66 research outputs found

    Holistic processing of hierarchical structures in connectionist networks

    Get PDF
    Despite the success of connectionist systems to model some aspects of cognition, critics argue that the lack of symbol processing makes them inadequate for modelling high-level cognitive tasks which require the representation and processing of hierarchical structures. In this thesis we investigate four mechanisms for encoding hierarchical structures in distributed representations that are suitable for processing in connectionist systems: Tensor Product Representation, Recursive Auto-Associative Memory (RAAM), Holographic Reduced Representation (HRR), and Binary Spatter Code (BSC). In these four schemes representations of hierarchical structures are either learned in a connectionist network or constructed by means of various mathematical operations from binary or real-value vectors.It is argued that the resulting representations carry structural information without being themselves syntactically structured. The structural information about a represented object is encoded in the position of its representation in a high-dimensional representational space. We use Principal Component Analysis and constructivist networks to show that well-separated clusters consisting of representations for structurally similar hierarchical objects are formed in the representational spaces of RAAMs and HRRs. The spatial structure of HRRs and RAAM representations supports the holistic yet structure-sensitive processing of them. Holistic operations on RAAM representations can be learned by backpropagation networks. However, holistic operators over HRRs, Tensor Products, and BSCs have to be constructed by hand, which is not a desirable situation. We propose two new algorithms for learning holistic transformations of HRRs from examples. These algorithms are able to generalise the acquired knowledge to hierarchical objects of higher complexity than the training examples. Such generalisations exhibit systematicity of a degree which, to our best knowledge, has not yet been achieved by any other comparable learning method.Finally, we outline how a number of holistic transformations can be learned in parallel and applied to representations of structurally different objects. The ability to distinguish and perform a number of different structure-sensitive operations is one step towards a connectionist architecture that is capable of modelling complex high-level cognitive tasks such as natural language processing and logical inference

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    A Defense of Pure Connectionism

    Full text link
    Connectionism is an approach to neural-networks-based cognitive modeling that encompasses the recent deep learning movement in artificial intelligence. It came of age in the 1980s, with its roots in cybernetics and earlier attempts to model the brain as a system of simple parallel processors. Connectionist models center on statistical inference within neural networks with empirically learnable parameters, which can be represented as graphical models. More recent approaches focus on learning and inference within hierarchical generative models. Contra influential and ongoing critiques, I argue in this dissertation that the connectionist approach to cognitive science possesses in principle (and, as is becoming increasingly clear, in practice) the resources to model even the most rich and distinctly human cognitive capacities, such as abstract, conceptual thought and natural language comprehension and production. Consonant with much previous philosophical work on connectionism, I argue that a core principle—that proximal representations in a vector space have similar semantic values—is the key to a successful connectionist account of the systematicity and productivity of thought, language, and other core cognitive phenomena. My work here differs from preceding work in philosophy in several respects: (1) I compare a wide variety of connectionist responses to the systematicity challenge and isolate two main strands that are both historically important and reflected in ongoing work today: (a) vector symbolic architectures and (b) (compositional) vector space semantic models; (2) I consider very recent applications of these approaches, including their deployment on large-scale machine learning tasks such as machine translation; (3) I argue, again on the basis mostly of recent developments, for a continuity in representation and processing across natural language, image processing and other domains; (4) I explicitly link broad, abstract features of connectionist representation to recent proposals in cognitive science similar in spirit, such as hierarchical Bayesian and free energy minimization approaches, and offer a single rebuttal of criticisms of these related paradigms; (5) I critique recent alternative proposals that argue for a hybrid Classical (i.e. serial symbolic)/statistical model of mind; (6) I argue that defending the most plausible form of a connectionist cognitive architecture requires rethinking certain distinctions that have figured prominently in the history of the philosophy of mind and language, such as that between word- and phrase-level semantic content, and between inference and association

    DNA origami-based biomolecular organizing platforms

    Get PDF

    DNA origami-based biomolecular organizing platforms

    Get PDF

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF
    The dynamic response of end-clamped monolithic beams and sandwich beams has been measured by loading the beams at mid-span using metal foam projectiles. The AISI 304 stainless-steel sandwich beams comprise two identical face sheets and either prismatic Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the beams as a function of projectile momentum. The prismatic cores are aligned either longitudinally along the beam length or transversely. It is found that the sandwich beams with a longitudinal core orientation have a higher shock resistance than the monolithic beams of equal mass. In contrast, the performance of the sandwich beams with a transverse core orientation is very similar to that of the monolithic beams. Three-dimensional finite element (FE) simulations are in good agreement with the measured responses. The FE calculations indicate that strain concentrations in the sandwich beams occur at joints within the cores and between the core and face sheets; the level of maximum strain is similar for the Y-frame and corrugated core beams for a given value of projectile momentum. The experimental and FE results taken together reveal that Y-frame and corrugated core sandwich beams of equal mass have similar dynamic performances in terms of rear-face deflection, degree of core compression and level of strain within the beam
    • …
    corecore