1,666 research outputs found

    Robotite halduri alamsüsteemi väljatöötamine tarkvararaamistikule TEMOTO

    Get PDF
    Robots provide an opportunity to spare humans from tasks that are repetitive, require high precision or involve hazardous environments. Robots are often composed of multiple robotic units, such as mobile manipulators that integrate object manipulation and traversal capabilities. Additionally, a group of robots, i.e., multi robot systems, can be utilized for solving a common goal. However, the more elements are added to the system, the more complicated it is to control it. TeMoto is a ROS package intended for developing human-robot collaboration and multi-robot applications where TeMoto Robot Manager (TRM), a subsystem of TeMoto, is designed to unify the control of main robotic components: manipulators, mobile bases and grippers. However the implementation of TRM was incomplete prior to this work, having no functionality for controlling mobile bases and grippers. This thesis extends the functionality of TeMoto Robot Manager by implementing the aforementioned missing features, thus facilitating the integration of compound robots and multi-robot systems. The outcome of this work is demonstrated in an object transportation scenario incorporating a heterogeneous multi-robot system that consists of two manipulators, two grippers, and a mobile base. In estonian: Robotid võimaldavad aidata inimesi ülesannetes mis on eluohtlikud, nõuavad suurt täpsust või on üksluised. Üks terviklik robot koosneb tihtipeale mitme eri funktsionaalsusega alamrobotist, millest näiteks mobiilne manipulaator on kombinatsioon mobiilsest platvormist ja objektide manipuleerimise võimekusega robotist. Roboteid saab rakendada ülesannete lahendamisel ka mitme roboti süsteemina, kuid robotite hulga suurenemisel suureneb ka nende haldamise keerukus. TeMoto on ROSi kimp, mis hõlbustab inimene-robot koostöö ja mitme roboti süsteemide arendamist. Robotite haldur on TeMoto alamsüsteem, mis aitab käsitleda mobiilseid platvorme, manipulaatoreid ja haaratseid ühtse tervikliku robotina. Käesolevale tööle eelnevalt puudus Robotite halduril mobiilsete platvormide ja haaratsite haldamise võimekused, mille väljatöötamine oli antud töö peamiseks eesmärgiks. Töö tulemusena valmis TeMoto Robotite halduri terviklik lahendus, mille funktsionaalsust demonstreeriti objekti transportimise ülesande lahendamisel, kaasates kahest manipulaatorist, kahest haaratsist ja mobiilsest platvormist koosnevat heterogeenset mitme roboti süsteemi

    Human-friendly robotic manipulators: safety and performance issues in controller design

    Get PDF
    Recent advances in robotics have spurred its adoption into new application areas such as medical, rescue, transportation, logistics, personal care and entertainment. In the personal care domain, robots are expected to operate in human-present environments and provide non-critical assistance. Successful and flourishing deployment of such robots present different opportunities as well as challenges. Under a national research project, Bobbie, this dissertation analyzes challenges associated with these robots and proposes solutions for identified problems. The thesis begins by highlighting the important safety concern and presenting a comprehensive overview of safety issues in a typical domestic robot system. By using functional safety concept, the overall safety of the complex robotic system was analyzed through subsystem level safety issues. Safety regions in the world model of the perception subsystem, dependable understanding of the unstructured environment via fusion of sensory subsystems, lightweight and compliant design of mechanical components, passivity based control system and quantitative metrics used to assert safety are some important points discussed in the safety review. The main research focus of this work is on controller design of robotic manipulators against two conflicting requirements: motion performance and safety. Human-friendly manipulators used on domestic robots exhibit a lightweight design and demand a stable operation with a compliant behavior injected via a passivity based impedance controller. Effective motion based manipulation using such a controller requires a highly stiff behavior while important safety requirements are achieved with compliant behaviors. On the basis of this intuitive observation, this research identifies suitable metrics to identify the appropriate impedance for a given performance and safety requirement. This thesis also introduces a domestic robot design that adopts a modular design approach to minimize complexity, cost and development time. On the basis of functional modularity concept where each module has a unique functional contribution in the system, the robot “Bobbie-UT‿ is built as an interconnection of interchangeable mobile platform, torso, robotic arm and humanoid head components. Implementation of necessary functional and safety requirements, design of interfaces and development of suitable software architecture are also discussed with the design

    M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    Get PDF
    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hangar, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex

    Analysis of a rotating advanced-technology space station for the year 2025

    Get PDF
    An analysis is made of several aspects of an advanced-technology rotating space station configuration generated under a previous study. The analysis includes examination of several modifications of the configuration, interface with proposed launch systems, effects of low-gravity environment on human subjects, and the space station assembly sequence. Consideration was given also to some aspects of space station rotational dynamics, surface charging, and the possible application of tethers

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    GRASP News Volume 9, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory

    \u3cem\u3eGRASP News\u3c/em\u3e: Volume 9, Number 1

    Get PDF
    The past year at the GRASP Lab has been an exciting and productive period. As always, innovation and technical advancement arising from past research has lead to unexpected questions and fertile areas for new research. New robots, new mobile platforms, new sensors and cameras, and new personnel have all contributed to the breathtaking pace of the change. Perhaps the most significant change is the trend towards multi-disciplinary projects, most notable the multi-agent project (see inside for details on this, and all the other new and on-going projects). This issue of GRASP News covers the developments for the year 1992 and the first quarter of 1993
    corecore