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ABSTRACT 

 

Recently, Column Profile Maps were developed as a generalized, graphically based 

distillation synthesis method. Unlike several other synthesis methods, it is not 

specific to any configuration and therefore allows the designer to devise almost any 

separation before being constrained by equipment. This thesis attempts to expand the 

theory of Column Profile Maps.  

 

Specifically, it is shown how new, and somewhat counter intuitive, column sections 

may be designed by merely imposing a sharp split constraint on a particular system. 

This special mathematical constraint makes it possible to maneuver topological 

characteristics of the system in almost any imaginable direction. This could lead to 

new designs being sought to exploit these profile behaviors, specifically in columns 

that require internal column sections (complex columns).  

 

Thermally coupled columns have received considerable attention for their ability to 

drastically reduce operating expenditures. Here, we have extended the Column 

Profile Map technique to encompass a systematic procedure for the design of single 

and multiple side rectifying and stripping units. It is shown how one may go about 

designing such columns rigorously without making simplifying assumptions with 

regard to the phase equilibrium behaviour and/or product specifications (as classical 

methods such as Underwood do), with the use of a Temperature Collocation method, 

as well as through a shortcut technique for rapid synthesis assuming ideal phase 

equilibrium behavior based on Column Profile Map eigenvectors. The efficacy of the 

shortcut technique is demonstrated with finding the best thermally coupled column 

comprising of a large main column and appending side-units. Naturally, the best 

structure is dependent on the objective function, and simple calculations presented 

here allow one to choose the best structure with regard to both heat quantity and 
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quality. Furthermore, the eigenvector method allows one to construct an Attainable 

Region consisting of all potential designs for even the most complex column. 

 

The Column Profile Map technique is also extended to Reactive Distillation, which 

allows one to graphically assess the complex interaction of phenomena. Valuable 

conclusions can be gleaned from this method, specifically that improving a single 

piece of equipment’s performance may prove detrimental to the overall system’s 

operation. The methods developed here allow one to understand exactly why a 

complex process such as reactive distillation has some of the strange characteristics 

often reported in literature. Furthermore, it is shown how non-ideal phase equilibrium 

behavior may improve the column’s operability and in fact improve the overall 

feasibility of the unit. Using this method, one may quickly assess desirable process 

chemistry, feed compositions, desirable phase equilibrium and equipment sizes. 

Again, an Attainable Region is presented which shows all possible modes of 

operation that would give rise to a predefined product specification. 

 

Finally, computational techniques are presented which allows for swift calculation of 

stationary points in systems ranging from constant volatility to highly non-ideal, 

multi azeotropic systems. The importance of quickly and accurately knowing where 

pinch points are located, even in negative composition space, is demonstrated by 

critically looking at several design methods. Notably, it is shown that the 

Rectification Body Method is neither a necessary nor sufficient condition for design 

and cannot be safely extrapolated to complex column design. With knowledge of all 

pinch points and using the Column Profile Map technique it is shown how one may 

synthesise new and counter-intuitive column sections, so much so that azeotropes can 

be shifted outside the physically realizable space.  
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Chapter 1  : INTRODUCTORY OVERVIEW 

 

This thesis consists of five topics that are broadly related in that they all deal with the 

theoretical analysis of distillation systems, but they have been deemed unique enough 

to warrant their partition into separate chapters. As such, five working chapters are 

presented, all of which have been prepared in the form of papers for publication. 

However, the nomenclature, and references have been included as part of the main 

thesis body, and are not shown separately in the respective chapters. Below is an 

overall introduction and background to the thesis, covering the work in all five 

chapters. 

 

1.1 BACKGROUND AND MOTIVATION 

 

In almost all industrial chemical processes, one or more chemical reactions take place 

to manufacture a wide range of products. Unfortunately, these reactions invariably 

produce by-products which severely affect the quality and therefore the market value 

of the final product. Thus, in almost all chemical processes a separation scheme of 

some sorts is required. There are numerous technologies available for this task, such 

as distillation, membrane separation, crystallization, etc., but of these available 

technologies, distillation remains by far the most common in the chemical industry. 

Distillation is a commercial method of purifying binary and multi component 

mixtures on the basis of boiling point differences into final compositions which have 

greater use or a higher market value. Decades of work by researchers have made it 

possible for distillation to become one of the most widely used and effective methods 

of separation used in the chemical industry today. 

 

However, even though distillation is by far the most widely used technique for 

separation, it is also an expensive process due to the high energy demands of the 

process. In fact, Soave and Feliu have reported that in 1995, distillation columns in 
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the United States consumed around 2.87 × 10
18

 J (2.87 million TJ), which is 

equivalent to a continuous power consumption of 91 GW or to 54 million tons of 

crude oil (Soave and Feliu, 2002) . In another study, it has been estimated that energy 

inputs into distillation columns in the United States accounts for approximately 3% of 

the entire country’s energy consumption (Ognisty, 1995). It is evident that by saving 

or recovering only 1% of the heat used by distillation columns, the impact would be 

significant. 

 

Many schemes have been proposed over the past several years to improve distillation 

energy requirements. Traditionally, when purifying a multicomponent mixture, a 

number of distillation columns are used in series, and the way in which these columns 

are sequenced may make a tremendous difference in the overall energy requirements. 

However, due to the large energy requirements of even the most optimal sequence, 

more complex column arrangements have been proposed and subsequently utilized. 

These arrangements include thermally coupled columns such as side rectifiers and 

strippers the Petlyuk and Kaibel columns, prefractionating columns, and multi-effect 

arrangements (Engelien and Skogestad, 2005a). Up to 50% savings in energy 

expenditures have been reported with these thermally coupled arrangements (Wolff 

and Skogestad, 1995, Agrawal and Fidkowski, 1998, Fidkowski and Agrawal, 2001, 

Brüggemann and Marquardt, 2004, Engelien and Skogestad, 2005b).  

 

Side stripping columns have found widespread use in the petrochemical industry to 

produce various cuts of petroleum products (Watkins, 1979). On the other hand, side 

rectifying columns have found application in air separation (Petlyuk, 2004) as well as 

replacing entrainer regeneration columns in extractive distillation operations 

(Emmrich et al., 2001). Even more complex columns like the Petlyuk column for 

separating a given feed into three products in a single unit requires only one set of 

heating or cooling devices, thereby reducing the energy costs of the separation. 

Despite the significant advantages that complex configurations offer, simple (one-

feed-two-product) distillation columns are overwhelmingly more utilised. One factor 
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contributing to the under-utilisation of the complex arrangements is, possibly, a lack 

of understanding of these columns. Simple columns, by comparison, are extremely 

well understood. Therefore, in an attempt to reduce energy and capital costs of 

separation systems, a considerable amount of effort has gone into the synthesis and 

design thereof.  

 

Graphical methods for designing distillation schemes have been especially popular 

for design. In 1925, McCabe and Thiele published a landmark paper on a graphical 

design method for binary distillation (McCabe and Thiele, 1925b), still used today as 

a quick means of understanding the relationship between energy and capital costs for 

simple distillation. Multicomponent distillation systems have been traditionally 

designed through the Underwood set of equations (Underwood, 1946a). These 

equations are limited by the following assumptions: constant relative volatility 

between all components, constant molar overflow and a sharp separation between 

product streams, i.e. one or more of the components has a near-zero composition in at 

least one of the product streams (the same definition for a sharp splits used by used 

by Huss and Westerberg (Huss and Westerberg, 1996)). If there is a significant 

distribution of components, Underwood’s method is no longer exact. This fact has 

been stated in several works (Levy et al., 1985, Poellmann et al., 1994, Lucia and 

McCallum, 2009). Shiras et al. also systematically demonstrate that for Class 2 

separations (sharp split problems in terms of this thesis’ terminology) that the 

Underwood equations are exact (Shiras et al., 1950). For cases where all components 

distribute (Class 1 problems), Underwood’s method only serves as an approximation 

because the pinch points are not related to the feed compositions in a simple way. 

Moreover, Levy and Doherty proved convincingly that Underwood's geometry cannot 

be relied upon to give accurate values for minimum reflux when the mixture is non-

ideal (Levy et al., 1985). These assumptions are however still very good 

approximations for a large number of industrial applications, and these equations 

have been applied by numerous authors to a plethora of distillation structures 

(Halvorsen and Skogestad, 2003a, Halvorsen and Skogestad, 2003b, Engelien and 
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Skogestad, 2005a, Engelien and Skogestad, 2005b, Wolff and Skogestad, 1995, 

Fidkowski and Krolikowski, 1987, Alstad et al., 2004, Carlberg and Westerberg, 

1989, Glinos and Malone, 1985a, Glinos and Malone, 1985b).  

 

Residue curve maps and distillation line maps (Schreinemakers, 1902, Doherty and 

Perkins, 1979, Stichlmair and Herguijuela, 1992) have also been a useful graphical 

technique for screening ternary separation feasibility, especially for simple 

separations. These maps are basically a range of trajectories that track the liquid 

compositions of the chemical species over time in a simple batch distillation 

operation, and conveniently present the relationship between liquid and vapour 

phases allowing one to quickly analyse potential splits, even for highly non-ideal 

systems. However, although these maps can tell one much about the feasibility of 

separation, they both have limitations in that they only give information at infinite 

reflux, i.e. an infinite energy requirement, quite an impractical condition for the 

design engineer. 

 

Numerous other design techniques have evolved over the years with varying degrees 

of complexity. One of these are the shortest stripping line method proposed by Lucia 

and co-workers (Lucia et al., 2006) which states that the shortest stripping line will 

generally lead to the structure with lowest heat duty. Other, so-called non-equilibrium 

models (Taylor and Krishna, 1993) have also received considerable attention, and 

although these non-equilibrium methods are more rigorous than their equilibrium 

counterparts, they often permit limited insight into the design due to the large number 

of variables required to accurately converge the equations. 

 

Even advanced simulation packages such as AspenPlus or Hysys, although their 

undoubted modelling capabilities, have not provided much insight into the design of 

complex distillation systems. This is largely due to the fact that these packages 

require precise initialization values to ensure convergence to the specified product 

purities. Without the necessary experience or advanced knowledge, rigorously 
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determining a complex column’s feasibility is a time-consuming, if not impossible, 

task. Furthermore, because of the “black box” nature of the program, the user often 

does not have any insight into the final solution and how one might go about 

improving it. 

 

Recently, in a series of papers by Holland, Tapp and co-workers a new distillation 

design technique was proposed, Column Profile Maps (CPMs) (Holland et al., 2004a, 

Tapp et al., 2004). CPMs were derived from an adaptation of ordinary differential 

equations for a simple single-feed-two product column (Van Dongen and Doherty, 

1985a). CPMs were shown to display the same topological behaviour as residue 

curve maps, as well as being an extremely useful design tool for complex distillation 

systems by allowing the designer to set reflux ratios and net molar flows in a 

generalised column section. This generalisation has been shown to be extremely 

useful for designing and analysing complex distillation systems (Holland et al., 2010, 

Holland et al., 2004b). The method does not require simplifying assumptions 

regarding the phase equilibrium behaviour nor sharp splits. Furthermore, unlike the 

aforementioned rigorous simulation packages, highly insightful design parameters 

such as the total number of stages, feed stage, and reflux ratio are a product of the 

method, and do not require them to be set a priori. Furthermore, the Column Profile 

Map method is perhaps most useful in devising these new, previously unthought-of 

structures, since it is completely generalised and not limited to any particular piece of 

equipment, and thus allows the designer freedom for designing new, more efficient 

separation schemes.  

 

In a further attempt to reduce capital and operating costs of a processing plant, 

researchers and engineers have proposed combining a chemical reactor and a 

distillation column into a single vessel. This process, reactive distillation, has been 

mentioned as early as 1948 (Berman et al., 1948). Reactive distillation may be 

implemented to replace conventional reaction-separation networks, and has the 

potential to greatly reduce expenditures. Taylor and Krishna compiled a 
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comprehensive review on reactive distillation and have identified several advantages, 

including significant savings on capital cost due to the simplification or elimination 

of the separation network; improved heat integration, especially if the reaction is 

exothermic, and an improvement in both selectivity and reactant conversion (Taylor 

and Krishna, 2000). 

 

Although the case for reactive distillation is strong, it is much more complex than 

conventional distillation and therefore much more difficult to model, primarily due to 

the fact that a chemical reaction, phase separation and mixing occur in a single vessel. 

According to Taylor and Krishna, the major problem facing the large scale 

implementation of reactive distillation schemes is operability. As with the 

aforementioned complex column arrangements, this arises due to the complexity 

brought forward in the design of the process.  

 

Strategies that have been proposed to solve this problem are divided into two main 

classes: equilibrium or non-equilibrium stage based, almost all of which are computer 

orientated (Taylor and Krishna, 2000). An example of such a computer aided model 

is determining the optimum number of equilibrium stages, feed tray location and 

reflux ratio by combining a tray-by-tray balances, kinetic rate based expressions and 

cost estimates using mixed integer non linear programming (Ciric and Gu, 1994). 

Although models such as these are extremely effective and rigorous, due to the large 

amount of simultaneous molar, energy and equilibrium equations to be solved they do 

not always allow the user to obtain insights into the final solution. In contrast to this, 

Hauan and co-workers have developed a phenomena-based approach for analyzing 

and synthesizing reactive separation processes, by considering the effects of the three 

phenomena present: chemical reaction, equilibrium separation and mixing (Hauan 

and Lien, 1996, Hauan and Lien, 1998, Hauan et al., 2000). Using this relatively 

simple technique, they showed how different phenomena influence the reactive 

distillation process, without using rigorous simulations. The advantages of this 

technique is that only physical and chemical data are required to estimate the 
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phenomena, both of which are independent of the structural design of the unit; and 

furthermore, only considering the key phenomena allows the designer to assess the 

process independently of equipment structure (Almeida-Rivera et al., 2004).  

 

Currently, almost without exception, research in distillation is directed towards 

energy savings. More synthesis methods are constantly being sought to aid the design 

engineer in his task to devise the most efficient separation process. However, most 

synthesis methods require that a structure be determined before the actual 

mathematical design is performed, and thus the designer may have missed a 

significant opportunity in reducing energy costs by being constrained by existing 

equipment. What is really needed is a generalised method that allows at least 

preliminary insight into a design before resorting to rigorous and accurate modelling 

routines. This thesis thus centres on the Column Profile Map design methodology to 

design a great variety of distillation configurations, ranging from simple columns to 

thermally coupled columns to reactive distillation columns. 

 

1.2 CONTRIBUTION OF THESIS 

 

The main contribution of this work is to present new insights into distillation 

processes from a graphical point of view. The goal of the thesis is to expand the 

theory of Column Profile Maps and ultimately to provide steps to eventually design 

cheaper, energy efficient distillation structures, before resorting to time-consuming 

process simulation packages. This includes applying the methods to the design of 

new systems (Chapters 3, 4 and 5), highlighting interesting, potentially useful 

topology (Chapter 2) and proposing methods for rigorous computation for the 

purpose of design (Chapter 6).  
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1.3 THESIS OUTLINE 

 

Each chapter in this thesis is constructed in the form of a journal article. Some of 

these have already been published, while others are due to be published in the future. 

Due to the fact that Column Profile Maps are a relatively new distillation synthesis 

tool there is a small degree of repetition in the introductions to each chapter, which 

covers the derivation and topological aspects of CPMs, but this should serve to 

strengthen the readers’ understanding. Each chapter may thus be read independently 

of one another. A list of notable presentations and peer-reviewed publications, both in 

review and published, is given in on page 212 under Publications and Presentations. 

A brief outline of the thesis is given below:  

 

Chapter 2 deals with Column Profile Maps, specifically for the special case when 

imposing a sharp split constraint on a column section. This constraint brings unique , 

interesting and previously unthought-of profile behaviour to the fore, and although it 

may not hold advantages in conventional column sections, it may find application in 

more complex structures with internal column sections. 

 

Chapter 3 was completed at the University of Illinois at Chicago. The central idea 

behind this work is to apply the Column Profile Map technique to systematically and 

algorithmically find feasible designs for thermally coupled columns, traditionally 

very difficult columns to design, using a Temperature Collocation technique. The 

techniques shown in this chapter do not need to make simplifying assumptions 

regarding the product specifications or phase equilibrium as several current design 

techniques do, and rigorously ensures column feasibility by validation with state of 

the art process simulation software. 

 

Chapter 4 builds on Chapter 3 to design multiple side rectifying and stripping units. 

