrasts, compensating 

variable illumination, and normalizing image intensity. 

In order to obtain a complex non-CRF field external to the CRF field of CC simple cells, we 

choose same values for eσ deviations of ( )s
ijkS  and for ( )sσ deviations of CC simple cells and 

we fix iσ deviations of ( )s
ijkS as twice the value of ( )sσ . 

In Fig. 4 it can be observed the effect produced by the surround suppression depending on 

the inhibition strength (λ=1.0 and λ=2.0). Using a high suppression constant, it is possible to 

remove areas with a high concentration of weak contour caused by inner texture features 

(see left column). It can be noticed that the surround suppression model makes the 

boundaries to have less noisy activities near them, thus achieving a better definition and so a 

better precision. However, as the surround suppression model cleans up the area around the 

boundaries, sometimes the recall value diminishes. 

In a later work, Grigorescu, Petrov and Westenberg (Grigorescu et al., 2004) proposed a 

computational step, called surround suppression for detecting boundaries in natural scenes. 

This step was incorporated to the Canny edge detector. A comparison was performed using 

40 natural images, achieving better results with the step included. 

To strengthen the analysis about the positive effect of the surround suppression modeling, 

we took 20 images from the Berkeley Segmentation DataSet (BSDS) and compared the 

results obtained with and without suppression. In Fig. 4, we can see some processing 

examples. Fig. 4 (e) includes the F-value curve of the processing with (right) and without 

suppression (left). We achieved a mean F-value of 0.64 (0.62, 0.66) when processing with 

suppression versus a mean value of 0.63 (0.69, 0.57) when processing without suppression. It 

can be observed a slightly better result counting the suppression. A remarkable feature is 

the significant difference in the precision value, in favor of the model with suppression, and 

in the recall value, in favor of the model without suppression, which corroborates the 

previous point. 

Using cooperation processes, it is more interesting obtaining high precision than high recall, 

since these processes generate more boundaries, but also more noise. Accordingly, the 

model of complex cells showing surround suppression advantages the cooperative 

processes from V2, which PREEN model includes in the CS stage. 

The explained complex cell stage modeling has significant differences with other processing 

models. The complex cell stage of the BCS model (Grossberg et al., 1995) is in charge of 

summing simple cell signals. This sum produces an independence of the contrast direction, 

so as the entire real boundary map is obtained in this stage. 
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 a)

b)

c)

d)

e)

Fig. 4. Effect of complex cell surround suppression. Image on the left: image 86016. Image on 
the right: image 42049. Row a): original image. Row b): output from first stage (fusion) of 
complex stage (without surround suppression). Row c): output from CC complex stage for 
λ=1.0. Row d): output from CC complex for λ=2.0. Row e): F-measure curves (precision and 
recall) for 20 test images of the Berkeley database, (e)-left without surround suppression and 
(e)-right with surround suppression. 
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In PREEN model, the complex cell stage fuses simple cell signals and also removes the 

surroundings making boundaries to be contrast-independent and more accurate. 

Kokkinos et al.’s model uses a shunting inhibition for surround suppression which implies a 

recurrent stage with obliged stabilization (Kokkinos et al., 2008). PREEN model uses a non-

recurrent competition, as the recurrent process is located in upper stages, where V1-V2 

interaction occurs. 

2.3 Competitive Fusion stage (CF) 
CF stage competitively fuses information from CC complex bottom-up and CS cooperation 

top-down. This stage models the V1-V2 recurrent interactions produced in the PREEN 

model. This recurrent interaction detects, regulates, and completes boundaries into globally 

consistent contrast positions and orientations, while it suppresses activations from 

redundant and less important contours, thus eliminating image noise. There are numerous 

evidences about the existence of hyper-complex cells in the human visual system, where V1-

V2 recurrent interactions occurs (Hubel, 1995). We use a shunting network to model this 

behavior, where lateral inhibitions occur within cells of the same competitive stage. 

