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Introduction

Chemical processes have a multiobjective na-
ture, since normally there are several objectives in 
conflict with each other; which are also restrained 
to requirements, physical or economical limitations. 
Since in multiobjective problems, the objectives are 
in conflict with each other, a simple solution is not 
desirable or sometimes even not feasible. For this 
kind of problem, a set of optimal solutions that rep-
resents the best trade-off between these objectives 
is the goal. These optimal designs can be achieved 
by means of Pareto front, which is a set of optimal 
non-dominated solutions1. In this way, the Pareto 
front allows having not just one optimal solution, 
but a set of optimal solutions that represents the 
best compromise between the objectives in consid-
eration.

Evolutionary algorithms have been recognized 
to be well suited for multiobjective optimization, 

because of their capability to evolve a set of 
non-dominated solutions distributed along the Pare-
to front2. One of the most popular multiobjective 
optimization algorithms is the Non-dominated Sort-
ing Genetic Algorithm, NSGA-II3, which is a very 
robust tool and it is easy to implement. However, 
the principal disadvantage of genetic algorithms, 
and its variants, is the large amount of computation-
al time that is often required for multiobjective op-
timization of industrial operations4; this fact without 
considering if the evaluation of the objective func-
tion is computationally expensive. This has led to 
the development of new strategies or combination 
of strategies to reduce the required computational 
time; basically, these strategies are classified as 
those that modify the parameters of the algorithm, 
and those using surrogate models.

In the first type, key operators of the evolution-
ary algorithm are modified in order to give less ran-
domness to the selection and generation of the indi-
viduals; the idea behind is to incorporate information 
about the problem, that can help to improve the 
search process. In general, the use of modified op-
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erators in the evolutionary algorithms5–7 allows hav-
ing a reduction in the computational time, without 
losing complexity in the model of the problem to 
solve. However, the modification of the operators 
must be realized in every strategy, which requires 
profound knowledge and skills. Also, these ap-
proaches have limited contributions to decrease the 
computational time when the evaluations of objec-
tive function are computationally expensive; espe-
cially if integer and continuous variables are in-
volved.

On the other hand, the use of surrogate models 
allows using the same evolutionary approach with-
out further modification, but the changes are made 
in the evaluation of the objective function. Thus, the 
objective function can be replaced for a previously 
known reduced model, or there is another optimiza-
tion process nested in order to find the best model 
that captures all the complexity of the original prob-
lem. The contribution of this work relies in this 
kind of approach; therefore, next we will present a 
review of some related works.

Poloni et al.8 presented a strategy that com-
bines several optimization techniques in order to 
solve a multiobjective optimization problem. The 
techniques used were genetic algorithms, neural 
networks and gradient based search. Nevertheless, 
the use of the optimization strategies is sequential 
and lacking in integration; also, deep knowledge of 
the three strategies is needed.

Nain and Deb9 proposed a different approach 
using genetic algorithms and neural networks. Their 
strategy consists of training a neural network using 
the results of the genetic algorithm. After generat-
ing the approximate functions, they fixed an a prio-
ri number of generations; in these generations, the 
approximate functions are used instead of the origi-
nal functions. The principal limitation in this ap-
proach is the adequate estimation of this fixed 
 number of generations, where the approximated 
functions must be used.

Later, Gaspar-Cunha and Vieira10 adapted the 
approach of Nain and Deb9 through two variations. 
In the first one, they just change the multiobjective 
optimization strategy; Nain and Deb used the NS-
GA-II3, while Gaspar-Cunha and Vieira used the 
Reduced Pareto Set Genetic Algorithm with Elit-
ism, RPSGAe11. In the second variation, a percent 
of the total individuals was simultaneously evaluat-
ed with the exact and approximated functions. The 
main contribution of their work was the introduc-
tion of an error variable, which recorded the error in 
the approximation of the neural network. Neverthe-
less, real data or the use of the exact function is re-
quired in order to have all the information for error 
calculation. Also, the handling of constraints was 
not considered.

In 2007, Zhou et al.12 developed a strategy that 
combines global and local surrogate models to ac-
celerate evolutionary optimization. Their frame-
work uses hierarchical surrogate models construct-
ed by online learning, and in this way replacing the 
computationally expensive objectives functions. 
This strategy employs data-parallel Gaussian pro-
cess, memetic search, and Lamarckian evolution. 
However, deep knowledge of the three strategies is 
needed.

Recently, Sreekanth and Datta13 developed two 
types of surrogate models based on genetic pro-
gramming and modular neural network; these mod-
els were coupled to the Non-dominated Sorting Ge-
netic Algorithm, NSGA-II3. The application of these 
strategies for their particular problem reveals that 
the use of genetic programming generates less un-
certainty than the modular neural networks.