The design tools presented here allows one to quickly assess feasibility for constant 



Chapter 1: Introductory Overview 

9 

 

volatility and sharp split systems. The unique manner in which results are presented 

allows one to find the minimum operating point as well as identify an Attainable 

Region and presents methods for quickly finding optimal structures, which severely 

depend on one’s objective function of course. This work was done together with 

Ronald Abbas. 

 

Chapter 5 covers the application of Column Profile Maps to the field of reactive 

distillation. The graphical nature of Column Profile Maps is shown to be very useful 

in understanding the simultaneous effect of chemical reaction, phase separation and 

mixing. An Attainable Region can be identified for a certain product specification 

which allows the designer to find the optimal combination of reactor size, column 

height and energy demand, and assess the counter-intuitive interaction between each. 

 

Chapter 6 was also completed during my stay in Chicago. It presents several 

techniques for quickly and efficiently solving all pinch points in a given system, 

regardless of the number of components. Furthermore, it shows some interesting 

aspects of pinch point location and the influence it may have on certain, current 

design techniques. 

 

Chapter 7 summarises the major results from this thesis and discusses the way 

forward. 

 

 



 

 

Chapter 2 : COLUMN PROFILE 

MAPS: APPLICATION TO SHARP SPLITS IN 

CONSTANT VOLATILITY SYSTEMS 

 

 

This work has been prepared in the form of a paper for future publication. It has been 

presented at the AICHE annual meeting in Philadelphia, USA in 2008, and parts of it 

have been included in an overview of Column Profile Maps for the peer reviewed 

Foundations of Computer Aided Design (FOCAPD) conference journal in 2009 in 

Colorado, USA (see Appendix F: FOCAPD 2009 Summary Paper) It has also been 

published in Industrial and Engineering Chemistry under the title On Column Profile 

Maps: An analysis of sharp splits, 2011, 50 (10), pp 6331–6342. This work is entirely 

my own. 

__________________________________________________________________ 

ABSTRACT 

Column Profile Maps (CPMs) have recently been shown to be a useful tool in the 

design of distillation operations, especially complex configurations. CPMs are 

basically a family of composition trajectories for a single column section in a 

distillation column. They are essentially topological transforms of Residue Curve 

Maps, and are dependent on two main parameters: RΔ (reflux ratio) and XΔ (a pseudo 

composition vector), which effectively fixes the net flow in a column section. This 

paper focuses on the interaction between these parameters for the special case of 

sharp splits. With the CPM technique it has been shown that sharp splits behave 

differently to non-sharp splits, due to a phenomenon termed as “node bumping”.  In 

particular it has been shown that it is possible to sample an intermediate boiling 

component as a bottoms or distillate product when operating in certain ranges of RΔ.  
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2.1  INTRODUCTION 

 

In almost all industrial chemical processes, one or more chemical reactions take place 

to manufacture a wide range of products. Unfortunately, these reactions invariably 

produce by-products which severely affect the quality and therefore the market value 

of the final product. Thus, in almost all chemical processes a separation scheme of 

some sorts is required. There are numerous technologies available for this task, such 

as distillation, membrane separation, crystallization, etc., but of these available 

technologies, distillation remains by far the most common in the chemical industry.  

 

Distillation is a commercial method of separating binary and multi component 

mixtures into individual pure components. Decades of work by researchers have 

made it possible for distillation to become one of the most widely used and effective 

methods of separation used in the chemical industry today. Unfortunately, distillation 

is a very energy intensive technique for separation. Ognisty conducted a study in the 

mid 1990’s regarding the global effect of distillation, and estimated that energy inputs 

into distillation columns in the United States accounts for approximately 3% of the 

entire country’s energy consumption(Ognisty, 1995). Approximately two thirds of the 

distillation energy is consumed by the petroleum refining industry, where it is widely 

used to separate crude oil into petroleum fractions, light hydrocarbons, and aromatic 

chemicals(Aristovich, 2004). Furthermore, it has been estimated that more than 55% 

of the total energy requirement for unit operations in today’s petroleum refinery is 

expended to operate distillation processes(Mix, 1981). 

 

Distillation exploits the fact the equilibrium composition of two or more chemical 

species are not equal across coexisting phases. The first attempts to describe 

distillation with a mathematical model was by Schreinemakers (Schreinemakers, 

1902) and Sorel (Sorel, 1893).
 
Much later, Van Dongen and Doherty proposed the 

use of Ordinary Differential Equations (ODE) to simplify the design procedure(Van 
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Dongen and Doherty, 1985a). While these ODEs model conventional rectifying and 

the stripping sections of a distillation column, they do not describe the transition from 

the rectifying to the stripping sections and are therefore no longer valid at the feed 

stage. 

 

Graphical methods for designing distillation schemes have also been very popular. In 

1925, McCabe and Thiele published a landmark paper on a graphical design method 

for binary distillation (McCabe and Thiele, 1925a). Residue Curve Maps have also 

been developed as a graphical method for designing multicomponent distillation 

systems. Residue Curve Maps are basically a range of trajectories that track the liquid 

compositions of the chemical species over time in a simple distillation operation. 

Residue Curve Maps can tell one much about the feasibility of separation and the 

nature of singular points, such as azeotropes and pure component vertices. 

Compositional changes for continuous rather than batch distillation can be 

represented by Distillation Curve Maps, which are from a mathematical point of view 

very closely related to Residue Curve Maps. 

 

However, Residue Curve Maps and Distillation Curve Maps, have limitations in that 

they only give information at infinite reflux ratio, quite an impractical condition for 

the design engineer. Recently, in a series of papers by Tapp et al. and Holland et al. a 

new theory was explored in distillation: Column Profile Maps (CPMs) (Holland et al., 

2004b, Tapp et al., 2004). CPMs were derived from an adaption of ODEs proposed 

by Van Dongen and Doherty (Van Dongen and Doherty, 1985a), which take into 

account the net molar flows and reflux ratios in a column section. CPMs were shown 

to display the same topological behaviour as RCMs, as well as being an extremely 

useful tool in distillation design by allowing the designer to set reflux ratios and net 

molar flows to suit the specifications of the separation. This contribution investigates 

interesting topological effects associated with CPMs for the special case where a 

sharp split constraint is placed on the process. These effects may have potential use 
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when designing unconventional column configurations which require multiple feeds 

or thermal coupling. 

 

The paper is structured as follows: Section two gives a mathematical background of 

CPMs, briefly explaining what effects of operational parameters RΔ and XΔ are on the 

topological space. Section three introduces the special case where a sharp split 

constraint is imposed on a column section. Mathematical, as well as topological 

effects are covered in this section, concluding with validation and potential uses for 

these unique effects. Finally, section four presents several conclusions that may be 

drawn from this work.  

 

2.2 BACKGROUND 

 

2.2.1 DERIVATION OF COLUMN PROFILE MAPS 

 

A CPM describes the behavior of a 3-component system by setting appropriate 

parameters such as the net molar flow and the reflux ratio. The first step in 

constructing a CPM is to define a column section, which is defined as “a length of 

column between points of addition or removal of material and/or energy”(Tapp et al., 

2004).A generalized column section can be seen in Figure 2.1.  
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Figure 2.1: A generalised column section 

 

A steady state material balance accompanied by a Taylor expansion over the 

highlighted section above yields: 

 

     
x 1 1
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    (2.1) 

 

using the definition of R∆, a generalised reflux ratio:  
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L
R




,       (2.2) 

and X∆, a compositional flux variable: 
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      (2.3) 

Equation 2.1 is known as the Difference Point Equation (DPE). Its full derivation can 

be seen in Appendix G. By defining and fixing parameters R∆ and X∆ for a column 

section, one is effectively fixing the net flow in a column section (∆=V-L), as well net 

flows of specific components (X∆i). Once the aforementioned parameters are set, a 

CPM can be produced by integrating the DPE in positive and negative directions of n, 

where n is equivalent to the number of stages in a column. Negative integration can 
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be thought of as determining the composition profile from the bottom to the top, and 

vice versa. 

 

Notice that in deriving the DPE that the vapour (V) and liquid (L) flowrates have been 

assumed to remain constant.  This assumption is known as the constant molar 

overflow assumption and occurs quite frequently in distillation design methods 

because it reduces the complexity of the design equations significantly. The 

assumption essentially implies an energy balance for the column section and is 

generally a very good assumption for a wide variety of mixtures, but may be relaxed 

if needs be. The assumptions are exact when: 

 The heat of mixing of components is zero 

 All components have equal latent heats 

 Zero heat loss through the column walls 

 Negligible heat effects due to temperature 

 

When taking a closer look at equation 2.4, it can be seen that at infinite reflux ratio 

(R∆ = ∞), the equation collapses to the residue curve equation: 

 

ii
i yx

d

dx



        (2.4) 

 

The only difference between equations 2.4 and 2.5 is that the residue curve equation 

differentiation variable is time dependent, while in the DPE it is a variable 

representing stages. They are however identical in the x1-x2 composition space. Due 

to the fact that the residue curve equation and the DPE are not bound by physically 

relevant initial conditions, maps can be generated in the space outside of the Mass 

Balance Triangle (MBT). Using the assumption of ideal thermodynamics, a Residue 

Curve Map and a Column Profile Map can now be constructed (Figure 2.2 and Figure 

2.3 respectively). In this paper and throughout this thesis, when the term ideal 

thermodynamics is used, it refers to assumption of constant relative volatilities. Thus 
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for our purposes 
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 . Furthermore, unless it is otherwise 

stated the values used in this chapter are  α1 =3,  α2 =1, and  α3 = 1.5. 

 

 

Figure 2.2 : A Residue curve map with curves shown inside the MBT, i.e. Σxi=1 and xi≥0; as well 

as outside the MBT where xi<0. 

 

 

Figure 2.3 : A CPM with R∆= 9 and X∆ = [0.2, 0.2] (marked with a dot) with a “shifted triangle” 

in blue indicating the movement of stationary points. 

 

The two figures shown above illustrate that the CPM is topologically similar to the 

RCM. The stable node, i.e. the point into which all profiles run, that had been fixed 
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on the pure x2 vertex in Figure 2.2, has been shifted within the MBT. The unstable 

node, i.e. the point from which profiles run, as well as the saddle point have also 

been shifted, which in effect means that a much wider range of separations are 

feasible than previously thought. The shifting of the nodes is dependent on fixing 

parameters R∆ and XΔ in a specific way. 

 

The shifting of nodes in the composition space can hold various advantages for the 

design engineer. For example, if there was an azeotrope present in the system (this is 

impossible for ideal systems, but it’s just used here to illustrate the use of CPMs), the 

profiles could in theory be shifted in such a way as to move the azeotrope outside the 

MBT by combining R∆ and XΔ in a specific manner, thus allowing one to achieve a 

separation past the azeotrope (Holland et al., 2004a, Tapp et al., 2004). 

 

The coordinates of the nodes can be determined by algebraically solving the DPE=0. 

For an ideal system, nodes will always be connected by straight lines. By connecting 

these nodes, one can see that the shifting of nodes has lead to the phenomenon coined 

by Holland et al. as “moving triangles”. They have shown that CPMs can be used 

with great effectiveness to understand complex column configurations (such as the 

Petlyuk column) and that new and exciting designs can be thought of through creative 

parameter selection (Holland et al., 2004b).  

 

2.2.2 THE EFFECT OF R∆ 

 

The parameter R∆ is defined as
LV

L


. From the DPE it can be observed that when 

R∆ = ± ∞, the DPE reduces to the Residue Curve equation. Thus, at infinite reflux 

ratio the nodes are not shifted in space and all of the nodes lie on the pure component 

vertices of the MBT. It therefore follows that in general, the further one moves from 

infinite reflux, the further the nodes are typically shifted from the MBT’s pure 

component vertices. R∆  0 will thus be the case where the nodes are shifted the 
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furthest away from the MBT’s pure component vertices. An illustration of the general 

trend and the effect of R∆ can be seen in the figure below, for an arbitrarily chosen X∆. 

Notice that the path (the pinch point curves) the triangles move on always pass 

through the pure component vertices of the MBT. Furthermore, notice that the pinch 

point curve passes through X∆. The pinch point curve always passes through X∆ since 

there always exists a solution where the node or singular point corresponds to X∆. 

 

 

Figure 2.4: Movement of Transformed Triangles with varying reflux ratio for X∆ = [0.3, 0.2] 

 

It is important to point out that the reflux ratio can be both positive and negative. 

When a column section is said to be in rectifying mode, the vapour flow is larger than 

the liquid stream, resulting in positive refluxes. Conversely, when the column section 

is in stripping mode, the reflux ratio is less than zero as the bulk of the material is 

flowing downwards with the liquid stream. 
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2.2.3 THE EFFECT OF X∆ 

 

The X∆ parameter can be thought of as fixing the compositional net molar flow in a 

column section. It may be placed anywhere in the composition space, even outside 

the MBT. A negative value for X∆i simply indicates a component flowing downwards 

in a column section. The only situation where X∆ need be a physical composition is 

when a column section is terminated by a total reboiler or condenser. 

 

As the pinch point curve always passes X∆, one can expect very different pinch point 

behaviour for a specific placement of X∆. In fact, Holland et al. identified 7 different 

regions of X∆ placement in the composition space which each display unique pinch 

point curvature for an ideal system. The boundaries of the 7 distinct regions 

correspond to the extended axes of the MBT, which also corresponds to a change in 

the direction of the net flow of a component in a column section. Figure 2.5 a-g 

shows these regions along with the general trend of pinch point curves for each 

region. 

 

Figure 2.5 a-g: Pinch point locus behaviour for different placements of X∆ 
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It is important to note that conventional one-feed-two-product columns only make 

use of the flow pattern in Figure 2.5 a. There are thus potentially six other flow 

patterns which the designer is missing out on which could influence topology in a 

desirable way. Importantly, flow patterns 2 and 5 in Figure 2.5 b and e do not contain 

any pinch points within the MBT, meaning that, theoretically, composition profiles 

can be constructed which do not pinch anywhere in the MBT and can therefore run 

from one side of the MBT to the other. Understanding the way in which the 

parameters X∆ and R∆ influence the topology of a CPM can be very useful for a design 

engineer. With knowledge of the effects and interaction of the aforementioned 

parameters, one is able to place nodes anywhere in the composition space to suit the 

requirements of the separation. However, it should be made clear that this is not 

necessarily a simple task. This is mainly due to the fact that distillation structures, as 

they are currently thought, are made up of a network of columns sections. These 

column sections are all related by mass balances, thus choosing particular flow 

behaviour in a certain column section will have, perhaps undesirable, effects on other 

column sections in the structure. Nevertheless, Holland et al. showed that some of 

these unconventional operating column sections may indeed be found in structures 

like the Petlyuk column (Holland et al., 2010) and distributed feed columns (Holland, 

2005). A simplified Petlyuk problem where topology was placed at will to affect a 

certain separations was also demonstrated by Holland and co-workers (Holland et al., 

2004b).  

 

2.3 SHARP SPLITS 

 

In the previous section, it was shown how CPMs are derived and how they differ 

from RCMs. Furthermore, it was shown what effects parameters X∆ and R∆ have on 

profiles and how they might influence design. However, during the study of CPMs 

thus far, very little attention has been given to sharp splits. Sharp splits are useful 

cases to look at as invariably when designing a distillation column, the objective is to 
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achieve bottoms, distillate and sidestream products that are either entirely pure or 

entirely depleted of a component. The results achieved for sharp splits are quite 

unique and differ somewhat from conventional “sloppy splits”. This section focuses 

solely on sharp splits. 

 

2.3.1 PINCH POINT CURVES 

 

The previous chapter showed that different placements of X∆ result in different pinch 

point curve behaviour. Sharp splits are special cases in CPM theory, as X∆ no longer 

lies in one of the 7 distinct regions as shown in Figure 2.5, but on the boundary of 

these regions. Thus a sharp split product specification presents an interesting case not 

only from a practical point of view, but also from a mathematical point of view. 

 

Figure 2.6 shows the pinch point curve for X∆ = [0.5, 0] for an ideal system. It shows 

that the pinch point curves no longer have any curvature, but they are in fact linear. It 

is also important to point out that pinch point curves can never cross. Although at first 

glance it seems as if they’re crossing, they are only “meeting” at a point and then 

going in a different direction. 

 

 

Figure 2.6: Pinch point curve for X∆ = [0.5, 0] 
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The pinch point curve for a choice X∆ that lies on the boundary of two regions can be 

thought of as a hybrid of the pinch point curve properties of two regions. For 

instance, if X∆ is chosen to lie on the boundary of region one and five (see Figure 

2.5), the pinch point curve displays properties of both regions. This effect can be seen 

in Figure 2.7. The closer X∆ moves to the boundary of a region, the more linear the 

pinch point curves become. The color-coded arrows in Figure 2.7 illustrate the way 

and the direction in which pinch point curves move when approaching the boundary, 

i.e. a sharp split. It can also be seen that the pinch point curves do not intersect, but 

merely meet at a point.  