Equation (14) describes these CF hyper-complex cells functioning. It includes two 

inhibitions, orientationally and spatially. 

 

( ) ( )( ) ( ) ( )

( )

( ) ( )( )

s ss s s
i pqr pqr c pqijk pqk
r k pqs

ijk s ss
pqijk pqk

u C S U C G U

U
A u G U

+

≠

⎡ ⎤− −
⎢ ⎥

= ⎢ ⎥
+ +⎢ ⎥

⎢ ⎥⎣ ⎦

∑∑ ∑

∑
 (14) 

being ( )s
ijkU  the CF hyper-complex cells output, ( ) ( ) ( )s s s

h fijk ijk ijku K H K F= +  the input to the 

competition stage: ( )s
ijkH  is the CC complex cells output, ( )s

ijkF  is the CS top-down signal, hK  

and fK  are gain constants; the orientational inhibitory receptive field, ( )s
pqrS , is a Gaussian 

kernel with τ (τ>1) aspect ratio, rotated  r grades, and with ( )s
iσ deviation for each of the 

scales defined by s=0,1,2; ( )s
pqG is a Gaussian kernel with ( )s

uσ deviation for each of the scales, 

A is a decay constant, cC and iC are inhibition constants and [ ] ( )max 0,c c
+ = . 

Recurrent interaction is solved by an iterative process, where actual state of the ( )s
ijkU  activity 

depends on the previous state activity and the CS stage feedback activity, ( )s
ijkF . 

The inhibitory receptive field in the competition among orientations, ( )s
pqrS , corresponds to a 

Gaussian rotated r grades, with a very high aspect ratio so that all the points in the line of 
orientation r passing through (i,j) have a maximum inhibition (see Fig. 5). 
The point of difference between competitive stages of PREEN model and BCS system is the 

competitive model with shunting inhibition used in PREEN model versus a contrast 

normalization network from BCS system. Shunting inhibition allows higher boundary 

enhancement and thinning yielding higher precision and deletion of noise activities, which 

work against cooperative mechanisms, advantaging the recurrent process. 
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Kokkinos’ architecture also uses a shunting inhibition model, including in the competition a 
gradient signal from the smooth stage through a diffusion process, similar to the FCS stage 
of the BCS/FCS system. Kokkinos’ model does not perform a competition among 
orientations within this stage. PREEN architecture, similarly to BCS system, proposes a 
competition among orientations to better define the boundary orientation in each position. 
In this competition, PREEN uses the inhibition signal from competitive stage neighbor 
instead of the input signal to the competitive stage taken in the BCS model. That is to say 
PREEN model heightens the shunting mechanism in the inhibition. 
 
 

 
 

 

Fig. 5. Orientational inhibition receptive field, ( )s
pqrS . 
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2.4 Contour  saliency stage (CS) 
CS stage models the cooperative process for the saliency detection of the contour activity 
interpolation. In visual cortex, it has been detected cooperative completion or grouping 
processes by realizing a “bipole property” (Mingolla et al., 1999). This property refers to the 
disposition of certain cells in visual cortical areas V1 and V2 to fire in the presence of 
approximately aligned, but spatially separated, image gradients. Salient contours are 
detected determining existent contour activity in both sides of each position (i,j) through a 
bipole receptive field. The behavior of CS cells is modeled by equation (15). 

 
( ) ( )
( )( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

s s s s
pqk pqk pqk pqks

ijk s s s s
pqk pqk pqk pqk

z P U z N U
F

A P U N U
=

+

∑ ∑
∑ ∑

 (15) 

where ( )s
ijkU  is the CF hyper-complex activity, ( )s

ijkP  and ( )s
ijkN  are the lobes of the bipole 

receptive field of CS cells (see Fig. 6 ), A is a decay constant, and z(s) is a lineal function with 

a positive cooperative threshold, α: 

0    si    
( )

    si    

s
z s

s s

α
α

≤⎧
= ⎨ >⎩

 

Each lobe is generated as a Gaussian with an aspect ratio of τ and a profile relation of ( )s
lK  

for each scale s, with a coordinate translation cD  and a rotation k, following equation (16). 

