147 research outputs found

    Extractive distillation: recent advances in operation strategies

    Get PDF
    Extractive distillation is one of the efficient techniques for separating azeotropic and low-relativevolatility mixtures in various chemical industries. This paper first provides an overview of thermodynamic insight covering residue curve map analysis, the application of univolatility and unidistribution curves, and thermodynamic feasibility study. The pinch-point analysis method combining bifurcation shortcut presents another branch of study, and several achievements have been realized by the identification of possible product cut under the following key parameters: reflux ratio, reboil ratio, and entrainer-feed flow rate ratio. Process operation policies and strategy concerning batch extractive distillation processes are summarized in four operation steps. Several configurations and technological alternatives can be used when extractive distillation processes take place in a continuous or batch column, depending on the strategy selected for the recycle streams and for the main azeotropic feeds

    Low-cost and Energy-efficient Solutions for Multicomponent Distillation

    Get PDF
    Distillation accounts for 90-95% of all the separations on a chemical plant, and for about 3% of the world energy consumption. Even modest improvements to the process of distillation can have tremendous impact on the chemical economy world over. The goal of a major part of this thesis is to use process intensification methods to present, thoroughly investigate and systematically synthesize new processes for multicomponent separations which can serve as attractive candidates for distillation technology of tomorrow

    DYNAMICS AND CONTROL OF REACTIVE DISTILLATION PROCESS FOR MONOMER SYNTHESIS OF POLYCARBONATE PLANTS

    Get PDF
    Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models

    Multiobjective Stochastic Optimization of Dividing-wall Distillation Columns Using a Surrogate Model Based on Neural Networks

    Get PDF
    Surrogate models have been used for modelling and optimization of conventional chemical processes; among them, neural networks have a great potential to capture complex problems such as those found in chemical processes. However, the development of intensified processes has brought about important challenges in modelling and optimization, due to more complex interrelation between design variables. Among intensified processes, dividing-wall columns represent an interesting alternative for fluid mixtures separation, allowing savings in space requirements, energy and investments costs, in comparison with conventional sequences. In this work, we propose the optimization of dividing-wall columns, with a multiobjective genetic algorithm, through the use of neural networks as surrogate models. The contribution of this work is focused on the evaluation of both objectives and constraints functions with neural networks. The results show a significant reduction in computational time and the number of evaluations of objectives and constraints functions required to reaching the Pareto front

    Heterogeneous Extractive Batch Distillation of Chloroform - Methanol – Water : Feasibility and Experiments

    Get PDF
    A novel heterogeneous extractive distillation process is considered for separating the azeotropic mixture chloroform – methanol in a batch rectifying column, including for the first time an experimental validation of the process. Heterogeneous heavy entrainer water is selected inducing an unstable ternary heteroazeotrope and a saddle binary heteroazeotrope with chloroform (ternary diagram class 2.1-2b). Unlike to well-known heterogeneous azeotropic distillation process and thanks to continuous water feeding at the column top, the saddle binary heteroazeotrope chloroform – water is obtained at the column top, condensed and further split into the liquid – liquid decanter where the chloroform-rich phase is drawn as distillate. First, feasibility analysis is carried out by using a simplified differential model in the extractive section for determining the proper range of the entrainer flowrate and the reflux ratio. The operating conditions and reflux policy are validated by rigorous simulation with ProSim Batch Column® where technical features of a bench scale distillation column have been described. Six reproducible experiments are run in the bench scale column matching the simulated operating conditions with two sequentially increasing reflux ratio values. Simulation and experiments agree well. With an average molar purity higher than 99%, more than 85% of recovery yield was obtained for chloroform and methanol

    A systematic framework for assessing the applicability of reactive distillation for quaternary mixtures using a mapping method

    Get PDF
    Reactive distillation (RD) is a useful process intensification technique used in the chemical process industries as it offers important advantages such as energy and cost savings, relative to conventional technologies. However, industrial application of RD is still limited by the complexity of designing and understanding such a complex process. While simple, robust shortcut design methods that require only basic information (such as the relative volatility of components) exist for conventional distillation, such methods for evaluating the applicability of RD are not yet established. This work fills this gap by presenting a new systematic framework for assessing the RD applicability based on a mapping method. The method enables RD designs to be screened using only relative volatilities and chemical equilibrium constant as input data. The evaluation focuses on reactions involving four components (A + B ⇌ C + D) with various boiling point orders, which are of most industrial importance. The proposed systematic framework is validated through its application to five case studies, (trans-)esterifications presenting various separation challenges due to the formation of azeotropes. This novel approach offers a valuable aid for engineers in taking an educated go/no-go decision in the very initial stages of conceptual design, before performing any rigorous simulations of RD flowsheets