 

Figure 2.7: Pinch point curve behaviour for a sharp split 

 

2.3.2 TRIANGLE SHIFTING  

 

In previous sections we have seen that the “moving triangles” are shifted along the 

pinch point curve for a specific choice of X∆. Furthermore, the pinch point curves for 

a sharp split were shown to be linear. Since the pinch point curves for sharp splits 

differs somewhat from non-sharp splits, one expects that that the movement of the 

“moving triangles” also to be different. Consider then the case where X∆ = [0.3, 0.2] 

(Figure 2.4), i.e. a “sloppy” split, and compare its triangle movement with a case 

where X∆ = [0.5, 0], i.e. a sharp split (Figure 2.8).  
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Figure 2.8: Triangle movement for X∆ = [0.5, 0] 

 

Notice how the triangles move along the pinch point curve in Figure 2.8. Observe that 

one side of the transformed triangle is always fixed to the MBT, the same side to 

which X∆ is fixed. Moving from the purple triangle (R∆=3) to the blue triangle (R∆=1) 

in Figure 2.8 is of particular interest. Notice how the blue triangle (R∆=1) has 

suddenly flipped over, but still remains on the pinch point curve. As R∆ becomes 

smaller from a large positive number, the triangles become smaller, until a point is 

reached where the triangle collapses completely. This collapsing of the Shifted 

Triangle takes place at a specific value of R∆, at the point where the 2 pinch point 

curves meet. We shall name this point the “bumping point”; the reason behind this 

will become apparent in the subsequent sections. From the bumping point, by making 

R∆ smaller yet the triangles flip over and grow infinitely large as R∆→0. Similar 

behaviour can be seen with regard to the movement of triangles when X∆ is chosen on 

the other boundaries of the extended MBT.  

 

2.3.3 CLASSIFICATION AND BEHAVIOUR OF NODES 

 

 In order to achieve a better understanding of what happens to the nodes when a 

collapsing of the Shifted Triangles occurs, it is necessary to firstly understand how 

nodes are defined in the composition space. The nature of nodes are discussed at 
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R∆=±∞ with the aid of an eigenvalue map, which is a useful illustration of singularity 

regions. It shows discrete node regions in the composition space, and is independent 

of the placement of X∆.  

 

The nature of a singular point can be determined by solving the Jacobian matrix (J) 

when the DPE=0 such that J(XS) =[aij], where aij are entries of the nn matrix A (the 

DPE matrix), and then calculating the eigenvalues λ1 and λ2 of matrix A. Nodes can 

then be classified according to the signs of λ1 and λ2. See Appendix A: Node 

Derivation and Classification. From this information one can generate an eigenvalue 

map as in Figure 2.9. 

 

Figure 2.9: Eigenvalue map for xi = [-0.5....1.5] at R∆=± ∞ 

 

The eigenvalue map above shows distinct regions of similar nodes in a RCM. By 

manipulating R∆ these regions are also shifted in composition space. The 3 major 

nodes in CPMs are the stable and unstable nodes, and the saddle point. A region of 

complex eigenvalues is present outside the MBT, which is always the case.  

 

2.3.4 NODE BUMPING 

 

 Once the nature of the nodes has been understood, a greater insight into the 

collapsing of triangles, i.e. the node bumping effect may be seen. To study the node 
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bumping effect for sharp splits, we shall study the case where X∆= [0.5, 0] (Figure 

2.8), which can be seen as a binary sharp split. Figure 2.10 shows the CPM, with the 

accompanying shifted triangle and the classification of the nodes at R∆ = 2. For this 

CPM, and for every CPM that follows, a red X will denote a stable node, a red circle 

will denote an unstable node and a red square will denote a saddle point. 

Furthermore, the blue triangle will always denote the shifted triangle and the black 

triangle will denote the MBT. 

 

 

Figure 2.10: CPM with shifted triangle and node classification at R∆= 2 and X∆ = [0.5, 0] 

 

The shifted triangle shown above is in accordance with the trend shown in Figure 2.8. 

Notice the position of the saddle point as well as the stable node. Consider now a 

system where the triangle has been flipped over. Taking the same X∆ as in the 

previous figure, but letting R∆=1, the following CPM can be seen.  
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Figure 2.11: CPM with shifted triangle and node classification at R∆=1 and X∆ = [0.5, 0] 

 

Figure 2.11 makes for interesting viewing as it shows that the profiles, and nodes, 

have been altered by simply changing R∆ by a relatively small amount. Notice the 

position of the saddle point and the stable node and how they have changed from 

Figure 2.10. The stable node has now replaced the position of the saddle point and as 

a consequence the profiles within the MBT have been changed dramatically. This is 

what is referred to as “node bumping”, as the stable node has “bumped” the saddle 

point from its position.  

 

The node bumping phenomenon could open the door to a much wider range of 

separations. Due to the fact that a stable node has been fixed on the x1 axis, all the 

profiles in the MBT are in fact running into that point and one could separate close to 

that point with a finite number of stages. This was not the case when a saddle point 

was present on the axis where profiles were bending away from it. A stable or 

unstable node is generally a desirable property in distillation design as these points 

can be removed as bottoms or distillate products, respectively. Conversely, saddle 

points imply that these points cannot be sampled in a simple column section as there 

are no profiles running into or away from it. 
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 Although the node bumping could make many more separations viable, it raises new 

questions such as: What happens to the nodes at the bumping point? At what R∆ will 

the bumping occur?  These questions will be addressed in the following sections. It is 

useful to note here that this analysis of bumping points is a strong function of the 

thermodynamics of the system. Thus, the exact answers obtained from the following 

calculations are only as accurate as the thermodynamic models used to predict phase 

equilibrium. Although the techniques can be applied to any phase equilibrium model, 

only constant volatility systems are used here. 

 

2.3.5 THE CRITICAL R∆  

 

As the profiles in the MBT are dramatically changed by the node bumping effect, the 

next logical steps to take are to determine where and why the bumping is taking 

place, as well as determining exactly what is happening to the nodes at this point. 

This would give us a better understanding of sharp split behaviour and could later 

assist the design engineer when designing the final column, as designing a column 

where a stable node is present (all profiles move into the stable node) is vastly 

different to the design of a column where a saddle point is present (all profiles swerve 

away from the saddle). 

 

The eigenvalues in CPMs are independent on the placement of X∆, and are only 

dependent on R∆, the coordinates of the node being considered and the 

thermodynamics of the system. Thus by choosing an x1-x2 coordinate and specifying 

a value for R∆, the nature of the node can be determined. Thus to analyze the 

eigenvalues at the bumping point we have to calculate where exactly this point lies. 

With the knowledge that the pinch point curves for a sharp split are linear, and that 

the node bump takes place at the meeting point (i.e. the intersection) of the 2 curves, 

the bumping point can be easily calculated with simple geometrical maths. (see 

Appendix B: The bumping points). For the case study where X∆ = [0.5, 0], the 

bumping point occurs at [0.2, 0]. It now becomes clear that one of the two 
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requirements for calculating eigenvalues at the bumping point is given, namely the x1-

x2 coordinate, but a value for R∆ is still required.  

. 

This hurdle can be overcome by taking a range of values of R∆ for the specified x1-x2 

coordinate, and tracing the two accompanying eigenvalues. This can be illustrated in 

a graph, called the Zone-graph. A Zone-graph for the example above can be seen in 

Figure 2.12. The Zone-graph shows when fixing a node in the composition space 

([0.2, 0] in this case) how the nature of the nodes change when changing R∆. 

 

Figure 2.12 Zone-graph for XS = [0.2, 0] 

 

Recall that a stable node is characterized by both eigenvalues being negative, an 

unstable node by two positive eigenvalues, and a saddle point when the eigenvalues 

have opposite signs. By looking at the graph one can see at a large positive value for 

R∆ (e.g. at R∆ = 2) one can see that the both eigenvalues, i.e. the red and the blue line, 

have opposite signs and thus can be classified as a saddle. As one moves to smaller 

positive values of R∆ there is a specific point, the critical R∆, where both the red and 

the blue lines become negative, which corresponds to a stable node. 

 

In the example above we have seen that the stable node has “bumped” the saddle 

point from its position. By analyzing the Zone-graph above it can be seen that the 

transition between saddle point and stable node occurs when one of the eigenvalues 

are equal to zero. It can thus be said that a node bump will take place where either 
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one of the eigenvalues are equal to zero, as this is the point where nodes change their 

nature. By using this knowledge, the critical R∆ can be calculated by finding the 

solution where the eigenvalues are 0. Generally, solving for R∆ when the eigenvalues 

are 0, results in 2 critical values for R∆. For the particular scenario mentioned above, 

these critical values are found to be: R∆=-3.5714 and R∆=1.25. For this case, R∆=1.25 

is the important solution as this corresponds to a saddle point-stable node bump. (R∆ 

=-3.5714 represents a saddle point-unstable node bumping at XS= [0.2, 0], but this is 

for a different selection of X∆). An eigenvalue map can be seen in Figure 2.13. 

 

 

Figure 2.13: Eigenvalue map for xi = [-0.5...1.5] at RΔ=1.25 

 

A CPM at the critical R∆ for this specific case study can be seen below. An 

eigenvalue equal to zero corresponds to a hybrid node, and one can see that that at the 
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type of node occurs when both the eigenvalues are equal and positive. However, as 

can be seen from Figure 2.14 it behaves like an unstable node. 

 

 

Figure 2.14: CPM for X∆ = [0.5, 0] and at the critical R∆ =1.25 

 

From a design point of view, Holland et al. showed that if the transformed triangle in 

CPMs can be found algebraically by simply specifying R∆ and X∆, then the reverse 

must also be true: By knowing the fixed points of a CPM transformed triangle, R∆ and 

X∆ can be determined. In fact, by only specifying R∆, only the value of one fixed point 

is required to determine the difference point, X∆. This is a very important result, 

because it implies that the designer can now set the position of the transformed 

triangle to meet the needs of the separation. However, with the use of Zone-graphs, 

one is now able to not only select the position of the transformed triangle, but the 

nature of a node too. A Zone-graph is not limited to sharp splits either. Thus, one 

could manipulate profiles with the help of Zone-graphs to achieve the separation 

required in a column section.  
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MBT. The next section will focus on ternary sharp splits, which present a whole new 

set of possibilities. 

 

2.3.6 TERNARY SHARP SPLITS  

 

Ternary sharp splits are very special cases in CPM theory, since this represents the 

case where X∆ lays on either one of the three the vertices of the MBT. Ternary sharp 

splits do not only display pinch point behaviour of 2 regions, but of 4 regions. Since a 

separation process where a 100% pure component is produced is invariably the 

ultimate separation process, ternary sharp splits are of particular interest. Following 

the same route as for binary sharp splits, consider the movement of triangles with the 

accompanying pinch point curves for a ternary sharp split. Figure 2.15 shows this for 

X∆ fixed at [0, 0] (the intermediate-boiler vertex). 

 

 

Figure 2.15: Triangle movement for X∆= [0, 0] 
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Shifted Triangle is fixed to a vertex of the MBT. This effectively means that a node is 

always fixed on a vertex of the MBT when X∆ is fixed onto a vertex. The figure also 

shows the node bumping phenomenon (flipping over of triangles), both for positive 

and negative values of R∆. Notice that the pinch point curves for this scenario cascade 

to the sides of the MBT. For ternary sharp splits it is thus unnecessary to determine 

the bumping point (i.e. the meeting of pinch point curves), since this point occurs at 

X∆ itself. The bumping point is thus at [0, 0] in this example. 

 

Zone-graphs are particularly useful when looking at ternary sharp splits, since a node 

is always fixed to X∆. This means that one can track the nature of the node, and thus 

the direction of the profiles running into X∆. The Zone-graph for this system can be 

seen in the Figure 2.16. This figure also shows the different R∆ values where node 

bumping occurs (i.e. the R∆ value when one of the eigenvalues is equal to zero). 

 

 

Figure 2.16: Zone-graph for X∆ = [0, 0] with the critical R∆ values 

 

This Zone-graph tells a fascinating story, as it shows that when R∆<-2, the node fixed 

at the intermediate-boiler axis ([0, 0]), will always be a saddle point (eigenvalues 

have opposite signs). A node bump occurs at R∆=-2 after which the node turns to an 
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unstable node. For values of R∆ such that 0<R∆<2, the node fixed at the [0, 0] vertex 

is stable, and returns to a saddle point for R∆>2.  

 

This means that when operating a column section in the 0<R∆<2 range one would 

have profiles running straight into the [0, 0] vertex. This interesting result could thus 

allow one to sample the intermediate boiler in a single column section as a bottoms 

product. A CPM that illustrates this can be seen in Figure 2.17. 

 

 

Figure 2.17: CPM for X∆ = [0, 0] and R∆ = 1.5 

 

One can in a similar manner generate Zone-graphs for the other 2 pure-component 

vertices. Once again these graphs are extremely useful. Looking at the case where 

X∆ = [1, 0] (Figure 2.18), the graph shows the regions where certain separations are or 

are not possible. The 0<R∆<0.5 region will result in a stable node and profiles will run 

straight into the high-boiler vertex. Conversely, operating in the 0.5<R∆<1 range 

results in saddle point region, making this separation much more difficult. 

 

Looking at Figure 2.19 in the same way for X∆= [0, 1], one can see that -1.5<R∆<-3 

range represents a saddle region. Thus, if one wishes to remove a pure low-boiling 
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component from a ternary mixture, it would be advisable not to operate in this range. 

The Zone-graphs are a novel way of representing operating zones for ternary sharp 

splits. They show new and interesting possibilities for new separation schemes, most 

notably to potentially remove purely the intermediate-boiler from a multicomponent 

feed as a distillate or bottoms product. 

 

Figure 2.18: Zone-graph for X∆ = [1, 0] with the critical R∆ values 

 

Figure 2.19: Zone-graph for X∆ = [0, 1] with the critical R∆ values 
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2.4 VALIDATION AND POTENTIAL APPLICATION  

 

The CPMs presented in the preceding discussions may at first glance appear to be 

counter intuitive, as the nature of separations may almost be altered at will by the 

designer. To validate our findings, we have simulated a single column section in 

AspenPlus at two different refluxes whereby a sharp split condition is imposed on the 

column section. The n-nonane (heavy), n-octane (intermediate), n-heptane (light) 

system can be modelled extremely well with constant relative volatilities of 4 and 2 

for n-heptane and n-octane relative to n-nonane, respectively. We shall demonstrate 

the case where X∆=[0, 0], i.e. where X∆ is fixed to the intermediate n-octane vertex, at 

two refluxes of R∆, 4 and 0.5 respectively. With this known, Column Profiles may be 

constructed for both scenarios, as shown in Figure 2.20, with an entering liquid 

composition of [0.4, 0.4], illustrated with the red dot. 

 

Figure 2.20: Column Profiles for X∆ = [0, 0], with R∆ = 4 and R∆ = 0.5 respectively 

 

Figure 2.20 shows that the profiles for R∆=4 and R∆=0.5 run in two distinct directions. 

When R∆=0.5, a stable node is fixed to the n-octane vertex, and hence the profiles 

runs directly towards this point. The stable node has effectively bumped the saddle 
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axis, causing profiles to run towards this point. Using the AspenPlus simulation 

package, a generalized column section may be modelled using the RADFRAC 

modelling block, and the effects described above can be validated. The AspenPlus 

results are summarized for both refluxes in Table 2.1. The R∆=4 scenario may be seen 

in Figure 2.21 a, where the liquid is enriched to an n-nonane composition of 

approximately 0.85. Similarly, the R∆=0.5 scenario is shown in Figure 2.21 b. 

 

 

 

Table 2.1: Summary of stream table data for the two reflux ratio scenarios generated with a 

Radfrac column in AspenPlus, as annotated in the far right column.  

R∆=0.5, X∆=[0,0] AspenPlus Radfrac column 

 Mole flows x-Heptane x-Octane x-Nonane  

 

LB 1.117 0.000 1.000 0.000 

LT 1.000 0.400 0.200 0.400 

VB 3.000 0.000 1.000 0.000 

VT 2.883 0.139 0.723 0.138 

X∆ - 0.000 1.000 -0.000 

R∆=4, X∆=[0,0] 

 Mole flows x-Heptane x-Octane x-Nonane 

LB 1.025 0.000 0.150 0.850 

LT 1.000 0.400 0.200 0.400 

VB 1.200 0.000 0.250 0.750 

VT 1.125 0.356 0.295 0.349 

 X∆ - 0.004 1.055 -0.059  

 

 

LT VT

LB VB
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Figure 2.21: Liquid composition profiles using Aspen Plus for X∆ = [0, 0] with (a) R∆ = 4 and (b) 

R∆ = 0.5. 