Fig. 6 shows a dipole example. 
 

 

Fig. 6. Oriented bipole receptive field. 
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where .  is the L1 norm, the coordinates of the spatial transformation: 

' ( )cos( ) ( )sin( )

' ( )sin( ) ( )cos( )
c c

c c

x x x k y y k

y x x k y y k

= − + −
= − − + −

 

and the translation origin coordinates are:  

cos( )

sin( )
c c

c c

x D k

y D k

=
=

 

Equations for computing ( )s
ijkN are similar but with a coordinate translation of cD− . Each 

lobe measures one unit of area, and it is essential to be no activity in the dipole center. 

Competitive stage output ( )s
ijkU  is normalized, bounded between 0 and 1. Hence, maximum 

activity in each lobule will be 1. Thereby, we can appropriately choose the value of α. 

Thanks to this contour cooperative saliency, illusory boundaries of perceptual figures are 

extracted as it can be observed in Fig. 7, where it appears the PREEN model processing 

result of the Kanizsa’s square image. 

 
 

  
 

Fig. 7. PREEN processing of Kanizsa’s square image. 

In BCS system, Kokkinos’ model, and PREEN architecture cooperation is performed in a 

similar way. All uses bipole receptive field cells to generate the cooperative activity 

produced when both lobes of the receptive field are active. Difference between both models 

lie in the way of determining when such excitatory situation is produced. As it is expressed 

in equation (15), PREEN uses the product of the lobe activities to obtain the cooperation 

activity. Each lobe contributes to excite the dipole cell is its activity exceeds the threshold α. 

Hence, the product demands the contribution of both lobes and, so, a normalized bipole cell 

output near 1 will be guaranteed. In remainder cases, the output will be 0. 

Kokkinos utilizes the product of the lobule activities but without activation threshold. And 

BCS uses a pseudo-logic function of decision AND, with a fast saturation function to a value 

near to 1, and with a threshold of 2 (Mingolla et al., 1999). By doing so, it is guaranteed that 

the bipole cell exceed 2 only if there are inputs to both lobules. 
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2.5 Inter-scale Competition stage (IC) 
PREEN model proposes an output stage where signals from the three scales are merged in 

order to obtain the best possible output combining all the information gathered in each 

scale. While scale increases, noise is better filtered and so boundary signals improve, though 

precision and thinning become reduced. Noise does not appear in larger scales, but only 

contours with higher gradient are detected; those are high quality contours but not all 

existing. Boundaries from the small scale are accurate and thin; the boundary map includes 

all perceptual boundaries of the natural scene images, therefore achieving a high recall 

value. It appears evident that better boundary qualities will be found in the small scale 

signal. However, its small receptive fields cause extracting a significant level of noisy 

contours. So, precision, recall and thinning are provided by the small scale, and noise 

shortage is given by larger scales, mainly by the large scale. This analysis leads us to 

propose next assumptions to model the output stage of the PREEN architecture: 

- Small scale signal provides all interesting boundaries for segmenting natural scenes. 
- Medium and large scale signals enclose a reduced level of contour noise. 
- An accurate boundary of a natural scene generates activity in all the scales. 
- Output will be composed of thin and accurate boundaries, with a correct level of recall 

and generating activity in all the scales. 
Basing upon these assumptions, PREEN model proposes a single boundary output signal 
resulting from the inter-scales competition for detecting boundaries with higher quality. 
Equation (17) shows the integration of the three scales through an inter-scale competition 

with major scale context dependent inhibition, ijkρ . 