In general, the use of surrogate models allows 
having a reduction in the computational time; how-
ever, the most important step is the estimation of 
the approximated functions, since it has to capture 
all the important information of the exact function. 
In addition, the frequency of use of the approximate 
functions is another key parameter to obtaining the 
best performance of the strategy. It is worth men-
tioning that, to our knowledge, the use of approxi-
mated functions for estimation of the constraints 
has not been reported.

Now, in Chemical Engineering, surrogate mod-
els have been used for modelling and optimization 
of conventional chemical processes, due to the high 
complexity and non-linearity of the involved mod-
els. In particular, the great ability of neural networks 
to capture complex models is well known; due to 
this, neural networks have been used to model and 
optimize conventional chemical processes in differ-
ent applications such as chaotic chemical reaction 
systems14, crude distillation units15, large-scale reac-
tion systems16, process synthesis17, conventional 
distillation sequences18, syngas generation and treat-
ment19, integrated gasification combined cycle20, 
biodiesel production21, and power plant design22. 
However, the development of intensified processes 
has brought about important challenges in model-
ling and optimization, due to the more complex 
structure and relation between all design variables, 
with respect to conventional chemical processes. 
We can define process intensification as a strategy 
for making dramatic reductions in the size of a 
chemical plant for a given production objective; 
these reductions can come from shrinking the size 
of individual pieces of equipment, and also from 
cutting the number of unit operations involved23. 
Among the intensified processes, dividing-wall col-
umns represent an interesting intensified process for 
the separation of fluid mixtures, allowing savings in 
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energy costs, investments costs and space require-
ments in comparison with conventional distillation 
sequences.

In this work, we propose the optimization of 
dividing-wall distillation columns using a multiob-
jective genetic algorithm with constraints han-
dling24, through the use of neural networks as surro-
gate models. The evaluation of the objective and 
constraints functions is performed with neural net-
works. Our proposal considers the use of surrogate 
functions, neural networks, which can be used in 
any optimization strategy; until now, the combina-
tion of these tools was focused on the use of genet-
ic algorithms as surrogate models for neural net-
works optimization strategies25–28. Therefore, our 
contribution involves the use of a simple structure 
for the neural network in order to be used as surro-
gate model for the optimization of really complex 
and non-linear systems: dividing-wall distillation 
column. Besides, to the author’s knowledge, this 
combination of strategies has not been proposed be-
fore.

We tested the proposed approach in the optimi-
zation of dividing-wall columns, considering the 
complete model of the column, set of MESH equa-
tions, which is highly non-linear involving integer 
and continuous variables. The results show a signif-
icant reduction in the number of evaluations of the 
original objective and constraints functions, as well 
as in the computation time required to reaching the 
Pareto front.

Artificial neural networks

Artificial neural networks are a biologically in-
spired computational model formed from hundreds 
of single units, artificial neurons, connected through 
coefficients, weights, which constitute the neural 
structure26. The neural networks are a very powerful 
tool, since with relatively simple functions they can 
estimate the behavior of very complex problems. 
There are several types of neural networks, such as 
Radial basis function network, Hopfield network, 
neuro-fuzzy networks; the feedforward neural net-
work is the first and most simple model, since the 
information just flows in one direction. Among the 
feedforward networks, the perceptron is the sim-
plest kind. However, the power of this simple net-
work should not be underestimated, since there is 
formal proof that the simplest neural network, the 
multilayer perceptron with two hidden layers, is 
theoretically sufficient to model any problem29.

The crucial points in the construction of an ar-
tificial neural network are the selection of inputs 
and outputs, the architecture of the neural network 
(the number of layers and nodes in each layer), and 
finally, the training algorithm10. In this approach, 

the inputs and outputs are already defined; since 
they are the objectives and constraints functions de-
fined in the optimization problem. Then, the archi-
tecture and training algorithm must be defined.

Multiobjective genetic algorithm 
with constraints

In terms of multiobjective optimization, when a 
minimization takes place and the algorithm reaches 
a point where there is no feasible vector that can 
decrease the value of one objective without simulta-
neously increasing the value of another objective, 
that point in the search space is said to be the Pareto 
optimum. By definition, we can say that one point 
′∈ℑz  is a Pareto optimum if for each z ∈ℑ :

 ∧ ≥
∈i I i if z f z( ( ) ( ))*  (1)

Or at least there is some i I , where I rep-
resents the set of objective functions to optimize, 
that:

 f z f zi i( ) ( )*  (2)

Then, we define that z  dominates w  when 
f z f w( ) ( ) 

 , if W ⊆ℑ  and w W  if no z W  
dominates w , we say that w  is not dominated with 
respect to W. As established by Mezura-Montes1, 
the set of solutions which are not dominated and 
optimums of Pareto integrates the Pareto front. The 
Pareto front is integrated by all optimal points, 
which represent the best trade-off between the ob-
jectives of interest, including its extreme values and 
all points between them.