 

 The compositional trends generated through AspenPlus in Figure 2.21 a and b 

generally agree with those predicted through the CPM technique shown in Figure 

2.20. Minor discrepancies in the exact value of X∆ in Table 2.1 can be attributed to 

the assumption of constant molar overflow in the Difference Point Equation (notice 

that VT≠VB and LT≠LB in the Aspen simulations). The exact initial composition 

does not appear in Figure 2.21 a and b because the stage calculation starts from one, 

and not zero, in AspenPlus. Although the nature of stationary points on the 

intermediate boiling axis have changed from a saddle in the R∆ = 4 case to a stable 

node in the R∆ = 0.5 case, it appears as though this phenomenon does not necessarily 

affect a potential separation desirably. For instance, at R∆ = 0.5 the column requires 

three times more vapour than liquid, thus producing a pure n-octane liquid stream 

requires three times more pure n-octane in the vapour stream to maintain the sharp 

split constraint. A similar result for a multicomponent hydrocarbon mixture may be 

seen in Appendix C: Multicomponent Example. Although such a column section may 

not be of practical use in conventional columns, it is important however to point out 

that there are unique regions of reflux ratio ranges which result in very different 

(a) (b)
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profile behaviour. Thus, feeding pure octane vapour does not necessarily mean that a 

pure octane liquid can be produced, depending on the specific reflux ratio chosen and 

the node that is placed on the pure octane vertex.  

 

 Single column sections typically aren’t considered meaningful pieces of separation 

equipment on their own, as distillation columns consist of a network of column 

sections.  It is thought that the node bumping phenomena with a sharp split restriction 

imposed on it has a more practical use in non-simple column configurations that 

require internal column sections. That is, column sections that don’t have final 

product cuts, but are merely situated between points of material addition or removal 

in a column. Examples of columns requiring such column sections include multiple 

feed-or-product columns, prefractionating columns, thermally coupled columns such 

as the Petlyuk column and even reactive distillation columns. A column section 

breakdown of a Petlyuk column and a reactive distillation column are shown in 

Figure 2.22 a and b respectively. 

 

 

Figure 2.22: Column section breakdown of (a) a Petlyuk column with multiple internal column 

sections and (b) a Reactive distillation column with an internal reactive column section (R). 
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To illustrate the potential use of such column sections, consider the following 

multiple feed column shown in Figure 2.23 , where all liquid composition profiles 

intersect one another, rendering a feasible design. Constant relative volatilities of 3 

and 1.5 with respect to the high boiling component, as well as saturated liquid feeds 

have been assumed. 

 

 

Figure 2.23: A feasible multiple feed column where the internal column section (2), operates with 

a difference point of X∆ = [0, 0] and a reflux ratio of -1.90, forcing the intermediate boiling vertex 

to be an unstable node. 

 

The parameters of the internal column section in Figure 2.23 have been chosen such 

that its difference point, X∆2, is fixed at the intermediate boiling axis, indicated by the 

red dot. The straight, dashed black lines indicate that all mass balances have been 

satisfied between column sections. Notice that the composition profiles of each 

column section are all connected, rendering a feasible design.  At the specific reflux 

ratio chosen for the internal column section, the node at the intermediate boiling axis 

behaves as an unstable node (see Figure 2.16). This may be seen by the red, dashed 

profile extension of column section 2 that runs directly toward the intermediate 

boiling vertex. Notice that, due to the fact a sharp split constraint has been placed on 
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this column section and that the reflux ratio has been chosen such that the node is 

unstable, this profile runs in a qualitatively opposite direction to “conventional” 

profiles (as those illustrated by column section one and two). In this specific case 

study, this unique sharp split constraint in fact makes the separation feasible. If the 

reflux ratio in this column section was chosen such that the node on the intermediate 

boiling axis is a saddle, the profiles of this column section would run in a 

qualitatively similar direction to those depicted in column section one and two, and a 

feasible design will not be found. 

 

2.5 CONCLUSIONS 

 

It has been shown that sharp split column section design differs somewhat from 

conventional column section design. Sharp splits display special behaviour as such a 

specification displays behaviour of adjacent regions. The merger of adjacent regions 

presents an interesting situation as nodes can change nature due to a node bumping 

phenomenon. From this work it has also been shown that when fixing a sharp product 

specification in a column section (X∆), one can predict which range of values of R∆ 

would result in certain behaviour, i.e. where a stable node might be placed instead of 

saddle. Zone-graphs are presented as a novel graphical tool that could assist one in 

determining such ranges of R∆ for achieving a desired separation. An interesting 

application of the aforementioned is that by fixing R∆ and X∆ one could effectively 

remove an intermediate boiling component as a bottoms or distillate product in a 

single column section, by placing a stable node on the intermediate boiling vertex. 

However, these specific operating conditions seem to be impractical in a single 

column section. It is thought that these unique sharp split operating conditions are of 

more practical use when designing networks of columns where internal column 

sections are used, such as the Petlyuk column. A case study is given of a multiple 

feed column that uses this unique profile behaviour in a desirable way to affect a 

separation. Furthermore, it has been shown that there are certain ranges of R∆ where 
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the high and low boiling components would be difficult to remove as the respective 

pure component vertex could change to a saddle point. 

 

 



 

 

Chapter 3  : THERMALLY COUPLED 

SIDESTREAM COLUMN DESIGN USING COLUMN 

PROFILE MAPS AND TEMPERATURE 

COLLOCATION 

This work has been recently published in the AIChE Journal under the same title, and 

is a product of my time spent at the University of Illinois at Chicago. As such, its style 

(specifically the ordering of axes) may differ slightly from other chapters. Both 

Gerardo Ruiz and Prof. Andreas Linninger assisted with implementation of the 

temperature collocation algorithm, but the work is almost exclusively my own. 

__________________________________________________________________ 

ABSTRACT 

Thermal coupling of individual distillation column units has in recent years attracted 

considerable attention, with reports that up to 50% average savings on the energy 

demand may be achieved when compared to the traditional approach for separating a 

multicomponent mixture. In this work a systematic procedure is presented to design 

thermally coupled sidestream units like side rectifiers and side strippers. The method 

combines the Column Profile Map technique to assess topological characteristics of 

the specific configuration with Temperature Collocation to rigorously ensure a 

realizable column design, without making assumptions with regard to the phase 

equilibrium or product specifications. Techniques are presented for highlighting 

superior designs or eliminating inferior ones, based on vapour flowrate, number of 

stages and thermodynamic efficiency. Design parameters such as the feed and side-

draw trays that may require insight or experience are products of the procedure. 

Design solutions obtained using this methodology can be used to initialize the state of 

the art process flowsheeting tool, AspenPlus™, which typically leads to fast 

convergence to the desired product purities without further adjustments. 
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3.1 INTRODUCTION 

 

Distillation is the most widely used method in modern chemical industries to separate 

liquid mixtures into pure components. Despite its wide use and functionality it is a 

very energy intensive method of separation, accounting for about 40% of the total 

energy used in the chemical and petroleum refining industries (DOE, 2005). With the 

price of energy and environmental concerns expected to increase even further, 

researchers and process engineers have set out to find new and creative ways to 

operate and design separation units. To this end, the notion of coupling individual 

columns through transferring heat between them has received considerable attention, 

with reports that up to 50% average savings on the energy demand may be achieved, 

when compared to the traditional approach, where simple columns are employed in 

series to achieve the desired product purities (Wolff and Skogestad, 1995, Agrawal 

and Fidkowski, 1998, Fidkowski and Agrawal, 2001, Brüggemann and Marquardt, 

2004, Engelien and Skogestad, 2005b). These savings arise partly due to the fact that 

the number of reboilers and condensers are reduced, but it should be noted that these 

savings are dependent on numerous factors including the compositions and 

volatilities of the feed stream(Agrawal and Fidkowski, 1998). Furthermore, since 

thermally coupled arrangements reduce the number of reboilers and/or condensers 

required to affect the separation, significant capital savings can also be achieved. 

 

The simplest method of thermal coupling is a large main column that pre-separates 

the light and heavy components in the feed, linked to a side unit which removes one 

or more intermediate components. These units, called side rectifiers or strippers or 

more generally thermally coupled sidestream units, have found considerable use in 

practice. The side stripping column has been extensively employed in petroleum 

refineries (Watkins, 1979), while the side rectifier columns have found application in 

air separation (Petlyuk, 2004) as well as replacing entrainer regeneration columns in 

extractive distillation operations (Emmrich et al., 2001). Other, more complex 
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arrangements such as the fully thermally coupled Petlyuk or Kaibel column 

arrangements have also been proposed, with even greater potential for energy and 

capital investments. Although thermally coupled structures promise significant cost 

reductions, their widespread implementation has been hampered somewhat by control 

and operational problems. The energy integration increases the control loop coupling 

in the system, so that the operating strategy for the columns is no longer apparent. 

This could lead to irregular start-up and shut-down procedures and may therefore 

offset any potential savings due to non-continuous production (Frey et al., 1984).  

However, numerous advances have been made in the operability of coupled columns 

in recent years (Alstad et al., 2004, Wolff and Skogestad, 1995, Alberto Porras-

Rodríguez et al., 2007, Halvorsen and Skogestad, 1997, Hernandez and Jimenez, 

1999, Segovia-Hernández et al., 2005), so much so that large companies like BASF 

(and others) now have fully functioning Petlyuk and Kaibel columns (Kaibel and 

Schoenmakers, 2002). 

 

Numerous techniques have been proposed to design thermally coupled side rectifiers 

and strippers. Several of these methods deploy the Underwood equations (Glinos and 

Malone, 1985b, Glinos and Malone, 1985a, Fidkowski and Krolikowski, 1987), but 

this method is reliable only for near ideal systems and also assumes sharp product 

specifications. The vapor rate and the minimum reflux ratio, both of which are 

imperative for the column design and cost, will therefore be idealized using the 

Underwood methods. Another, more recent approach using the shortest stripping line 

(Lucia et al., 2006) shows a robust energy targeting strategy that provides a 

continuously differentiable description of column sequences. This approach can 

account for any phase equilibrium behavior (including azeotropes) and has the ability 

to find column sequences that contain non-pinched, minimum energy columns within 

a sequence as well as accounting for heat integration and capital / operational cost 

trade-offs, using numerical optimization techniques(Lucia and McCallum, 2009). 

Rigorous models using tray-by-tray computations which account for non-idealities 

have also been suggested (Lucia and McCallum, 2010), but global optimization 
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methods of synthesis problems involving both structural and parametric degrees of 

freedom is still a challenge for existing math programming algorithms. Furthermore, 

black box solutions also permit limited insight the designer can derive from the final 

solution.  

 

Recently, a Column Profile Map technique has been proposed and was shown to be 

an efficient tool to synthesise distillation columns, including simple and thermally 

coupled columns (Tapp et al., 2004, Holland et al., 2004b, Holland et al., 2010). The 

graphical, and general, nature of this technique means that the designer is able to 

achieve considerable insight and flexibility in the design. However, the graphical 

aspect of this approach has a drawback that it involves trial-and-error for determining 

parameters to construct and validate composition profiles repeatedly until a suitable 

design is found. 

 

A Temperature Collocation approach proposed by Linninger and co-workers 

transformed the governing equations in the work of Tapp et al. (2004)  

thermodynamically to rigorously synthesize simple columns (Zhang and Linninger, 

2004). More recently, an expansion of Temperature Collocation has been shown to 

entire networks of simple and complex column configurations (Ruiz et al., 2009). The 

advantages of combining the two design approaches are (i) non-ideal mixtures may 

be easily modelled, (ii) multicomponent (>4) problems can be designed semi-

automatically, (iii) any network configuration may be designed and tested for 

feasibility, and (iv) design variables such as the feed tray, side-draw tray and total 

number of stages can be determined rationally without much computational effort. 

Furthermore, they showed that the column specifications obtained from this 

methodology for entire separation networks can be validated with AspenPlus. 

 

This paper aims to combine the advantages of the Column Profile Map and 

Temperature Collocation techniques, for the rational design of thermally coupled side 

stripper and rectifier columns. This paper does not attempt to find globally optimal 
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solutions to the problem of thermally coupled sidestream column, but instead presents 

a systematical and rigorous design strategy that offers design engineers clear insight 

into the behavior of these configurations. This paper is structured in the following 

manner: Section two discusses the design methodology and general properties of the 

Column Profile Map and Temperature Collocation techniques. The following section 

highlights the procedure for side stripper/rectifier design including its structural 

properties, a degree of freedom analysis, mass balance properties, feasibility criteria, 

and informed choices of design variables. Section four presents the spectrum of 

feasible designs for a Methanol / Ethanol / p-Xylene case study and specifically 

methods are proposed to direct one to superior designs based on the reboiler duty, the 

number of stages and energy efficiency. The paper closes with conclusions 

summarizing significant results from this work and suggesting areas of future work 

and applicability of the methods. 

 

3.2 METHODOLOGY     

 

3.2.1 COLUMN PROFILE MAPS 

 

Continuous column profile equations were originally proposed by Van Dongen and 

Doherty for conventional rectifying and stripping sections (Van Dongen and Doherty, 

1985b). These continuous equations were expanded to the Difference Point Equation 

for a generalized Column Section (CS), from which a Column Profile Map may be 

constructed, by setting parameters such as the reflux ratio and net compositional 

flows (Tapp et al., 2004). The general nature of the Column Profile Map method has 

the advantage that it is not specific to any configuration which consequently lends 

itself to model any structure, irrespective of its complexity. The equations have been 

developed by defining a CS as a length of column between points of material addition 

or removal, as shown in Figure 3.1. 
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Figure 3.1: A generalised Column Section (CS), with liquid composition x and X
T
, and vapour 

compositions y and Y
T
. The superscript T indicates the compositions at the top of the CS, while n 

indicates a respective tray number 

 

 

The equation describing the liquid compositional change along the CS may then be 

derived through a steady state mass balance over a CS, assuming constant molar 

overflow followed by a Taylor expansion, which yields: 
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Equation 3.1 is known as the Difference Point Equation, where RΔ is a generalized 

reflux ratio in the CS, n the amount of stages. XΔ is termed the Difference Point which 

can be thought of as a pseudo composition vector, valid anywhere in the composition 

space. Like regular compositions, the elements of the Difference Point sum to unity. 

Furthermore, XΔ need only smaller and less than unity in CSs that are terminated by a 

condenser or reboiler. Negative element entries, corresponding to XΔ located outside 

the mass balance triangle, merely implies that the respective component is flowing 
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downward in the CS. Accordingly, negative reflux ratios indicate that the section is in 

stripping mode, i.e. there is a net flow of material down the column (L>V) and 

conversely, positive reflux ratios indicate that a CS is in rectifying mode as there is a 

net flow of material upward. The vapour composition y(x) can be related to the liquid 

composition using an appropriate Vapour-Liquid Equilibrium model. Once the 

aforementioned parameters have been set a Column Profile Map may be constructed, 

as shown in Figure 3.2 for arbitrarily chosen process parameters. A complete 

derivation of the Difference Point Equation is given in Appendix G. 

 

 

Figure 3.2: A Column Profile Map with a generalized reflux ratio of R∆=9 and a Difference Point 

of X∆ = [0.2, 0.6] (black dot). The dashed blue lines represent principal profiles emanating from 

the Difference Point which corresponds to a CS with a product cut. Secondary column profiles, 

drawn in solid blue lines, represent CSs with the same Difference Point as the principal profile 

but with different entering liquid and vapour compositions. All profiles may be extended beyond 

the boundaries of the mass balance triangle (in black) for gaining a better understanding of both 

the topology and pinch points. Each profile approaches the stationary points indicated by the red 

triangle.  

 

Figure 3.2 shows that stationary points have been shifted from the pure component 

vertices (black triangle), which corresponds to a Residue Curve Map (RΔ=∞). The 

dashed trajectory in Figure 3.2 indicates a principal profile as the profile runs through 
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the Difference Point which corresponds to a CS producing an actual product cut of 

composition XΔ. All other profiles are termed secondary profiles, which represents all 

possible trajectories of complex CSs which obey the same Difference Point, but 

originate from different compositions. 