 

small small small
ijk ijk pq pqk

ijk small small small
ijk ijk pq pqk

U Co G U
O

A U G U

ρ

ρ

+
⎡ ⎤−
⎢ ⎥=

+ +⎢ ⎥⎣ ⎦

∑
∑

 (17) 

where small
ijkU  is the small scale CF hyper-complex activity, small

pqG  is a Gaussian kernel with a 

small scale deviation of smallσ , A is a decay constant, oC  is an inhibitory constant, and 

[ ] ( )max 0,c c
+
=  and ijρ  is the major scale context dependent inhibition gain, defined by 

equation (18). 
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8 8

1
exp 1

1
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− −

= − −
+

= +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑
 (18) 

with 0K  and η positive constants; ijkv  is the sum of the activities of scales medium and large 

in the 8-connected neighborhood of the consider position. 

Equation (18) shows that ijkρ  has a Gaussian profile, comprised between 0 and 1, with a 

shape dependent of 0K , and close to 0 when higher contour activity from larger scales. 

Equation (17) displays strong inhibition when the 8-connected neighborhood from larger 
scales has a high boundary activity and the boundary activity from the small scale will not 
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be affected if the neighborhood does not include contours. Image areas without contours in 
larger scales will sharply attenuate the boundary activity from the small scale. 

3. Experimental results 

We quantitatively compare our method against the Kokkinos et al.’s model (Kokkinos et al., 

2008), that has been made available publicly. This model proposes a significant 

simplification of the BCS/FCS model proposed by Grossberg, Mingolla et al. (Grossberg et 

al., 1995) (Mingolla et al., 1999). The comparison to the Kokkinos et al.’s proposal (and to the 

BCS/FCS model by extension) is performed according to a common philosophy about 

propounding biologically inspired models. Differences among these models lie in the 

modeling of each stage and substantially in the color contribution of the PREEN model in 

the boundary detection processes in natural scenes. We will try to demonstrate that natural 

scenes have a chromatic component essential for defining and processing them. The 

comparison is accomplished with the boundary-based error, F-measure, which are the 

measure used in Kokkinos et al.’s  paper. The measure computation has been made using 

the Matlab code supplied in next web page: http://www.eecs.berkeley.edu/Research/ 

Projects/CS/vision/grouping/segbench/. We have used all the 100 test images from the 

Berkeley Segmentation Dataset (Martin et al., 2001) and their human segmented images 

were taken as the ground truth to accomplish the F-measure values. Fig. 8-bottom shows a 

precision-recall curve (PR curve) with the average F-measure value of the boundaries 

detected in the all 100 test images. In Fig. 9 it can be observed processing examples for the 

PREEN architecture, including the F-measure values with their precision and recall as well 

as the position that would achieve in the ranking published in the Berkeley Segmentation 

Benchmark web page (BSDS, 2001). 

Kokkinos et al. (Kokkinos et al., 2008) compared its model to the Canny edge detection 

algorithm using the images from the Berkeley dataset achieving better results in different 

scenarios. In their paper, they show the PR curves and the F-measure of the comparisons. 

Their better setting match with their BCS learned fine scale proposal, achieving an F-

measure of 0.573 versus the 0.568 obtained by the Canny’s algorithm. PREEN model 

achieves an F-measure with PR coordinates of 0.59 (0.68, 0.52), as it is shown in Fig. 8. So, it 

obtains better average result when detecting boundaries. Hence, PREEN boundary detection 

process achieves higher precision and recall values. 

There are three notable differences between Kokkinos et al.’ model and PREEN model. As 

previously said, the more significant one is the color contribution in the PREEN model. 