The construction of the Pareto front is made 
through a multiobjective genetic algorithm with 
constraints24. This strategy is based on the NS-
GA-II3. Moreover, the constraints are handled with 
another multiobjective optimization technique, 
which guides the search of the genetic algorithm us-
ing the concept of non-dominance30. The used ap-
proach is described next. The complete population 
is divided into subpopulations according to the 
number of constraints satisfied. Then, in a genera-
tion the best individuals are those that meet the n 
constraints; these individuals are followed by those 
that satisfy n–1 restrictions, and so on. In each sub-
population, the individuals are ranked using the val-
ue of the fitness function calculated with the algo-
rithm based on NSGA-II; also, the minimization of 
the difference between the required and obtained 
constraints vectors is considered as another objec-
tive function. Thereby, the dominance inside each 
subpopulation is calculated using the following 
equation:
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 dominance {objective1, objective2…objectiven, 
   (constraint srequired – constraint sobtained)} (3)

From equation 3, it is clear that the calculation 
of dominance includes all the objectives of interest, 
along with another objective associated to the ful-
fillment of the constraints of the problem. The idea 
behind this is to minimize not just the objectives, 
but also the value of the restrictions unfulfilled. The 
most important characteristic of this approach to 
handling the constraints is that no additional param-
eters or tuning of the algorithm is required.

Proposed approach

The approach presented here allows decreasing 
the required computation time of stochastic strate-
gies, where the evaluation of objective and/or con-
straint functions is computationally expensive, since 
neural networks are used as surrogate model. This 
approach is developed for a multiobjective genetic 
algorithm with constraints24; however, the proposed 
approach can be implemented in any multiobjective 
or simple algorithm (stochastic or deterministic), 
where the evaluations of the objectives and con-
straints functions are computationally expensive. 
The optimization strategy used in this work is cou-
pled with Aspen Plus processes simulator for the 
evaluation of both objectives and constraints. Aspen 
Plus simulator includes many models of different 
unit operations; however, there is no model avail-
able for dividing-wall columns. Due to this, we 
simulate the dividing-wall column as a Petlyuk se-
quence, since these configurations are thermody-
namically equivalent when there is no heat transfer 
across the wall. The simulation of dividing-wall 
columns is computationally expensive due to the el-
evated number of interconnection streams. In our 
previous contribution24, it was found that 95 % of 
the total time required for the optimization with a 
multiobjective genetic algorithm with constraints 
handling was consumed in the evaluation of objec-
tives and constraints in a process simulator. There-
fore, this case is appropriate for the use of surrogate 
models.

In order to reduce the computation time re-
quired to obtain the Pareto front, we propose the 
use of artificial neural networks, which creates ap-
proximate objective and constraint functions, based 
on training of individuals evaluated with the pro-
cess simulator. The approximate functions are com-
putationally less expensive, in the order of millisec-
onds in comparison with the time required for the 
evaluation of the original objective and constraints 
functions, in the order of seconds or even minutes. 
It is worth mentioning that the evaluation of objec-
tive and constraints functions is computationally 
expensive since they are performed in a commercial 

process simulator, considering a complete equilibri-
um model.

The integration of the neural networks with the 
optimization strategy developed previously is pre-
sented in Figure 1; in this flowsheet, the rectangles 
in bold lines represent the original strategy, while 
the rectangles with dashed lines show the addition 
of the neural networks. As can be seen, the integra-
tion of this new approach is very simple and clear.

Throughout the optimization procedure, the 
multiobjective genetic algorithm generates, repro-
duces, and mutates all individuals, both existing and 
new; also, the dominances of all of them are cal-
culated. The difference lies in the evaluation of 
the objective and constraints functions. From here, 
we called complete functions to those involved in 
the original functions (simulation in Aspen Plus 
process simulator), and estimated functions to those 
generated by the neural network; it is worth men-
tioning that objective and constraints functions are 
considered in both complete and estimated func-
tions.