 

Notice that it is mathematically possible to track concentration profiles in regions 

outside the mass balance triangle. Even though these profiles are not physically 

realizable, the expansion of the scope of the topological space provides new insights 

into the feasibility of separation tasks inaccessible to the traditional view confined 

within the mass balance triangle. It has been shown that the analysis of negative 

compositions may add insight column synthesis, but this is beyond the scope of this 

paper and the reader is referred to Tapp et al. (2004) and Holland et al. (2004) for a 

more in depth analysis of the significance and topological effects of parameters, 

especially in negative composition space. It should be clearly noted however that the 

direction of composition profiles can be altered by a combination of reflux ratio and 

XΔ, and they can even be attracted to points located outside the real composition 

space.  

 

In order to gain a basic understanding into the relation of parameters and general 

design procedure for the Column Profile Map method, a simple case of a single-feed-

two-product column is discussed. In this instance, there are two CSs (rectifying and 

stripping) and consequently two sets of Difference Point Equation parameters that 

need to be specified. As a product is being drawn off from both sections via a 

reboiler/condenser, XΔ corresponds to the product specifications in both sections. As 

with conventional design methods, an internal column variable also has to be 

specified, either a reflux or reboil ratio. The generalized reflux ratio, RΔ, is in this case 

equal to the traditional reflux ratio (r=L/D) in the rectifying section. By an energy 

balance over the entire column the generalized reflux ratio for the stripping section, 

which is analogous to the traditional reboil ratio, may also be determined. Once all 

Difference Points have been specified and/or calculated, the Difference Point 
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Equation for each CS may be integrated with the product compositions as the starting 

point. The design given by the purity specifications and reflux ratios is feasible if the 

concentration profiles of the rectifying and stripping CSs intersect.  

 

3.2.2 TEMPERATURE COLLOCATION 

 

The Temperature Collocation approach, originally proposed by Zhang and Linninger 

(2004) for conventional rectifying and stripping sections is based on a 

thermodynamic transformation whereby the independent integration variable in the 

Difference Point Equation is changed from the stage number (n) to the tray bubble 

point Temperature (T). This transformation has the advantage that designs may be 

rigorously and quickly assessed in an algorithm using a Bubble Point Distance (BPD) 

function, which eliminates the dimension of top and bottom trays to a single 

coordinate, the bubble point Temperature. The variable transformation yields a 

composition profile equation as a function of tray bubble point Temperature, given in 

vector form in Equation 3.2: 
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   (3.2) 

 

where K is the vector of equilibrium constants relating vapour and liquid 

compositions with each other. The individual components are defined by

,(x, ) ( )i i SAT

i

T P T
K

P


 . Non-idealities can be incorporated into this equation by 

modelling the liquid activity coefficient with an appropriate phase equilibrium model. 

Numerical integration can be performed from a known bubble point Temperature (i.e. 

at a product composition) toward the profile termination point, calculated by solving 
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Equation 3.2 at steady state conditions. A complete derivation of Equation 3.2 is 

given in Appendix G. 

 

In all column configurations, simple or complex, a design is feasible if and only if the 

liquid composition profiles of all adjacent CSs in a configuration intersect one 

another. In other words, all products are connected by one continuous profile. In 

terms of the Temperature Collocation methodology, this implies that the Euclidian 

distance, or Bubble Point Distance (BPD), between liquid composition profiles of 

adjacent Column Sections on a single Temperature isotherm is smaller than a certain 

predefined small tolerance, є. This method is conveniently visualised in Figure 3.3, 

which shows how the BPD may be used to distinguish between feasible and 

infeasible designs.  

 

 

Figure 3.3: Distinguishing feasible and infeasible designs using the Bubble Point Distance 

Function. Red lines indicate isotherms while green and blue lines are compositional profiles for 

the rectifying and stripping sections in a simple column, respectively. 

 

Each trajectory Figure 3.3 is essentially divided into a set of predefined finite 

elements; where each element is fitted with a polynomial containing a predetermined 

number of roots. This orthogonal collocation on finite elements (OCFE) method  thus 

transforms the problem to a system of nonlinear algebraic equations (Zhang and 
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Linninger, 2006a). This method is an evolution of the first work on finite element 

analysis in distillation was put forward by Swartz and Stewart (Swartz and Stewart, 

1987). 

 

3.3 DESIGN ASPECTS 

 

This section introduces procedures and properties of side stripper/rectifier design that 

aids in the understanding of the design of these configurations. Specific focus is given 

to structural properties and mass balances as well as a suitable choice of design 

variables which allows the designer to gauge the interaction between all CSs. 

Ultimately the graphical design and analysis allows one to gain insight into feasibility 

conditions and criteria for realizable designs from which a general design algorithm 

may be devised. 

 

3.3.1 STRUCTURAL ASPECTS 

 

Using the definition of a CS, any separation process may be represented by a network 

of CSs as shown in Figure 3.4 a and b for a side stripper and rectifier, respectively. 

Interestingly, from a structural point of view, even though these thermally coupled 

arrangements differ considerably from a conventional sequence of simple columns, 

the number of CSs in both configurations is equivalent in order to separate a 

multicomponent mixture into pure components. In fact, the number of CSs required 

to separate a multicomponent mixture into pure components, is equal in the thermally 

coupled sidestream arrangement to any other conventional column network (simple 

or complex), and is always 2(nc-1), where nc is the number of components in the 

system. The CSs in both configurations are labelled CS1 through CS4 as referred to in 

Figure 3.4 a and b and all subsequent discussions. 
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(a) 

 

(b) 

 

Figure 3.4: Basic thermally coupled sidestream columns with the associated Column Section 

breakdown for (a) a side stripper and (b) a side rectifier, showing the vapour and liquid 

distribution at the side draw stage. 

 

Figure 3.4 a and b also indicate the manner in which the material flows in the 

thermally coupled CSs are linked to each other. For instance, in the side stripper 

configuration in Figure 3.4 a, the liquid flowing from CS1 is divided between CS2 and 

CS4. The vapour flow in CS1 is merely a mixture of the vapour flows of CS2 and CS4. 

The side rectifier operates in an analogous manner; the vapour stream in CS3 is split 

between the two adjacent CSs and the liquid stream is a mixture. Furthermore, notice 

that the relative position of the feed and side-draw stage is reversed in the respective 

configurations.  

 

3.3.2 DEGREE OF FREEDOM ANALYSIS 

 

For both configurations depicted in Figure 3.4, the external degrees of freedom (or 

mass balance properties) for an nc component system with P product flows, may be 

summarized as follows, for a specified feed: 
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Total unknowns:   P(1+nc)  (3 Product Flows +nc compositions in each

                              product) 

Mass Balance Equations: -nc   (number of components) 

Summation Equations: -P   (Σxi=1 in each product stream)  

Total Degrees of Freedom  nc(P-1)   

 

In a traditional three component thermally coupled sidestream configuration as shown 

in Figure 3.4, there are consequently six free variables to be set by the designer before 

the design can be performed. Effectively, this means that setting the compositions in 

all product streams fixes the product flowrates, by mass balance. It is important to 

point out that setting the external degrees of freedom for the column by no means 

guarantees that the column will be feasible. Besides the nc(P-1) external degrees of 

freedom, traditional thermally coupled sidestream arrangements also require two 

internal flow variables to be specified, i.e. the reflux ratio in two CSs. These internal 

degrees of freedom ultimately determine the feasibility of the design. Globally, a 

sequence of uncoupled columns that performs the same separation has an equivalent 

amount of degrees of freedom (internal and external). However, the major difference 

in the two designs is that the two internal degrees of freedom have a strong 

dependence on one another, whereas a sequence of simple columns is decoupled. 

Simply put, the reflux ratios in two simple columns may be chosen independently. 

Different selections of the internal degrees of freedom do however impact the capital 

investment as well as the total energy demand and efficiency of the process and 

therefore optimal choices have to be identified systematically. This point will be 

addressed in the subsequent discussion.   

 

3.3.3 MASS BALANCES ASPECTS 

 

Before designing the entire column configuration, it is important to understand the 

mass balance constraints on the unit. Figure 3.5 shows a material balance over the 

Column Sections above and below the feed tray for the side stripper configuration 
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shown in Figure 3.4 a, using the definition of X∆ in the Difference Point Equation. 

Similar mass balance derivations and properties have been demonstrated for the 

Petlyuk column by Holland et al. (2010). 

 

Figure 3.5: Mass Balance over feed stage. 

 

Figure 3.5 yields a significant result, as it shows that the Difference Points (X∆) above 

and below the feed tray are linearly related to the feed composition. From a geometric 

point of view this relation implies that the feed composition, X∆2 and X∆3 lie on a 

straight line in composition space. A similar result may be obtained at the thermally 

coupled side-draw stage for both sidestream configurations, shown in Figure 3.6 the 

side stripper unit. 

 

 

Figure 3.6: Mass Balance over Side-draw stage. 
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As CS1, CS3 and CS4 in both configurations produce end products and are terminated 

by a condenser or reboiler, their composition profiles have to be principal profiles 

because the Difference Points of these sections are in fact identical to the product 

compositions in these sections. However, CS2 does not yield a product cut; its 

Difference Point Placement is only constrained by mass balance through specifying 

the other CSs as well as the feed composition. Its column profile will therefore be a 

secondary profile. 

 

Interestingly, it is entirely possible for Petlyuk arrangements, and other complex 

configurations, to have Difference Points that lie outside the mass balance triangle. 

This property is not even rare, and can occur quite naturally in CSs that do produce 

end products. This point is discussed more in depth in (Holland et al., 2010). 

However, this case is impossible in side rectifier and stripping arrangements as the 

Difference Points of all product producing CSs have to lie inside the mass balance 

triangle, in consequence the Difference Point of the internal CS also has to be inside 

the mass balance triangle. This result is depicted in Figure 3.7 for both arrangements. 

(a) 

 

(b) 

 

Figure 3.7: A geometric interpretation of the Difference Points for (a) a side stripper 

configuration and (b) a side rectifier configuration, accompanied by the CS breakdown and 

numbering of each configuration. On both diagrams X∆i is the Difference Point of the i’th CS. 
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3.3.4 FEASIBILITY CRITERIA 

Similarly to conventional columns, a thermally coupled column design may be 

rendered feasible if and only if liquid composition profiles of adjacent CSs intersect. 

Liquid profile intersection was shown to be a suitable criterion for column feasibility 

by among others Doherty and co-workers (Doherty and Caldarola, 1985, Levy et al., 

1985, Levy and Doherty, 1986), and using this condition, has also been validated by 

Linninger and co-workers on process simulation packages like AspenPlus, even for 

complex columns (Zhang and Linninger, 2004, Zhang and Linninger, 2006a, Kim et 

al., 2010a). This condition is the same as ensuring that there exists a continuous path 

of column profiles which connect all products with one another without a gap. Figure 

3.8 shows a feasible side stripper configuration for the ideal Benzene / Toluene / p-

Xylene system, where all liquid composition profiles intersect. In practice, this 

criterion means that the Bubble Point Distance is almost zero. The specifications for 

this separation are summarized in Table 3.1. 

 

Figure 3.8: Feasibility of a side stripper arrangement for the Benzene / Toluene / p-Xylene 

system. The Bubble Point Distance between CS2 and CS3, and the triple Bubble Point Distance 

between CS1, CS2 and CS4, needs to be zero for the side stripper column to be feasible. This 

criterion is indicated by the highlighted areas 
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Table 3.1: Stream table for a Benzene / Toluene / p-Xylene system. Text in boldface indicates 

that these parameters have been specified, while the rest have been calculated. 

Column Section Difference Point Reflux ratio 

Net flow (∆) 

(mol/s) 

Feed [0.300; 0.300; 0.400] - 1 (pure liquid) 

CS1 [0.80; 0.150; 0.050] 7 0.359 

CS2 [0.424; 0.367; 0.209] 1.452 0.692 

CS3 [0.020; 0.150; 0.830] -6.524 -0.307 

CS4 [0.020; 0.600; 0.380] -4.523 -0.333 

 

For this example, the reflux ratios in CS1 and CS4 were chosen as the two internal 

degrees of freedom, although this choice is completely arbitrary. As mentioned, 

negative reflux ratios as in CS3 and CS4 indicate that a CS is in stripping mode, while 

CS1 and CS2 are in rectifying mode. At this point, it is not immediately obvious how 

the two internal degrees of freedom are related to each other and how one might go 

about designing an optimal column. These questions will be addressed in chapter 

3.3.5. 

 

Notice specifically in Figure 3.8 that for side stripper configurations, there are three 

profile intersections in the highlighted area of the side product withdrawal. The liquid 

composition profiles of CS1, CS2 and CS4 all have to share a common point, or in 

other words, a triple Bubble Point Distance junction. Furthermore, the profiles of CS2 

and CS3 also have to intersect one another. Since CS1, CS2 and CS4 all produce end-

products, the composition profiles go through their respective Difference Points 

(principal profiles). The internal CS, CS2, requires that a so-called secondary profile 

be constructed, since its starting composition vector is not a Difference Point.  

 

The design below was performed using the Column Profile Map /  Temperature 

Collocation approach described in the preceding section using the NRTL phase 
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equilibrium model. This has a pure liquid feed and operates at 1 atm pressure. The 

design above also has the following properties: Total stages in main column: 9; feed 

stage: 6 (from the top); thermally coupled stage: 2 (from the top); total stages in side 

stripping unit: 7. The aforementioned values may then be inserted into a commercial 

process simulator (like AspenPlus). This particular design is shown in Figure 3.10 

and a reasonably good agreement between AspenPlus and the profiles predicted using 

the column profile based method can be seen. 

 

  

Figure 3.9: Comparison of column profiles generated via the Column Profile Map / Temperature 

Collocation method (solid lines) and AspenPlus (dashed cyan lines) 

 

3.3.5 CHOICE OF DESIGN VARIABLES 

 

Using the techniques described in the preceding section allows intuitive 

understanding into the design procedure and attributes of thermally coupled column 
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answers to the question whether a given set of process specifications are feasible for 

distillation separation. This task is somewhat more complicated in the case of side 

rectifiers and strippers, as choosing certain design variables invariably have multiple 

coupled effects on the entire column. A major design decision in thermally coupled 

columns is deciding on the internal degrees of freedom. Generally, for the single 

sidestream arrangement, the reflux ratios of two sections have to be specified. This 

task is generally not simple one, because reflux ratios can be chosen to lie anywhere 

between zero and infinity for rectifying sections and zero to negative infinity for 

stripping sections.  

 

Apart from the fact that reflux ratios are unbounded parameters, it is also difficult to 

anticipate the interaction between reflux ratios in different CSs. It is more convenient 

to define a split ratio, Φ, (Hernandez and Jimenez, 1999) which governs the fraction 

of material sent to the thermally coupled side sections and internal sections. For 

instance, in the side stripper configuration we will define a reflux ratio in CS1 and a 

liquid split ratio, defined as 4 1L CS CSL L  , where LCSi is the liquid flowrate in 

the i’th CS and where the subscript L denotes a liquid phase split. Analogously for the 

side rectifier arrangement, the generalized reflux ratio in CS3 may be specified 

(effectively the reboil ratio) along with a vapour split ratio 4 3V CS CSV V  . This 

specific variable choice narrows the search for a feasible design because Φ is a 

bounded dimensionless parameter valid only between zero and one. Even though the 

defined split ratios narrow the search space somewhat, it is not immediately obvious 

which combination of split ratios and reflux ratios the designer should choose. The 

interaction between different choices will be demonstrated next. 

 

3.3.6 SIDE STRIPPER COLUMN SECTION INTERACTION 

 

It is helpful to visually comprehend the effects and interaction that our choices of 

internal design variables have on other CSs. To this end, parameter correlation maps 
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are a particularly useful tool, which are presented and discussed for both the side 

stripper and side rectifier. For simplicity, a liquid feed (q=1) with an equimolar 

composition has been chosen, with pure bottoms, intermediate and distillate products 

for both configurations. Although these parameter correlation maps may vary for 

different feed and product specifications, their qualitative interpretation is similar for 

all systems. It is important to point out that these regions do not indicate regions of 

feasibility, but merely show the correlation of CSs for certain combinations of design 

variables. 

 

 

Figure 3.10: Parameter correlation maps for a Side Stripper showing the influence of R∆1 with 

varying liquid split ratios (ΦL) on the reflux ratios of (a) CS2, (b) CS3 and (c) CS4. 

 

Figure 3.10 a, b and c show the effects on the reflux ratios in a side stripper of the 

two chosen internal degrees of freedom (R∆1 and ΦL) on CS2, CS3 and CS4 

respectively. From Figure 3.10 it may be inferred that there are for any combination 

choice of the free design variables, there are always two pairs of equivalent rectifying 

(CS1 and CS2) and stripping (CS3 and CS4) sections. A specific example of the 

relationship between CSs can be seen, for instance, for a reflux ratio of 25 and a split 

ratio of 0.5 (the green region on the colour bar), which corresponds to generalized 

reflux ratios of 6.6,-15.2, and -13.8 in CS2, CS3 and CS4, respectively.  