Another modeling difference is that PREEN model includes orientational competition, so 

PREEN obtains more accurate contours. A third significant difference is the output of the 

model. PREEN includes an inter-scale competitive stage as architecture output.  This fusion 

provides us with an output enclosing all the better features of each scale.  The substantial 

effect of color in the boundary detection process can be analyzed in the boundary detection 

algorithm ranking published in the Berkeley Segmentation Benchmark web page 

(http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/bench

/html/algorithms.html). The summary table shows different algorithms for grayscale and 

color processing. There are versions of algorithms for processing both grayscale and color 

images and it can be observed that color version obtains better results. Considering the 

average F-value achieved, PREEN architecture would gain the eighth position in the ranking 
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Fig. 8. Comparative results when processing all the 100 images from the test set of the 
Berkeley database. Top: Color gradient algorithm. Bottom: PREEN architecture. 
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145086, F=0.85 (0.85, 0.84), Fhuman=0.85, ranking=1 

 
147091, F=0.8 (0.79, 0.82), Fhuman=0.87, ranking=1 

 
167062, F=0.92 (0.98, 0.87), Fhuman=0.95, ranking=1 

   
210088, F=0.56 (0.69,0.47), Fhuman=0.54, ranking=3-4 

 
62096, F=0.78 (0.7, 0.87), Fhuman=0.90, ranking=6 

 

Fig. 9. Processing examples of PREEN architecture. Each example includes the image name 
in the Berkeley Segmentation Dataset, the F-measure value, the recall and precision 
coordinates, and the position that would achieve in the ranking published in the Berkeley 
Segmentation Benchmark web-site. 
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published in the BSDS web page, outperforming the Color Gradient algorithm. The PR 
curve of this method can be seen in Fig. 8-left (extracted from the aforementioned web page) 
comparing it to that of the PREEN model. Fig. 8 shows PREEN model achieves outstanding  
results in some benchmark images, overcoming in some cases the first algorithm in ranking. 
However, global result is not so excellent, locating the eighth position. This contradiction 
can be accurately analyzed considering the results shown in Fig. 4 c)-left. The surround 
effect determines the suppression of weak contours sited near other stronger. When 
processing image 86016 by the surround suppression PREEN model, we can observed lineal 
contours are drastically attenuated while round contour is reactivated. Apparently, this can 
be observed as a positive effect, since it affords the possibility to segment the scene into two 
regions with perceptual significance: the furrows area and the vegetation round area. 
However, segmentation performed by humans in the Berkeley database includes lineal 
contours as significant perceptual boundaries, which makes F-measure achieved by the 
PREEN architecture under these circumstances will lean to be lower, considerably 
diminishing the average F-measure value. Fig. 4 c)-right shows the opposite case, PREEN 
model causes the elimination of weak contours from inside tree branch, which makes 
boundaries to be finer considering the human segmentation. 

4. Conclusion 

In this paper we propose a model bio-inspired in the recurrent interactions of the early 
visual areas for detecting boundaries in color natural scenes, called PREEN model. To 
perform the comparative analysis, we have chosen BCS/FCS model (Grossberg et al., 1995) 
(Mingolla et al., 1999) and Kokkinos et al.‘s model (Kokkinos et al., 2008) on the grounds of 
the similar aims. Images used are taken from the Berkeley Segmentation Dataset (BSDS, 
2001). Important features of the proposed model are providing a simple and effective 
modeling, using even and odd oriented filtering, participation of surround suppression 
mechanisms in the complex cell stage, oriented and positional shunting competition, 
contour cooperative saliency extraction through bipole interactions, and a new output stage 
with inhibition among stages. 
Test simulations over al the 100 test images from the Berkeley dataset and a comparative 
analysis have been included. Results achieved outperform those obtained by Kokkinos et 
al.’s model. 
Furthermore, PREEN model has displayed outstanding results, overcoming the best 
algorithms published in the BSDS web page when processing some images of the database. 
In the analysis performed we have observed PREEN model favors boundaries with high 
perceptual significance attenuating the remainder boundaries. Thereby, PREEN model 
obtains low values in such images with human segmentations including boundaries of 
secondary importance, more germane to attentive mechanisms. We think if the database 
would have human segmentations with higher participation, the proposed model would 
achieve more favorable results. This higher participation, in our view, would mean remove 
or strongly attenuate secondary boundaries in human segmentations. 
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