F i g .  1  – Flow diagram of the coupling of the speeding up ap-
proach with the optimization strategy
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In the initial generation, n = 0, the evaluation 
of objectives and constraints is made with the com-
plete functions (process simulator). The obtained 
results are used to create the individuals of the first 
generation, but also to train the neural network; in 
this way, we have estimated functions to evaluate 
objectives and constraints. Since the results of gen-
eration 0 allows having estimated functions, then a 
criterion to decide when to use the complete or the 
estimated functions must be defined. For this, we 
propose the frequency parameter, m, which deter-
mines how often the complete functions are used to 
evaluate the objectives and constraints of the opti-
mization problem. The values of this frequency pa-
rameter can be 2, 3, 4 … mmax, since the value of 1 
implies that the estimated functions are never used. 
In addition, it is important to point out that the max-
imum value of this parameter must be less than the 
number of generations; otherwise, the original func-
tions are never used. The maximum value for the 
frequency parameter is then related with the retrain-
ing of the neural network, the complexity of the 
problem, and, indirectly, with the number of gener-
ations. One can expect that, as the complexity of the 
problem increases, the retraining of the neural net-
work should increase also. Moreover, in the genetic 
algorithms, the number of generations increases as 
the problem is more difficult. Therefore, we decid-
ed to propose a simple relation between the com-
plexity of the problem and the maximum value fre-
quency parameter, related through the number of 
generations:

 m nmax=  round  (4)

Where n is the number of generations. In this 
way, as the complexity of the problem increases, 
the frequency of network training also increases. 
The value of this parameter goes from 2 to mmax, 
where this last value depends the number of gener-
ations. We can then choose a moderate acceleration, 
m = 2, an aggressive acceleration, m = mmax, or 
something between them, m = (mmax+2)/2. It is im-
portant to note that even if the minor value of m is 
used, 2, the number of evaluations of complete 
function is reduced by 50 %; this implies a consid-
erable reduction in the computation time required 
for the optimization.

In order to use the frequency parameter proper-
ly, we introduce a counter A, which is an integer 
parameter with values from 0, 1, 2 … q. Thereby, 
from generations 1 to Am-1 all individuals are eval-
uated with the estimated functions, as constraints 
and objectives; the Am generations are evaluated 
with the complete functions, which results are also 
used to train the neural network. In this way, during 
the Am generations, the estimation of the neural 

network is improved with the data generated by the 
simulator (complete model); therefore, at the end of 
the optimization process, the error presented in the 
estimation of the neural network for both objectives 
and constraints is practically negligible, even when 
we are using a simple model of the neural network.

In summary, the use of estimated and complete 
functions for evaluation of objectives and con-
straints is switched every m generations; where m is 
the frequency parameter. In this way, we reduce the 
computation time, but we are still solving the origi-
nal problem. The parameter m determines the fre-
quency of use of the complete objectives and con-
straints functions, both for the optimization 
procedure and for the training of the neural network.

There are several types of artificial neural net-
works, and, of course, previous analysis and perfor-
mance validation must be made before selecting the 
neural network for each problem. However, as men-
tioned previously, there is formal proof that the sim-
plest neural network is theoretically sufficient to 
model any problem29. Considering this, we used the 
simplest neural network in this work; nevertheless, 
any other neural network can be used in another 
problem.

Problem statement

The proposed approach was tested using as 
case of study the multiobjective optimization of di-
viding-wall columns. The Pareto fronts constructed 
with the multiobjective genetic algorithm with con-
straints, GAMOC, and with neural networks, GA-
MOC-ANN, were compared. In this section, first 
we describe the dividing-wall columns and its opti-
mization problem. After that, the details about the 
parameters of the genetic algorithm and the neural 
network are presented, along with information of 
the mixtures to be separated in the dividing-wall 
columns.

Dividing-wall columns

Distillation is the most used separation process 
in chemical industries; however, a principal disad-
vantage of this technology is its high energy con-
sumption. In order to overcome this drawback, ther-
mally coupled distillation sequences have been 
proposed; these intensified schemes reduce signifi-
cantly the energy consumption. The dividing-wall 
column, DWC, is the most applied thermally cou-
pled distillation column, since it reduces operating 
costs by 35 %, investment costs by 25 %, and also 
the requirements of space by 40 %, in comparison 
with a conventional column sequence31; this makes 
DWC into something that corresponds with the 
present day idea of sustainable process technolo-
gy32. In addition, it is important to mention that 
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these savings can be obtained without losing purity 
in the product streams. Dividing-wall columns have 
been widely studied for the separation of petro-
chemical mixtures33, light hydrocarbons34, azeo-
tropic mixtures35,36, bioethanol37,38, biobutanol39, and 
biojet fuel40; moreover, this scheme has shown to be 
feasible for the performance of the reactive distilla-
tion process for the production of biodiesel41, mixed 
acid esterification and isopropanol dehydration42, 
ethyl acetate43. This last work was performed in a 
pilot plant. Also, research efforts have been dedicat-
ed to the development of synthesis methodologies 
for the use of dividing-wall columns in multicom-
ponent mixtures44, multiple dividing-wall columns 
optimal design45, and retrofitting of conventional 
distillation columns to dividing-wall columns46. In 
2010, more than 90 applications in production scale 
were known47.