 

An important factor to consider is the interaction of reflux ratios in CSs that have 

utilities attached to them (CS3 and CS4), as these are major contributors to the 
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operating cost of the column. CS3 requires its reboiler to operate at a higher 

Temperature than CS4 as it has to operate at the boiling point of the highest boiling 

component, while CS4 only operate at the boiling point of the intermediate boiling 

component. In general it can be said that it is more expensive to operate a CS3 

reboiler than a CS4 reboiler when both are operating at equivalent refluxes. 

 

3.3.7 SIDE RECTIFIER COLUMN SECTION INTERACTION 

 

Analogously to the side stripper, parameter correlation maps may be obtained for the 

side rectifier indicating the relationship of the two chosen design variables (R∆3 and 

ΦV) on the reflux ratios of CS1, CS2 and CS4 as shown in Figure 3.11 a, b and c 

respectively. Again there are two pairs of equivalent rectifying and stripping sections, 

but intuitively the role of specific CSs have changed when compared to the side 

stripper: The internal CS, CS2, and CS4 are in stripping mode, while both CS1 and 

CS3 are in rectifying mode. Specifically notice that for a choice of R∆3=-25 and 

ΦV=0.5 (the green region on the colour bar), the respective corresponding refluxes in 

CS1, CS2 and CS4 are 11.2, -7.5 and 12.5. 

 

 

 

Figure 3.11: Parameter correlation maps for a Side Rectifier showing the influence of R∆3 with 

varying vapour split ratios (ΦV) on the Reflux ratios of (a) CS1, (b) CS2 and (c) CS4. 
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Noticeably, the side rectifier unit only contains one reboiler and consequently all the 

vaporisation takes place in CS3. Thus, generally the reflux ratio required in this 

section is larger than the reflux ratio in the corresponding section (CS3) of the side 

stripping unit where the reboil duty is divided between two CSs. Although the cost of 

operating reboilers are, in relative terms, much more expensive than condensers, it is 

still worthwhile considering what the qualitative effects of our process decisions are 

on the condensing load. The two condensing units in this configuration are CS1 and 

CS4. Here, CS1 is the lowest Temperature at which condensing takes place and 

therefore requires a lower duty than an equivalent reflux ratio in CS4.  

 

3.3.8 ADDITIONAL DESIGN CONSTRAINTS  

 

It is apparent from the previous discussion that some of the complexities that arise in 

thermally coupled sidestream columns are due to the fact that there are multiple 

reboilers/condensers operating at different Temperature levels, as well as multiple 

and simultaneous effects on all CSs for a certain selection of design variables. Apart 

from the interaction between CSs there is however a further constraint to be 

considered, when deciding on a reflux and/or split ratio, which is the constraint that 

the external mass balance places on the system. In short, a product producing CS has 

to have a minimum flow of material flowing into it, which is greater than the amount 

of product that has to be drawn off from that section. For example, the liquid material 

that is directed toward the side stripper from CS1 has to be greater than the amount of 

intermediate product calculated by the overall mass balance. In general, there are two 

such constraints for each system. For the side stripper, in terms of our two chosen 

variables (R∆1 and ΦL), these constraints are given in Equation system 3.3: 
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      (Equation system 3.3)  
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And for the side rectifier, in terms of our two chosen variables (R∆3 and ΦV), in 

Equation system 3.5: 
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   (Equation system 3.4) 

 

where , ,D B I  and F  are the flowrates of the Distillate, Bottoms, Side and Feed 

Streams respectively and q is the thermodynamic condition of the feed. Graphically, 

these constraints can be summarized in R∆-Φ space for both configurations, as shown 

in Figure 3.12 for the sharp split scenario described in section 3.3.6. 

 

 

 

(a) 

 

(b) 

 

Figure 3.12: Feasible operating regions in R∆-Φ space for an equimolar feed and sharp split 

product specifications from external mass balance constraints for (a) the side stripper and (b) 

the side rectifier.  
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allowable value for ΦL. This is due to the fact that the CS3 (the distillate CS) always 

has enough material entering it as the feed has been assumed to be pure liquid and 

hence all the feed is solely directed to this CS and will never violate the mass balance. 

However, for different thermodynamic feed compositions there will be multiple 

constraints on the system, as for the side rectifier arrangement in Figure 3.12 b. As 

the product and feed specifications determine the product flows, a different 

specification will result in different feasible regions. 

 

3.3.9  AUTOMATIC DESIGN PROCEDURE 

 

With a greater understanding about the interaction of process variables and the 

degrees of freedom available for manipulation by the designer, it is possible to devise 

a general design algorithm. The set of steps shown in Figure 3.13, allows one to 

systematically find feasible solutions quickly and efficiently. Using the Temperature 

Collocation approach with the minimum BPD as feasibility criterion allows one to 

judge a certain structure’s feasibility in an algorithmic, computational manner. 

 

The algorithm requires in the first step for the designer to set all product 

specifications. In step two, the internal degrees of freedom are specified. Once steps 

one and two have been completed, all Difference Points and internal flows may be 

determined in step 3. Step 4 requires one to construct all principal profiles in CSs that 

produce final products. The subsequent step evaluates whether there is intersection 

between two adjacent sections, which means the BPD criterion has been satisfied. If 

this BPD condition is met, the secondary profiles may be generated in Step 6 starting 

from the intersection point. Step 7 evaluates the second profile intersection, and if the 

BPD is again within the specified tolerance, a feasible design has been found. 

However, if Step 5 or 7 violates the BPD requirement, the procedure requires that 

either the product specifications or the internal degrees of freedom (or both) have to 

be modified. With these new specifications, the procedure may be repeated until a 

feasible design has been found. 
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Figure 3.13: An information flow diagram for the systematic design of thermally coupled 

sidestream columns. Feasible designs require all Bubble Points Distances to be zero. 

 

Once all feasible design specifications have been identified, we may then proceed to 

judge which of the feasible designs is optimal with respect to some predefined 

objective function. A frequently used objective function in distillation design is 

minimum vapour flow as this usually corresponds to minimum energy usage. 

However, as discussed in previous sections, it is not trivial in thermally coupled 

sidestream units because there are several utility inputs at multiple Temperature 

levels which have to be optimally balanced. This point is discussed more in depth in 

the following example. 
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3.4 DESIGN TRADE-OFFS 

 

By setting the product and feed specifications and executing the design algorithm 

described in the preceding section with a continuous combination of the chosen 

internal design variables for each system, we are able to obtain a spectrum of feasible 

design solutions. Once all governing equations have been determined, a computer 

can, relatively quickly and efficiently, render feasible solutions and assess them with 

respect to suitable objective functions. In this section we shall evaluate a side 

rectifier/stripper design case study for the Methanol / Ethanol / p-Xylene system 

using the Non Random Two Liquid (NRTL) activity coefficient model to predict 

VLE behaviour. The NRTL model is used in all cases to demonstrate this method’s 

ability to model any given system and does not need to make idealized assumptions 

regarding the VLE behaviour. The Methanol / Ethanol / p-Xylene system, although 

being zeotropic, displays significant non-ideal behaviour that cannot be sufficiently 

modelled with the assumption of ideal phase equilibrium, as seen in the comparative 

Residue Curve Map in Figure 3.14.  

 

Figure 3.14: A Residue Curve Map for the non-ideal, zeotropic Methanol / Ethanol / p-Xylene 

system. The black circles indicate the points at which integration is initialized using an ideal 

model (dashed trajectories) and the NRTL model (solid trajectories). 
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Figure 3.14 shows large deviations from ideal behaviour for this particular system, 

implying that the final design solution is strongly dependent on idealized assumptions 

regarding the thermodynamic model. The feed and product specifications, along with 

the Antoine vapour pressure coefficients are summarized Table 3.2, followed by the 

NRTL equation used to incorporate non-ideal mixtures in Equations 3.5 and 3.6. The 

Antoine coefficients we obtained from the book Elementary Principles of Chemical 

Processes  by Felder and Rousseau, while the NRTL coefficients were obtained from 

the AspenPlus VLE databank. 

Table 3.2: Summary of feed and product specifications for the Methanol / Ethanol / p-Xylene 

system with coefficients for the Antoine equation calculated by log(P
SAT

) (mmHg)=A-

B/(T(
o
C)+C) 

Component 
Feed Distillate Side Bottoms Antoine Coefficients 

Mol fraction [A,B,C] 

Methanol 0.3333 0.9000 0.0800 0.0001 [8.072, 1574.990, 238.870] 

Ethanol 0.3333 0.0999 0.9100 0.0499 [8.112, 1592.864, 226.184] 

p-Xylene 0.3334 0.0001 0.0100 0.9500 [6.991, 1453.430, 215.307] 

 

The NRTL equation for Methanol (i=1), Ethanol (i=2) and p-Xylene (i=3) for 

parameters obtained from the ApenPlus Properties Database (AspenPlus):  

 

exp

j ji ji m mj mj
j j ij m

i ij

jk ki k kj k kj

k k k

x G x G
x G

x G x G x G

 

 

  
  

    
    

 


  
   (3.5) 

 

where 
( )

ij
ij ij

b
a

T K
    , exp( )ij ij ijG c   , and:   (3.6) 
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3.4.1 REBOILER DUTY 

 

Using an inverse design methodology, the product specification will be the primary 

concern when searching for feasible solutions. Hence, a solution is acceptable only if 

the exact product specification is met. The product specifications given here obtain a 

purity of at least 90% in each product stream. These rough targets have been chosen 

merely for the purpose of illustrating the method and to obtain a sufficiently large 

spectrum of feasible designs. Furthermore, notice that the product specifications are 

non-sharp, to exemplify that the proposed method is not bound by sharp split product 

restrictions. As mentioned in section 3.3.6, thermally coupled sidestream columns 

have two internal degrees of freedom to be specified. It is thus convenient to compare 

design trade-offs in terms of the split ratio and reflux ratio for each configuration. 

This is shown in Figure 3.15, which depicts the spectrum of feasible solutions and the 

effect on the total reboiler duty (kJ/s) for a feed of 1 mol/s. The overall reboiler duty 

is equal to the total reboiler duties in each configuration. It should be noted that the 

regions of feasibility depicted here are strictly system specific, and one may find 

entirely different regions depending on the phase equilibrium behaviour, product and 

feed specifications, etc.  
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(a) 

 

(b) 

 

Figure 3.15: Spectrum of feasible designs for (a) the Side Stripper in ΦL-RΔ1 space and (b) the 

Side Rectifier in ΦV-RΔ3 space, showing the effect on the total reboiler duty required in the 

columns.  

 

The design spectra in both Figure 3.15 a and b were constructed by automatically 

evaluating 10, 000 different combinations of free design variables for each 

configuration, and shows that there exists a unique region for each configuration 

where designs may be realized. Any combination of the two internal values that 

correspond to the coloured region in Figure 3.15 produces a feasible design. 

However, all feasible designs are not equivalent which gives an opportunity for the 

assessment of good designs, or at least eliminating bad design decisions. Intuitively, 

Figure 3.15 shows that the total reboiler duty is minimized when the specified reflux 

ratio in each configuration is minimized, and vice versa. Furthermore, the reboiler 

duty of the side stripper is a weak function of the split ratio, because the components 

in the system have very similar molar latent heats of vaporisation. Since there is only 

one reboiler in the side rectifier, it is entirely independent of the split ratio. 

 

It is worthwhile to note that the feasible design space was constructed using an 

exhaustive search, i.e. all solutions were tested. This may of course be time 

consuming in large scale problems, and more intelligent scanning methods may be 

need. One may for instance elect to use a sparse search to roughly identify the 
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feasible region and then hone on a certain area of interest with a denser search. This 

will significantly reduce the computational time because irrelevant parameters are 

quickly discarded. However, in this paper we have aimed at producing an entire 

region of feasibility and therefore have used a dense search throughout. 

 

There are several valuable conclusions that may be drawn from Figure 3.15. First, at 

the lower ends of the reflux ratio spectrum in this example the side stripper feasible 

design region is smaller than that of the side rectifier. The spectrum of the side 

rectifier is much closer to split ratios of zero and one while that of the side stripper is 

narrower. However, the feasible design region for both these configurations in this 

case study is infinitely large as feasible designs can still be found at infinite reflux. 

The larger feasible space open to the side rectifier permits its operation in a wider 

range compared to the side stripper unit. The additional flexibility may be of 

relevance in some process plants. Second, even though the relative sizes and shapes 

of feasible design spectra differ considerably, the range of reboiler duties that suffices 

the product splits in both configurations are relatively similar, but the side rectifier 

has a slightly lower minimum duty of approximately 50 kJ/s, while the side stripper 

requires around 75 kJ/s. Operating at minimum reflux is however an impractical 

condition. As the ranges for reboiler duty are relatively similar we can conservatively 

state both designs are equivalent with no significant advantage that may be gained in 

either one in terms of heat requirements. However, it will become apparent in 

subsequent sections there are several factors which distinguish these designs.  

 

3.4.2 CAPITAL COST 

 

The reboiler heat demand in a distillation unit constitutes the majority of the 

operating cost in a distillation unit. Hence we may conclude from a first law point of 

view that minimum reflux is the optimal operating condition. However, as with 

conventional columns, operating at minimum reflux requires an infinite number of 

stages and hence some compromise between these extremes have to be sought. By 
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combining the Temperature Collocation with the Column Profile Map approaches, it 

is possible to obtain an expression that allows for the calculation of number of stages 

too, as shown in Equation 3.7.  

 

   

K
x

x

x 1 11 x y x K

d

dn n dT

dT T
X

R R 
 

 
 

                 

  (3.7) 

 

 

It should be noted that the transformation from composition to temperature as the 

dependent integration variable shown in Equation 3.7 requires a one-to-one mapping 

between compositions and temperature and thus implies monotonicity of temperature 

profiles. Some authors point out that in highly non-ideal as well as in reactive 

distillations, which have additional temperature effects, that temperature 

monotonicity may not hold (Al-Arfaj and Luyben, 2000, Cheng and Yu, 2005, Bausa 

et al., 1998). However, the collocation method on generalized column profiles can 

also be employed without temperature transformation in terms of traditional tray 

numbers. Thus the proposed design method is not limited to temperature integration. 

Even though the practical significance of separation trains with non-monotonic 

temperature profiles has yet to be shown, the existence of special cases where 

temperature effects can occur should be duly noted. 

 

Using the same approach as above, but applying it to show how the number of stages 

change in the respective feasible regions results in Figure 3.16. Our analysis accounts 

for the number of stages in the main column as well as the side unit. 
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(a)  

 

(b) 

 

Figure 3.16: Spectrum of feasible designs for (a) the Side Stripper in ΦL-RΔ1 space and (b) the 

Side Rectifier in ΦV-RΔ3 space, showing the effect on the total number of stages required in the 

columns. 

 

It may be seen that, as with distillation design for conventional columns, the designer 

is faced with a trade-off between two extreme operating choices. Operating at 

minimum reflux generally corresponds to infinitely many stages, but if one is willing 

to compromise on first law expenditures, a smaller column may be constructed 

resulting in reduced capital costs. In both configurations, there is a sharp rise in the 

number of stages required for a feasible separation as one approaches minimum 

reflux. The side stripper configuration seems to have a distinct advantage in this 

instance, as generally for any specific reboiler duty (see Figure 3.15) a saving of 

about 6-8 stages can be achieved. At the high end of the reflux ratio spectrum in both 

configurations, the stage numbers start to level off and no further capital cost saving 

can be achieved. 

 

3.4.3 ENERGY EFFICIENCY 

 

A unique property of side rectifier/stripper columns are the multiple Temperature 

levels to which heat is added to the reboiler(s) or rejected in the condenser(s). 

Although there are a multitude of factors that may influence the final choice on how 
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much heat should be generated at a certain Temperature (economics, heat integration 

with other process, heat availability, etc), a second law thermodynamic analysis is a 

valuable method of judging operating conditions in accordance with the modern drive 

toward energy efficient processes. Such an analysis will direct one toward the most 

thermal efficient process by searching for the minimum amount of Lost Work (LW) 

generated. The LW calculation is given in Equation 3.8 by: 

 

 
0 , ,

CR
MIX F MIX P

R C

QQ
LW T F S P S

T T

 
       

 
     (3.8) 

 

Where QR  and QC are the heat duties in the reboiler and condenser calculated by the 

product of the respective vapour flowrates and the composition weighted latent heats 

of vaporization. TR  and TC are the Temperatures at which the corresponding units 

require or reject heat at and ΔSMIX is the entropy of mixing of Product (P) and Feed 

(F) streams, given by definition in Equation 3.9 as:  

 

1

ln( )
nc

E

MIX i i

i

S R x x S


           (3.9) 

 

 where S
E
 is the excess entropy for taking non-ideal mixtures into account calculated 

here by the NRTL activity coefficient model, and R is the universal gas constant. 