    Graphical techniques for analysing and synthesising separation processes

    Get PDF
    Recently, Column Profile Maps were developed as a generalized, graphically based distillation synthesis method. Unlike several other synthesis methods, it is not specific to any configuration and therefore allows the designer to devise almost any separation before being constrained by equipment. This thesis attempts to expand the theory of Column Profile Maps. Specifically, it is shown how new, and somewhat counter intuitive, column sections may be designed by merely imposing a sharp split constraint on a particular system. This special mathematical constraint makes it possible to maneuver topological characteristics of the system in almost any imaginable direction. This could lead to new designs being sought to exploit these profile behaviors, specifically in columns that require internal column sections (complex columns). Thermally coupled columns have received considerable attention for their ability to drastically reduce operating expenditures. Here, we have extended the Column Profile Map technique to encompass a systematic procedure for the design of single and multiple side rectifying and stripping units. It is shown how one may go about designing such columns rigorously without making simplifying assumptions with regard to the phase equilibrium behaviour and/or product specifications (as classical methods such as Underwood do), with the use of a Temperature Collocation method, as well as through a shortcut technique for rapid synthesis assuming ideal phase equilibrium behavior based on Column Profile Map eigenvectors. The efficacy of the shortcut technique is demonstrated with finding the best thermally coupled column comprising of a large main column and appending side-units. Naturally, the best structure is dependent on the objective function, and simple calculations presented here allow one to choose the best structure with regard to both heat quantity and quality. Furthermore, the eigenvector method allows one to construct an Attainable Region consisting of all potential designs for even the most complex column. The Column Profile Map technique is also extended to Reactive Distillation, which allows one to graphically assess the complex interaction of phenomena. Valuable conclusions can be gleaned from this method, specifically that improving a single piece of equipment’s performance may prove detrimental to the overall system’s operation. The methods developed here allow one to understand exactly why a complex process such as reactive distillation has some of the strange characteristics often reported in literature. Furthermore, it is shown how non-ideal phase equilibrium behavior may improve the column’s operability and in fact improve the overall feasibility of the unit. Using this method, one may quickly assess desirable process chemistry, feed compositions, desirable phase equilibrium and equipment sizes. Again, an Attainable Region is presented which shows all possible modes of operation that would give rise to a predefined product specification. Finally, computational techniques are presented which allows for swift calculation of stationary points in systems ranging from constant volatility to highly non-ideal, multi azeotropic systems. The importance of quickly and accurately knowing where pinch points are located, even in negative composition space, is demonstrated by critically looking at several design methods. Notably, it is shown that the Rectification Body Method is neither a necessary nor sufficient condition for design and cannot be safely extrapolated to complex column design. With knowledge of all pinch points and using the Column Profile Map technique it is shown how one may synthesise new and counter-intuitive column sections, so much so that azeotropes can be shifted outside the physically realizable space

    Tools for efficient design of multicomponent separation processes

    Get PDF
    Separations account for as much as 85% of plant operating costs in chemical production; it is therefore important that they be designed with energy efficiency in mind. This can only be achieved if two things are achieved: the complete space of design options is known, and an accurate way is developed to compare all possible design options. For both membrane separation cascades and multicomponent distillation configurations, this dissertation explores methods for designing energy efficient separations.^ The operating cost of membranes used in production of nitrogen gas from air is largely driven by the compressors required to maintain a pressure differential. Optimization of the total compressor duty can reveal an ideal cascade arrangement and set of operating conditions for a given feed and recovery. With this optimization technique in hand, it is then possible to examine the effect of introducing extra stages to form intermediate stage cascades. Furthermore, the effect of varying the recovery of the nitrogen stream can be examined to discover a U-shaped relationship between recovery and energy requirement.^ Conventional distillation configurations use n – 1 distillation columns to separate a multicomponent feed mixture into pure products. Past research has identified a way to quickly and algorithmically generate the complete ranklist of regular-column configurations using an integer programming formulation called the matrix method. Using this method, a formulation is here presented for the complete nonlinear programming problem which, for a given configuration, can ensure the globally minimum vapor duty of the configuration. Furthermore, a set of nonlinear equations designed to represent the capital and operating costs of the system are described. The need for a global optimization algorithm in the formulation of the cost product is demonstrated by comparison with a two-stage search algorithm; in addition, the cost formulation is compared to that of the vapor duty formulation and the relative effect of capital and operating cost is weighed for an example feed.^ Previous methods based on Underwood\u27s equations have no accounting for the temperature at which utilities are required. To account for this, a thermodynamic efficiency function is developed which allows the complete search space to be ranklisted in order of the exergy loss occurring within the configuration. Examining these results shows that this objective function favors configurations which move their reboiler and condenser duties to milder temperature exchangers. ^ A graphical interface is presented which allows interpretation of any of the above results in a quick and intuitive fashion, complete with system flow and composition data and the ability to filter the complete search space based on numerical and structural criteria. This provides a unique way to compare and contrast configurations as well as allowing considerations like column retrofit and maximum controllability to be considered.^ Using all five of these screening techniques, the traditional intuition-based methods of separations process design can be augmented with analytical and algorithmic tools which enable selection of a process design with low cost and high efficiency
    • …
    corecore