All the aforementioned clearly indicates the 
great importance of dividing-wall distillation col-
umns as an efficient separation technology. There-
fore, it is very important to have reliable optimiza-
tion strategies that allow obtaining optimal designs 
with complete models, but with reduced computa-
tion time. The results can lead to the development 
of optimal design methodologies, which can be 
used as the base for the development of other strat-
egies for azeotropic and reactive cases. In order to 
reach this objective, we propose the use of neural 
networks as surrogate models to estimate both ob-
jectives and constraints in the optimization of divid-
ing-wall columns. According to the literature, the 
optimization problem of dividing-wall columns has 
been addressed by several researchers using differ-
ent strategies as genetic algorithms33,36,40,45,48, differ-

ential evolution52,53, simulated annealing54,55, respon se 
surface methodology56, mathematical program-
ming57–61 using complete models or shortcut meth-
odologies. However, the alternate use of surrogate 
models with the complete model in Aspen Plus has 
not been proposed.

Optimal design of dividing-wall column

The dividing-wall column, DWC, is thermody-
namically equivalent to the Petlyuk sequence, as-
suming that the heat transfer across the dividing 
wall is negligible; therefore, it can be represented as 
shown in Figure 2. From this figure, we observe 
that, for a ternary mixture, the optimal design of a 
dividing-wall column implies the calculation of 5 
integer variables and 5 continuous variables, shown 
in Table 1. In addition, the purities and recoveries in 
each product stream must be reached (distillate, 
side and bottom streams); these are the constraints 
of the system. Moreover, there are three variables in 
competition with each other: number of stages on 
both sides of the wall, named here as prefraction-
ator, NPRE, and main column, NMAIN, and the heat 
duty, Q, Figure 2. These variables are in competi-
tion because the minimization of one generates the 
opposite effect on the other, and vice versa. Thus, 
for a ternary mixture we have 3 objectives, 6 con-
straints, and 10 manipulated variables, integer and 
continuous. This optimal design problem can be ex-
pressed as:

 Min Q N f R F N N N N Ni k in k out k F S i( , ) ( , , , , , , ), ,

subject to  (5)

  y xk k

F i g .  2  – Design variables of the dividing-wall column for a ternary separation
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Where R is the reflux ratio, Fk is the intercon-
nection stream flow k, Nin,k and Nout,k are the number 
of stages where the interconnection flow k enters 
and exits, NF is the feed stage of the sequence, NS is 
the side stream stage, Ni is the number of stages in 
the column i. In addition, the constraints are the re-
quired and obtained purities and recoveries, vectors 
xk and yk respectively. In this work, the classical 
scheme of the dividing-wall column is considered, 
thereby the equality in the number of stages in the 
prefractionator and the section between the inter-
connection stages in the main column is considered 
as another constraint.

Parameters of the strategies and selected 
mixtures for the dividing-wall columns

In order to obtain the Pareto fronts for the sin-
gle dividing-wall column, we established the fol-
lowing set of parameters.

For the multiobjective genetic algorithm, we 
used 50 generations for the dividing-wall columns 
of 1000 individuals each. It is important to mention 
that the number of generations and individuals is 
kept constant for the stochastic strategy with and 
without surrogate models; in this way, we can com-
pare the performance of both approaches. The num-
ber of generations and individuals results from a 
tuning process. In this process, we varied the num-
ber of generations and the number of individuals in 
different combinations until we found the number 
of these parameters from which there was no signif-
icant change in the value of the objectives; in other 
words, that the variation in the value of the objec-
tives function was just due to the randomness of the 

algorithm. For instance, Figure 3 shows the typical 
graphic used to determine the number of genera-
tions in an optimization problem, for a fixed num-
ber of individuals. In this graph, it is clear that 
 beyond generation 45 there was no significant vari-
ation in the value of the objective function; so, for 
that case, 40 generations is the best value, given a 
fixed number of individuals. Nevertheless, it is im-
portant to mention that these parameters cannot be 
applied for the optimization of different chemical 
processes. In fact, parameters must be found for 
each chemical process that you want to optimize. In 
our experience, the number of individuals and gen-
erations tends to increase as the complexity of the 
problem increases (because the objectives increase 
or the number of constraints rises).

For the neural network, we chose a perceptron 
with two layers and eight cells in each layer. The 
functions included were sigmoid and linear, while 
the training was supervised with 30 cycles each 
one. We chose this simple neural network based on 
the conclusions provided by Kurková29; but also, we 
tried to avoid generating another optimization prob-
lem nested for the selection of the best neural net-
work. Considering the number of generations cho-
sen for the genetic algorithm, we decided to make a 
moderate acceleration of the strategy; the frequency 
parameter was then chosen as 5 for the dividing-wall 
distillation columns.