Note that we only use the LW quantity to denote energy efficiency, because the ideal 

work of separation is exactly the same for both the side stripper and side rectifier. 

Thus, the LW quantity is directly related to energy efficiency of both structures, i.e. 

low LW implies high efficiency, and vice versa. This entropy model allows one to 

assess process alternatives based on the thermal efficiency, as shown in Figure 3.17.  
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(a) 

 

(b) 

 

Figure 3.17: Spectrum of feasible designs for (a) the Side Stripper in ΦL-RΔ1 space  and (b) the 

Side Rectifier in ΦV-RΔ3 space, showing the effect on the Lost Work produced in the columns. 

 

The LW calculation provides additional insight into which split ratio to choose to 

achieve a thermodynamically efficient process. For the side rectifier, the LW is 

minimized at low split ratios for a specific reflux ratio, i.e. where less material flow is 

directed toward the side rectifying unit. The side stripper unit indicates that the 

minimum LW occurs at higher split ratios, i.e. where more material is directed toward 

the side stripper. As with the reboiler heat demand however, both units seem to 

generate similar quantities of LW at the lower end of the spectrum, and from a second 

law point of view no structure seem to be advantageous when operating near the 

lower feasibility bound. 

 

3.5 FINALISING THE DESIGN  

 

From the relatively simple calculations shown above it may inferred that, from an 

energy usage and efficiency point of view, both structures are qualitatively similar. 

However, the side stripper does offer a marked improvement in the number of stages 

required, hence for this design we shall choose the side stripper. Guidelines reported 
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in literature (Seader and Henley, 2006b, Kister, 1992) state that, depending on the 

system, it is desirable to operate at around 1.05 – 1.5 times minimum reflux ratio to 

ensure the amount of stages required do not rise too sharply. By comparing all the 

analyses for stage number and reboiler duty in the side stripper, we decide on 

operating at a reflux ratio of 13 as this is the point where the number of stages starts 

to plateau. Refluxes lower than 13 typically lead to a rapid rise in the number of 

stages.  Finally, the second law analysis indicates that the most efficient columns are 

at a high split ratio, but one should still be aware of the rapid growth in the number of 

stages. Using these guidelines, conservative design parameters may then be chosen. 

In this case, a reflux ratio of 13 and a split ratio of 0.45 seems like a good choice, 

resulting in n=20 equilibrium stages.  It should be noted however that this example is 

merely an illustration of the applicability of the Temperature Collocation with 

Column Profile Map approach to thermally coupled sidestream column design, and 

the optimal results may vary with a different objective function for design. 

 

A valuable attribute of the methods described in this paper is a method to solve the 

inverse design problem. Product specifications are set and then internal degrees of 

freedom specified globally until a feasible design range is identified. If the feasible 

design space is empty, it can be guaranteed that the product specifications are 

thermodynamically impossible to realize. Process simulation packages such as 

AspenPlus have been shown to be an effective and robust tool for interactive process 

design. In general however, distillation design in such packages is performed by 

forward performance simulation which predicts product purities based on a given 

feed and column design specifications (e.g. total column tray, feed tray, reflux ratio 

ratio, and etc). Although these packages rigorously solve mass, equilibrium, 

summation and enthalpy (MESH) balances, this approach has the drawback that the 

designer has to have precise initialization knowledge about the design, and it can be a 

tedious task to search for design specifications that precisely meet the desired product 

quality. Furthermore, user effort and adjustment is often proportional to the 

complexity of the system. Due to this fact, for thermally coupled configurations it is 
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even harder to achieve convergence to the desired product purities. However, using 

the method advocated in this paper, the designer is able to set the product 

specifications, and from this determine what the structural and operating 

characteristics of the column are.  

 

Once a general idea of the design has been obtained, the results may be used to 

initialize a process simulator such as AspenPlus for the chosen design specifications. 

Even parameters that require a large amount of insight or design experience to obtain, 

such as the location of the feed tray or side-draw trays, can be easily found by 

locating the stage number where composition profiles intersect. For this design, the 

side-draw stage and feed stage were found to be at stages 6 and 16, respectively. For 

this same scenario, the compositional change in the liquid is then verified with 

AspenPlus. The resulting profiles depicted in Figure 3.18 show an excellent 

agreement with one another.  

 

(a) 

 

(b) 

 

Figure 3.18: Change in liquid composition along the length of the side stripper unit using (a) the 

Temperature Collocation method and (b) using AspenPlus with precise initialization from the 

Temperature Collocation method. The main column and side stripper are represented by the 

solid and dashed lines, respectively. 
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Small discrepancies in the comparison of compositional change between the proposed 

method and AspenPlus may be attributed to the assumption of constant molar 

overflow that is made in the DPE. The predicted molar vapour and liquid flowrates 

from AspenPlus for the main column body are shown in Figure 3.20. Here one can 

see that the molar flowrates remain relatively constant, but that there is still some 

degree of change. Notice however that the product specifications in Figure 3.18  have 

been precisely met in both cases. Using the information obtained from the above 

design procedure as input to an AspenPlus simulation generally leads to convergence 

within a few seconds. Thus, using the techniques described in this work, one can save 

on valuable engineering design time as well as gain a unique graphical insight into 

the problem and interaction of all operating variables.  

 

 

Figure 3.19: Molar liquid and vapour flowrates in the main column. 
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3.5.1 EXTENSION TO HIGHER ORDER SYSTEMS 

 

The preceding discussions handled the generic case of a single side stripper and 

rectifier for a ternary system. For higher order systems, i.e. for systems containing 

more than three components, the design algorithm using the techniques described 

above can be naturally extended without any modification. However, it should be 

noted that in higher dimensions, exact intersection of trajectories is more difficult to 

attain than in the two dimensional case, since the profiles of two adjacent column 

section may miss each other in additional dimensions (Julka and Doherty, 1990). The 

advantage of using the minimum BPD approach is that a small BPD function value 

indicates closeness to a feasible design, and can aid in steering the designer toward a 

feasible design, rather than being merely a Boolean success or fail intersection 

criterion. A feasible side rectifier design for a non-ideal quaternary mixture of 

Benzene / Toluene / p-Xylene / Phenol is shown in Figure 3.20 along with all relevant 

parameters summarized in Table 3.3. 

 

 

Figure 3.20: A feasible side rectifier design for the Benzene /  Toluene / p-Xylene / Phenol system, 

showing areas of profile intersection and the location of all respective Difference Points. 
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Table 3.3: Stream table for a Benzene / Toluene / p-Xylene / Phenol system 

Column 

Section Difference Point 

Reflux 

ratio Net flow (∆) (mol/s) 

Feed [0.250; 0.250; 0.250; 0.250] - 1 (pure liquid) 

CS1 [0.929; 0.071; 2.38E-4; 2.20E-5] 4.743 0.260 

CS2 [0.011; 0.313; 0.338; 0.339] -3.015 0.740 

CS3 [2.61E-5; 0.092; 0.447; 0.461] -4.830 -0.540 

CS4 [0.042; 0.910; 0.042; 0.006] 1.900 0.200 

 

Intuitively for a higher order single side rectifying or stripping unit, at least one 

product stream will not contain a high purity of a single component (Bottoms product 

in this case), but once these product specifications have been selected, the design 

procedure remains the same. Notice that the linear relationship between the relevant 

Difference Points still holds and that the profile intersection criterion is the same as 

for the ternary case. 

 

 Although the extension to higher order mixtures is, in principle, a mere extrapolation 

of the procedures presented here it does involve more careful selection of variables. 

An additional component in a single side stripper/rectifier arrangement requires that 

two external degrees of freedom be set and may thus requires some additional design 

experience. Since the composition profiles are extremely dependent on the X∆ choices 

of the designer, more components introduce additional difficulties with respect to 

finding profile intersections. This has been shown in a recent paper where a ten 

component separation synthesis problem was successfully dealt with in a simple 

column using the BPD as a feasibility criterion (Kim et al., 2010b). This design was 

performed for a variety of feeds and product specifications and was subsequently 

validated with Aspen Plus. Although the graphical characteristics of the method are 

somewhat lost in higher order systems, the algebraic BPD criterion naturally extends 
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to these systems. It should be noted that for single side rectifying/stripping unit there 

are however only two internal degrees of freedom regardless of the number of 

components. Thus, the feasibility diagrams shown in Figure 3.12 will always be 

applicable. If, however, there are multiple thermal couplings with multiple stream 

splits this diagram also becomes multidimensional. 

 

Furthermore, it has been well publicized that composition profiles that originate near 

pure component vertices are extremely sensitive to the presence of trace components 

(Levy et al., 1985) , and therefore the refluxes and stage numbers (and feasibility) 

may differ vastly for only small changes in composition. However, the advantage of 

using the minimum BPD approach in dealing with both these inherent difficulties 

(high order systems and trace compounds) is that a small BPD function value 

indicates closeness to a feasible design, and can aid in steering the designer toward a 

feasible design, rather than being merely a Boolean success or fail intersection 

criterion. Thus, by tracking the BPD function value the designer knows how far away 

a feasible design may be and may adjust parameters accordingly. 

 

3.6 DISCUSSION AND CONCLUSIONS 

 

In this work, a systematic procedure has been proposed to rigorously design and 

analyze thermally coupled sidestream units, without making use of simplifying 

assumptions such as constant relative volatilities, sharp splits, or pinched column 

profiles. The method combines the advantages of the Column Profile Map technique 

to assess parameter interaction of a specific configuration, with the Temperature 

Collocation technique to rigorously search for liquid composition profile 

intersections. This methodology allows a unique graphical insight into the 

challenging problem of thermally coupled columns. The interaction of internal 

process variables can easily be assessed with this method and furthermore methods 

are presented to identify superior design decisions and immediately eliminate poor 
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design choices, based on reboiler duty, column height and thermodynamic efficiency. 

Although the aim of the paper is not to search for optimal design solutions, it has 

been shown that using these novel design techniques, the designer can make informed 

design decisions to assess feasibility relatively quickly. Furthermore, the inverse 

design procedure is presented, which allows one to find key operating parameters 

such as the feed tray and side-draw tray, by setting product specifications and 

searching feasibility. Designs can be validated with an industrially accepted process 

simulator such as AspenPlus and in our examples typically lead to fast convergence 

without further adjustment. Future work in this area includes applying this technique 

to fully thermally coupled columns such as the Petlyuk and Kaibel columns as well as 

searching for improvements and a better understanding on other applications of 

thermally coupled sidestream columns, such as crude distillation. The methods 

proposed here are also ideal for the design of bio-refineries and azeotropic distillation 

problems. 



 

 

Chapter 4  :  DESIGN AND ANALYSIS OF MULTIPLE 

THERMALLY COUPLED CONFIGURATIONS USING 

COLUMN PROFILE MAPS 

The work in this chapter was done together with Ronald Abbas, with equal 

contributions of from us both. This work is as of yet still unpublished but has been 

prepared in the form of a paper for future publication. It has also been presented at 

the AIChE spring meeting in 2011 in Chicago.  

__________________________________________________________________ 

 

ABSTRACT 

This paper presents a method for assessing the feasibility of multiple thermally 

coupled units. The Column Profile Map technique has been applied to the design of a 

variety of quaternary feeds for a column consisting of a main column with various 

combinations of side rectifiers and strippers, as well as a fully thermally coupled 

column in the form of a Kaibel column. Using the Column Profile Map technique one 

can easily assess feasible designs for systems using novel iso-reflux plots which 

allows one assess the minimum operating conditions of a specific column and also 

shows part of an Attainable Region, i.e. a region containing all potential designs. 

Although side stripping units generally require the lowest heat demand for the widest 

range of feeds (excluding fully thermally coupled arrangements), it is important to 

also consider the thermodynamic efficiencies as an additional design objective which 

will generally lead one to choosing an entirely different structure. The fully thermally 

coupled arrangement presented here was shown to require the least amount of heat 

addition for a variety of feeds, but also has by far the lowest second law efficiencies.  
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4.1 INTRODUCTION 

 

The separation of a multi-component mixture via distillation is, although extremely 

effective, a very energy intensive means of separation. Probably the most widely used 

application of distillation technology is in petroleum refineries, where a crude oil 

mixture is separated into gasoline, diesel and kerosene cuts, among others. It has been 

estimated that the atmospheric distillation unit in a modern refinery consumes energy 

equivalent to 2% of the crude processed (Bagajewicz and Ji, 2000). The modern 

atmospheric distillation tower essentially consists of a large main column with 

several (usually three) thermally coupled side stripping units attached which allows 

for the removal of all intermediate product cuts.  

 

There have been numerous advances in distillation design, most notably in the area of 

thermally coupled columns. Fully thermally coupled columns, known as Petlyuk type 

columns, promise large gains in energy as well as capital expenditures, although it 

has been suggested that these columns may not be as thermodynamically efficient 

(Agrawal and Fidkowski, 1998) as other columns. Other thermally coupled columns 

such as side rectifying columns have found application in air separation (Petlyuk, 

2004) as well as replacing entrainer regeneration columns in extractive azeotropic 

distillation (Emmrich et al., 2001). Numerous other configurations have been 

proposed that are thermodynamically equivalent to thermally coupled columns and 

have the potential for similar degrees of cost saving (Engelien and Skogestad, 2005a, 

Agrawal, 2000c, Agrawal, 2000b, Agrawal and Fidkowski, 1999). 

 

Strangely, with all these advances made in thermally coupled distillation, very little 

has transpired to crude refineries, with multiple side stripping columns still used in 

the vast majority of processing plants. Literature contains numerous, rigorous 

optimization techniques for current crude refinery practice (Bagajewicz, 1998, 

Bagajewicz and Ji, 2000, Bagajewicz and Soto, 2003, Bagajewicz and Soto, 2000), 
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but almost no investigation into whether the current structure is fundamentally 

superior to other options has been found. Even advanced process simulation packages 

such as AspenPlus only allows one to model and design traditional refinery columns, 

i.e. side stripping type columns. Only one study in 1995 by (Liebmann and Dhole, 

1995) has attempted to address this issue and found that a main column with 

thermally coupled side rectifiers attached to it, instead of strippers, actually does offer 

advantages in terms of energy expenditures in certain cases. Thus, it would be useful 

to fundamentally understand when a certain thermally coupled structure is superior to 

another, as this could result in potential savings not only in crude refineries, but also 

in the applications listed above. 

 

Recently, a novel graphical tool for distillation design and analysis, Column Profile 

Maps (CPMs), was proposed by Holland, Tapp and co-workers (Holland et al., 

2004a, Tapp et al., 2004). This technique is a generalisation of a set of ordinary 

differential equations for conventional rectifying and stripping sections pioneered by 

Doherty and co-workers (Van Dongen and Doherty, 1985a). This generalisation has 

been shown to be applicable to the design of any configuration, not only conventional 

rectifying and stripping sections. The CPM technique has subsequently been applied 

to the design and analysis of complex thermally coupled configurations such as single 

side rectifying and stripping units as shown in the preceding chapter, Petlyuk 

columns (Holland et al., 2010), as well as fully thermally coupled structures for 

quaternary mixtures such as the Kaibel column (Abbas, 2010).  