The dividing-wall columns separate the following 
mixtures: n-pentane – n-hexane – n-heptane (M1), 
and methanol – n-butanol – methyl formate (M2). 
For both mixtures, thermal condition of feed is sat-
urated liquid, while the recoveries and purities of 
key components in each product stream are [98 
%-98 %-98 %] and [98.7 %-99 %-98.6 %] for mix-
tures M1 and M2, respectively. In order to compare 
optimization performance of GAMOC-ANN and 
GAMOC we employed the same initial designs, 
thermodynamic model, and convergence options for 
the simulation for both mixtures and procedures.

Ta b l e  1  – Objectives, constraints and design variables of di-
viding-wall columns

Dividing-wall column

Objectives
Number of stages in prefractionator 
Number of stages in main column 
Heat duty of the sequence

Constraints

Purity of component A in distillate stream 
Purity of component B in side stream 
Purity of component C in bottom stream 
Recovery of component A in distillate stream 
Recovery of component B in side stream 
Recovery of component C in bottom stream

Integer 
design 
variables

Number of stages in main column 
Location of feed stage 
Location of side stream stage 
Location of superior interconnection stream 
Location of inferior interconnection stream

Continuous 
design 
variables

Reflux ratio 
Interconnection liquid flow stream FL1 
Interconnection vapor flow stream FV2 
Distillate stream flow 
Side stream flow

F i g .  3  – Convergence plot for an optimization problem with 
a fixed number of individuals
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Discussion of results

In this section, we present the Pareto fronts of 
the dividing-wall distillation columns for the select-
ed mixtures. The Pareto fronts were obtained using 
the multiobjective genetic algorithm with con-
straints, GAMOC, which considered just the use of 
the complete model in the process simulator. In ad-
dition, Pareto fronts were also generated with the 
same strategy with neural networks as surrogate 
models, GAMOC-ANN. A comparative analysis of 
the evolution of both Pareto fronts without, GAMOC, 
and with surrogate models, GAMOC-ANN, is pre-
sented next. It is worth mentioning that further anal-
ysis of the optimal designs themselves that integrated 
the Pareto front was not the objective of this work.

The Pareto fronts of the dividing-wall column 
were obtained by manipulating 10 variables, subject 
to the fulfillment of 6 constraints in the minimiza-
tion of 3 objectives, Table 1. Pareto fronts show the 
three variables in competition as defined previous-
ly: number of stages in prefractionator, number of 
stages in main column, total heat duty. The designs 
that integrate the Pareto front represent the best 
trade-off between these variables, which are in 
competition. Since three objectives are considered, 
we present the results in 3D graphics.

The evolution of Pareto fronts of the dividing-wall 
column generated using GAMOC and  GAMOC-ANN 
for mixture M1 is presented in Figure 4. In this fig-

ure, each series of dots in different color represent a 
different generation, beginning at generation 1. 
From these figures, we observe how the Pareto 
fronts evolve as the optimization proceeds; howev-
er, the followed trajectory is completely different 
when surrogate models are used. It is clear that with 
GAMOC-ANN, in generation 5, the individuals are 
more compacted in a region of lower energy, with 
respect to the individuals obtained in GAMOC in the 
same number of generations. From these figures, we 
also observe that the use of the neural networks allows 
reaching the Pareto front faster than the optimization 
strategy alone. Moreover, at the end of the optimiza-
tion, in generation 50, the Pareto front of GAMOC is 
very close to the Pareto front generated with the surro-
gate model, GAMOC-ANN, but it is not there yet. Us-
ing surrogate models, 11,000 evaluations of the com-
plete functions were required, in comparison with the 
50,000 needed by GAMOC. Since the neural network 
is trained every time the complete model is used, the 
neural network improves the estimation of the objec-
tives and constraints as they approach the optimal 
zone. Another important characteristic is that, in spite 
of the use of estimated functions, the Pareto front had 
maintained its diversity. Therefore, the use of surro-
gate models reduces significantly the number of eval-
uations of the complete objective functions, and the 
Pareto front is reached much faster. A similar behavior 
is observed for mixture M2 with and without the use 
of surrogate models, Figure 5.

F i g .  4  – Evolution of the Pareto front of single dividing-wall 
column for mixture M1

F i g .  5  – Evolution of the Pareto front of single dividing-wall 
column for mixture M2
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According to Figure 6, the reduction in the 
number of evaluations of the complete functions is 
accompanied by a decreased reduction of the CPU 
time required when surrogate models are used. Fig-
ure 6 shows the CPU time required in the function 
of the number of generations. From this figure, we 
can observe the dramatic reduction in the computa-
tion time when surrogate models are used, 100,000 
seconds, in comparison with GAMOC, 525, 000 
seconds. This represents a reduction of 80 % in the 
time required to reach the Pareto front. For mixture 
M2, a similar reduction in computation time re-
quired is observed when surrogate models are used. 
Therefore, with the use of neural networks, a major 
number of dividing-wall columns are evaluated in 
seconds, allowing us to explore a major area of the 
solution space in a short time, in comparison with a 
rigorous simulation.

From the last figures, we can observe that the 
use of surrogate models allows decreasing the num-
ber of evaluations of the complete function, and, as 
consequence, the CPU required time. However, it is 
important to evaluate that these advantages do not 
impair the quality of the individuals that integrate 
the Pareto front; in other words, that the best indi-
viduals are found. In order to observe these charac-
teristics, we present one graphic and one table.

The graphic shows the number of individuals 
with actual zero dominance as a function of the 
CPU time and the number of generations for mix-
ture M1, Figure 7. It is worth mentioning that the 
individuals with actual zero dominance are those 
that integrate the Pareto front in a certain genera-
tion; in other words, the best individuals in that mo-
ment of the optimization procedure. From this fig-
ure, we observe that the number of individuals with 
actual zero dominance with the use of surrogate 

models is slightly more than a third of the number 
obtained with GAMOC; nevertheless, the individu-
als with actual zero dominance of GAMOC-ANN 
were generated in just 20 % of the total time em-
ployed by GAMOC. In this sense, the trade-off be-
tween CPU time and number of individuals with 
actual zero dominance is good enough.

On the other hand, the quality of these individ-
uals must be estimated, since it is not useful to have 
a lot of individuals if they pass from one generation 
to the other without any change. In order to observe 
this characteristic, we present in Table 2 the evolu-
tion of the individuals with actual zero dominance 
with respect to the minimum, maximum and the 
best trade-off between the objectives of interest. It 
is clear that, for both strategies, there is an improve-
ment in the individuals; however, it is also clear that 
the improvements lead to better individuals with the 
use of surrogate models; is the consequence being 
that a major area of the solution space is being ex-
plored. It is important to remember that the time 
required to reach these better individuals is just 
20 % of the total time employed when only com-
plete models are used.

Another important aspect is the evaluation of 
the prediction of the artificial neural network. For 
this, we selected the individuals from several gener-
ations evaluated with the neural network, and which 
actual dominance was calculated as zero; we simu-
lated these individuals in Aspen Plus, in order to 
obtain the values of the objectives and constraints 
resulting from using the complete functions. Only 
individuals with actual zero dominance were evalu-
ated, since they are guiding the optimization proce-
dure. Figures 8–10 show the difference between the 

F i g .  6  – Required computation time as a function of the num-
ber of generations with GAMOC and GAMOC-ANN, 
for mixture M1

F i g .  7  – Number of individuals with zero dominance as func-
tion of the number of generations and the CPU time 
required, for mixture M1



500 C. GUTIÉRREZ-ANTONIO and A. BRIONES-RAMÍREZ, Multiobjective Stochastic…, Chem. Biochem. Eng. Q., 29 (4) 491–504 (2015)

values of objectives and constraints obtained with 
complete and estimated functions, as the optimiza-
tion proceeded. Generally, in all graphics, the dif-
ference is large at the beginning of the optimization 
procedure, but it is minimized as the process contin-
ues. In the case of heat duty, Figure 8, at the begin-
ning of the optimization process, the maximum dif-
ference is around 60,000 Btu h–1 (being the heat 
duty in the order of millions of Btu h–1); at this 
point, the parameters of the neural network are ob-
tained with numerous individuals that are far away 
from the optimal zone. The parameters of the neural 
network are refined as the optimization proceeds, 
and, at the end, the maximum difference is around 
300 Btu h–1. Since the optimal values are around 9 
million Btu h–1, the difference of 300 Btu h–1 is real-
ly small, 0.003 %. On the other hand, Figure 9 
shows the difference in the composition and recov-

ery of the light component with complete and esti-
mated functions; in this figure, we observe that the 
differences are 0.005 at the beginning of the pro-

Ta b l e  2  – Evolution of the objective heat duty (Btu h–1) in three individuals (minimum heat duty, minimum number of stages, and 
best trade-off) with zero dominance with GAMOC and GAMOC-ANN, for mixture M1

Generation
GAMOC-ANN GAMOC

minimum heat duty best trade-off minimum stages minimum heat duty best trade-off minimum stages

1 9 338 734 9 349 582 11 463 763 10 148 024 11 261 544 12 946 740

5 9 217 700 9 313 937 9 499 618 9 348 417 9 503 617 13 273 197

10 9 203 848 9 220 839 9 639 028 9 280 305 9 321 355 11 517 071

15 9 203 276 9 230 125 9 344 188 9 272 069 9 296 569 9 344 078

20 9 202 936 9 221 591 9 461 164 9 266 932 9 283 912 9 329 511

25 9 198 965 9 216 442 9 283 277 9 266 585 9 277 597 9 323 371

30 9 196 951 9 212 539 9 249 634 9 266 617 9 276 779 9 320 977

35 9 196 808 9 205 425 9 252 043 9 266 559 9 275 540 9 302 588

40 9 196 896 9 202 866 9 222 954 9 266 558 9 275 743 9 302 271

45 9 196 810 9 204 341 9 221 208 9 266 543 9 274 820 9 302 257

50 9 196 934 9 207 665 9 230 917 9 266 520 9 273 777 9 302 203

F i g .  8  – Deviation between the simulation of the complete 
model and the prediction of the neural network of 
the heat duty, mixture M1

F i g .  9  – Deviation between the simulation of the complete 
model and the prediction of the neural network of the light 
component composition and recovery, mixture M1
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cess, while at the end this value is 3.0· 10–5; consid-
ering that the values for composition goes from 0 to 
1, that difference is really small. For the heavy 
component, Figure 10, the differences are larger at 
the beginning of the process, until 0.12 and 0.06, 
respectively; however, these differences are also 
minimal at the end of the process. In general, the 
predictions of the neural network were better as the 
optimization proceeded; this allows reaching the 
Pareto front very quickly, since the estimated objec-
tives and constraints are very similar to those ob-
tained with the complete functions.

Finally, among the Pareto fronts, we selected 
one optimal design in order to analyze the composi-
tion and temperature profiles. It is well known that 
the low thermodynamic efficiency of conventional 
distillation sequences is due to the remixing effect 
of the intermediate component for a ternary mix-
ture. Figure 11 shows the liquid composition and 
temperature profiles on both sides of the divid-
ing-wall for one optimal design of the Pareto front 
for mixture M1. In this design, the main column has 
34 stages, where the side stream is located in stage 

15 (counting from top to bottom); the prefraction-
ator has 16 stages, being the feed stream located in 
stage 4 (counting from top to bottom). In the pre-
fractionator, we observed that the temperature pro-
file was really smooth, while the liquid composition 

F i g .  1 0  – Deviation between the simulation of the complete 
model and the prediction of the neural network of 
the heavy component composition and recovery, 
mixture M1

F i g .  11  – Liquid composition and temperature profiles on 
both sides of the dividing-wall column of one se-
lected Pareto optimal for mixture M1
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profile shows how a large part of the intermediate 
component along with the light component was dis-
tributed to the top of the prefractionator. In this 
case, this is the optimal distribution of the compo-
nents for minimizing energy consumption and the 
number of stages. Moreover, in the main column, 
we observed that the liquid composition and tem-
perature profiles were really smooth, indicating that 
the interconnection streams were optimally located, 
so there was no disturbance observed in the graph-
ics. It is clear that both profiles were very soft, and 
no remixing effect was observed. This confirms that 
the reached designs represent optimal points.

Concluding remarks

The optimization of dividing-wall distillation 
columns by using surrogate models in a multiobjec-
tive stochastic algorithm has been presented. The 
proposed approach considers the use of artificial 
neural networks to generate approximate functions 
for objective and constraint functions. These ap-
proximate functions are several orders of magnitude 
less computationally expensive than the original 
ones. The results show a significant decrease in the 
number of evaluations of the original objective 
function required to reach the Pareto front; as a con-
sequence, a significant decrease in the computation 
time was also observed.

The main weakness of this approach is the lack 
of sufficient data for the training of the neural net-
work. Therefore, in cases of convergence problems 
in the simulator, the neural network cannot be 
trained in a reliable way, since there are insufficient 
data, and of course the strategy is not going to work 
properly.

It is important to mention that this approach 
can be used in any simple or multiobjective algo-
rithm (stochastic or deterministic), with or without 
constraints, where the evaluation of the original ob-
jective function is computationally expensive. It is 
worth mentioning that, in the case of deterministic 
optimization strategies, a slight modification must 
be made. In spite of the selection of the neural net-
work, it must be analyzed and validated for each 
case; results show that even the simpler neural net-
work has a good performance, even in a very com-
plex, mixed integer, highly nonlinear problem of 
optimal design.
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