 

Due to its graphical nature, the CPM design method offers a unique insight into 

distillation design problems. The special problem of multiple thermally coupled 

columns presents an interesting design challenge since there is not only an interaction 

between the main column and the thermally coupled side units to consider, but also 

between the thermally coupled units themselves. This problem has been approached 

by other authors using the Underwood equations (Carlberg and Westerberg, 1989), 

but these methods have the drawback that they are purely algebraic and the designer 
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often lacks insight into the interaction of column sections and the internal flow and 

separation mechanisms. For instance, if a mistake was made in calculating the 

minimum vapour flows of a complex column using a purely algebraic method, it 

would be very difficult to pick this mistake up by only looking at the numbers 

produced through the algebraic equations. Through a graphical technique, this 

problem is partially eliminated because the designer can quickly see whether there is 

an error in a particular column section. Moreover, a design using graphical methods 

often provides more insight into variable interaction (for example, the Mccabe-Thiele 

method for binary systems allows one to easily gauge the interaction of stage 

numbers versus reflux). Thus, in this work we shall investigate whether there is a 

fundamental difference between several options of multi-component thermally 

coupled distillation configurations by utilising the graphical CPM technique, and 

therefore determine whether there is a superior structure under certain conditions in 

terms energy demand and efficiency. To utilise the graphical nature of the method we 

shall limit the study to quaternary mixtures, and this should lay the foundation for a 

more advanced study of higher order systems, which are mathematically extendable 

using this technique. Furthermore, only structures with a main column and thermally 

coupled side stream units (side rectifying and/or stripping) attached to it will be 

considered, as this is in line with common refinery practice and existing columns 

could therefore be retrofitted if possible. The aforementioned structures are compared 

to themselves as well as to the fully thermally coupled Kaibel column. It should 

however be noted that there are of course a multitude of other designs that may be 

considered. Formulating all these structures is not a simple task in itself and work by 

Agrawal and co-workers have shown that there are thousands of possible structures 

for a any given separation (Giridhar et al., 2005, Agrawal, 2000a, Agrawal, 2001, 

Agrawal and Fidkowski, 1999, Agrawal, 1996)of other (perhaps more optimal) 

columns may be considered utilising combinations of simple, complex and thermally 

coupled columns 

 



Chapter 4: Design and analysis of multiple thermally coupled configurations… 

 

87 

 

4.2 BACKGROUND: COLUMN PROFILE MAPS 

 

As mentioned in the introduction, CPMs were developed for a generalised column 

section, enabling it to be used for the design and analysis of almost any conceivable 

structure, irrespective of the complexity. Thus, this method allows the designer to 

analyse a specific design before being constrained by pre-conceived structures or 

other equipment limitations. The generalised column, by definition, is a length of 

column section between points of material or energy addition or withdrawal (Tapp et 

al., 2004), as shown in Figure 4.1. 

 

 

Figure 4.1: An example of a generalised column section 

 

 

By performing a material balance over the column section followed by a Taylor 

expansion around stage n+1, assuming constant molar overflow, yields: 
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Equation 4.1 is known as the Difference Point Equation, where RΔ is a generalised 

reflux ratio in the column section and n the number of stages. A complete derivation 

of the Difference Point Equation is given in Appendix G. The parameter XΔ is termed 

the Difference Point which is regarded as a pseudo composition vector, valid 

anywhere in the composition space. Like regular compositions, the individual 

elements of the XΔ sum to unity. Furthermore, in column sections that are terminated 

by a reboiler or condenser, XΔ is exactly equivalent the composition of the product 

stream. Negative elements of XΔ are perfectly valid and merely imply that the 

respective component is flowing downward in the column section. This unique 

property of XΔ is not even rare, and may be found in complex columns with multiple 

feeds or product streams (Holland et al., 2010). Accordingly, negative reflux ratios 

indicate that the section is in stripping mode, i.e. there is a net flow of material down 

the column (L>V) and conversely, positive reflux ratios indicate that a column 

section is in rectifying mode as there is a net flow of material upwards. The vapour 

composition, y(x), can be related to the liquid composition using an appropriate phase 

equilibrium model. Once the aforementioned parameters have been set a CPM may 

be constructed from different initial compositions, as shown in Figure 4.2 for 

arbitrarily chosen process parameters.  



Chapter 4: Design and analysis of multiple thermally coupled configurations… 

 

89 

 

 

Figure 4.2: A quaternary CPM with R∆=9 and X∆ = [0.2, -0.3, -0.2] and relative volatilities of 6, 4, 

2 and 1. The “shifted tetrahedron” in red indicates the movement of stationary points at finite 

reflux from the pure component vertices at infinite reflux. 

 

Figure 4.2 represents possible composition trajectories for a single column section. It 

should be noted that it is mathematically possible to populate the entire composition 

space with profiles, even in the negative composition space, but these profiles have 

not been presented in Figure 4.2 for simplicity. This has been shown to add 

considerable insight to the synthesis of distillation column sections. For a design to be 

classified as feasible i.e. a network of column sections constituting a column, 

composition profiles of adjacent column sections have to intersect one another. 

Figure 4.2 also shows that stationary points have been shifted in composition space, 

and for the special case of constant relative volatilities, these shifted points may be 

connected by a straight line, constituting a shifted tetrahedron. It is important to note 

that these shifted stationary points are obtained by algebraically solving the pinched 

Difference Point Equation (dx/dn=0), and no integration is required. From a synthesis 

point of view, these shifted tetrahedrons are especially useful for sharp split problems 

as one of the sides of these tetrahedrons runs precisely through the product 

compositions. This unique feature has recently been applied to the design of three 

component Petlyuk columns (Holland et al., 2010, Holland et al., 2004b) with the aid 

of shifted triangles.  
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In the sections that follow we shall apply this property to column synthesis by making 

use of eigenvector theory. It is thus convenient to introduce properties of the 

eigenvectors of CPMs in this section. The eigenvectors may be determined by finding 

the n × n Jacobian matrix of the Difference Point Equation and solving the 

corresponding eigenvalues and eigenvectors of this matrix. Because the fourth 

component of a quaternary system is implied through the unity summation property, a 

quaternary system will have three significant eigenvectors (and a ternary system two).  

For a range of stationary points we may then generate an eigenvector map for a 

ternary system, as shown in Figure 4.3. The ternary map in Figure 4.3 essentially 

represents a plane where the composition of a single component is zero for a 

quaternary system. Only a ternary map is presented as a quaternary eigenvector map 

will be too cumbersome to fully visualise as a single point produces a three 

dimensional eigenvector (three eigenvectors). 

 

 

Figure 4.3: A liquid eigenvector map for relative volatilities of [3, 1, 1.5]. 

 

Interestingly, the eigenvectors of the Difference Points Equation are only a function 

of the thermodynamics of the system and not the reflux ratio nor XΔ placement. Thus, 
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a unique eigenvector map exists for a particular vapour-liquid phase equilibrium 

model. The eigenvectors characterise the asymptotic direction of the trajectories in 

the neighbourhood of the singularity. For constant volatility systems, the direction of 

the eigenvectors at a singularity also indicates the direction where the remaining 

singularities may be found. Thus, when a stationary point is located at one of the 

eigenvector points shown in Figure 4.3, the eigenvectors evaluated at the remaining 

stationary node will point exactly towards one another. 

 

It is worthwhile to mention that the graphical based techniques advocated in this 

chapter are limited by the number of components in the system. It is extremely 

difficult to visualise higher order systems (nc>4) on a two dimensional surface, as we 

have for four components. Nevertheless, the methods are based on sound algebra 

using concepts like eigenvectors and co-linearity conditions, among others, and may 

be extended to systems with any number of components, although the visual aspect of 

the method will be lost. 

 

4.3 DESIGN PROCEDURE 

 

4.3.1 INITIALISATION 

 

The first step in synthesising a distillation column using the CPM technique is 

identifying a potential structure. We will only consider thermally coupled columns 

consisting of one main column with multiple side rectifiers and/or strippers attached 

to it. Thus, to separate a quaternary mixture, four possible structures may be 

conceived. These are the Double Side Stripper (DSS), the Double Side Rectifier 

(DSR), the Hybrid Side Stripper-Rectifier- (HSSR) and the fully thermally coupled 

Kaibel column. Although there are a plethora of thermally coupled arrangements that 

may be considered, only those that have one main column are presented here as this 

aligns closely to modern crude refinery practice and therefore represents a more 
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realistic case study, especially with regards to retrofitting existing columns. However, 

it should be stressed that any column structure can be considered using the techniques 

presented here. These four columns, along with their respective column section 

breakdowns are depicted in Figure 4.4. Components have been labelled A through D 

from the lowest to highest boiling components, and F denotes the system feed.  

 

 

(a) (b) (c) (d) 

Figure 4.4: A column section breakdown of the four possible structures to separate a quaternary 

mixture with a main column and thermally coupled side stream units: (a) the DSS, (b) the DSR, 

(c) the HSSR, and (d) the Kaibel column. 

 

For the purpose of consistency, the column sections of the main column in all 

structures have been numbered 1, 2, 4 and 6, and the thermally coupled side stream 

units are labelled column sections 3 and 5. Notice however that the Kaibel column 

consists of seven column sections, whereas the other structures only consist of six. 
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The HSSR and the Kaibel column are in fact very similar from a structural point of 

view,  but the addition of a seventh column section to the Kaibel column allows one 

to remove another set of reboilers/condensers. In total, the DSS, DSR and HSSR each 

require four energy inputs or removals (condensers and reboilers) while the Kaibel 

column only requires two. Thus, when compared to a sequence of simple column for 

performing this separation, each thermal coupling allows one to eliminate one 

reboiler/condenser when compared to the conventional simple column sequences, and 

the fully thermally coupled Kaibel column allows one to eliminate four 

reboilers/condensers. In all structures, the vapour and liquid points of entry and exit 

at the thermally coupled junction are located at the same position. 

 

Notice that the DSS configuration is closely related to crude refinery columns with 

multiple thermal coupling through side stripping units, although conventional crude 

refinery columns are slightly more complex containing even more thermally coupled 

units and liquid pump-arounds. Interestingly, the DSS, DSR and HSSR are analogous 

to the simple direct, indirect and pre-fractionating split column sequences between 

components B and C, respectively. This will become apparent in subsequent 

discussions. These structures are the only thermally coupled structures with a single 

main column that permit feasible flow patterns, as it is a necessary condition for the 

feed to lie below a side stripping section and above a side rectifying section. The 

reason for this necessary condition will be elaborated in the following section on net 

flow patterns. 

 

4.3.2 NET FLOW PATTERNS 

 

Any distillation configuration consists of a network of column sections that are either 

in rectifying or stripping mode. Rectifying sections are characterised by a net flow of 

material upwards in the column section, while column sections in stripping mode 

dictate that flow is directed downwards. Therefore, a column section terminated by a 

reboiler is always in stripping mode, and conversely a section terminated by a 
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condenser is always in rectifying mode. This can be proven by mass balance around 

the reboiler or condenser. However, it is not immediately obvious what the flow 

directions of internal column sections are. In fact, for fully thermally coupled 

columns such as the Kaibel column these internal column sections may even change 

direction depending on the operation of the column. Holland et al. (2010) have shown 

that there are five potential flow patterns for the Petlyuk column, but only one was 

shown to be optimal for ideal systems. Similarly, the Kaibel column with a non-sharp 

product specification has six potential flow patterns but only one is considered 

optimal. The special case of a sharp product specification, column section 7 in the 

Kaibel column (Figure 4.4 d) reduces to an infinite reflux section (V=L), and 

therefore has only one viable flow pattern(Abbas, 2010) . This implies that there is no 

directional flow of material in this column section.   

 

Somewhat counter-intuitively, the DSR, DSS and HSSR depicted in Figure 4.4 have 

only one permissible flow pattern regardless of the product specification, since the 

internal column section flow directions are predetermined by the product producing 

column sections coupled to them. The net flow directions of each column section in 

the aforementioned structures are summarised in Figure 4.5. 

    

(a) (b) (c) (d) 

Figure 4.5: A summary of the only possible net flow directions in the (a) DSR (b) DSS (c) HSSR 

and (d) Kaibel column. 
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Notice that the column sections above and below the column feed stream always flow 

up and down, respectively. This is effectively a rectifying and stripping column 

section below and above the feed. Furthermore, notice that all these structures merely 

break down into a network of equivalent rectifying or stripping sections, or in other 

words, a network of simple columns. Consider for example Figure 4.5 a. Column 

sections 4 and 6 are considered equivalent rectifying and stripping sections for the 

feed stream. Similarly, column section 4 can be seen as the feed to the equivalent 

rectifying and stripping sections consisting of column sections 2 and 5, and so on. As 

mentioned previously, these four structures are the only ones that permit feasible flow 

patterns. This is due to the fact placing the stream below a rectifying unit or above a 

stripping unit would lead to a contradiction of flow patterns, since, somewhere in the 

column, there would be either two stripping or rectifying sections coupled to each 

other, essentially a simple column with two reboilers and no condensers, or vice 

versa, which is an impossible mode of operation for ideal systems. 

 

4.3.3 DIFFERENCE POINT PLACEMENT 

 

The Difference Point, XΔ, can be seen as a pseudo composition that corresponds 

exactly to the product specification in column sections terminated by a reboiler or 

condenser. It has been shown in previous work that XΔ in adjacent column sections 

are linearly related to one another, similarly to distillate, bottoms and feed 

compositions in simple columns (Holland et al., 2010). The Difference Points in 

internal column sections also have to abide by the same material balance constraints 

and are also linearly related to the adjacent column sections, and therefore portray 

similar behaviour as real bottoms or distillate products. For the DSS, DSR and HSSR 

structures introduced in the previous section, the relationships between the respective 

Difference Points are presented in Figure 4.6 for pure component product 

specifications and an equimolar feed. 
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(a) (b) (c) 

Figure 4.6: Difference Point placement for (a) the DSS, (b) the DSR, (c) the HSSR, showing the 

relationship between the respective Difference Points and adjacent column sections. 

 

Due to the fact that column section 7 of the Kaibel column operates at infinite reflux, 

its component mass balance properties, i.e. its XΔ placement, is equivalent to the 

HSSR. A summary of all Difference Points in the respective column sections are 

given in Table 4.1 for the same specifications for Figure 4.6. 

 

Table 4.1 A summary of XΔ placement for various structures with sharp splits and an equimolar 

feed. Shaded cells indicate rectifying sections. 

Column Section DSS DSR HSSR Kaibel 

1 [1,0,0] [1,0,0] [1,0,0] [1,0,0] 

2 [0.5, 0.5, 0] [0, 0.33, 0.33] [0.5, 0.5, 0] [0.5, 0.5, 0] 

3 [0, 1, 0] [0, 1, 0] [0, 1, 0] [0, 1, 0] 

4 [0.33, 0.33, 0.33] [0, 0, 0.5] [0, 0, 0.5] [0, 0, 0.5] 

5 [0, 0, 1] [0, 0, 1] [0, 0, 1] [0, 0, 1] 

6 [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] 

zF [0.25, 0.25, 0.25] [0.25, 0.25, 0.25] [0.25, 0.25, 0.25] [0.25, 0.25, 0.25] 

 

The shaded cells in Table 4.1 indicates an equivalent rectifying column section, 

therefore the Difference Points in these column sections may be treated as distillate 
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compositions. In the same manner, the un-shaded cells indicate equivalent stripping 

sections which Difference Points are pseudo bottoms compositions. 

 

4.3.4 VARIABLE SELECTION 

 

Intuitively, each thermally coupled unit introduces an additional degree of freedom 

because the designer may specify the amount of liquid or vapour that is directed 

toward the side unit. This implies that a reflux ratio has to be specified in each 

thermally coupled side stream unit. However, reflux ratios are unbound parameters 

and may, theoretically, be specified from zero to negative or positive infinity. Thus, it 

is convenient to define a split ratio (Φ), which governs the amount of material sent to 

the side unit. For side stripping and rectifying units this ratio is given in Equations 4.2 

and 4.3, respectively.  

 

1 SS
L

MC

L

L
          (4.2) 

1 SR
V

MC

V

V
          (4.3) 

 

The subscripts SS, SR and MC indicate a Side Stripper, Side Rectifier and the Main 

Column, respectively. The parameters ΦL (for liquid splits) and ΦV (for vapour splits) 

specify the fraction of material being sent from the main column to the adjacent main 

column section at the split location. The fraction of material directed toward the side 

unit is thus given by subtracting the respective split ratio from unity. Conveniently, 

this parameter is bound between zero and one regardless of rectifying or stripping 

sections, and thus allows for representation in a constrained, positive space, 

regardless of rectifying or stripping section. Furthermore, it is more convenient to 

represent internal variables such as the reflux ratio in the Φ-space when searching for 

feasible designs. This will become apparent in subsequent discussions. 
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4.3.5 FEASIBILITY CRITERIA 

 

Eigenvector criteria 

 

A realizable column design has been shown to exist when liquid composition profiles 

intersect one another (Van Dongen and Doherty, 1985a). The constant relative 

volatility, sharp split design problem is very useful as feasible designs may be found 

algebraically by solving the pinched Difference Point Equation. In terms of a 

quaternary separation, the shifted stationary points thus result in a shifted tetrahedron, 

as depicted in Figure 4.2. A sharp split design may then be rendered feasible if their 

respective shifted tetrahedrons overlap one another on the same plane and the line of 

the product specifications. In order to illustrate this feasibility criterion, consider the 

one feed-two product simple column shown in Figure 4.7.  

 

 

Figure 4.7: A simple, one feed two product column with the associated column section 

breakdown. 

 

The simple column in Figure 4.7 consists of a rectifying (RS) and stripping (SS) 

section. The column is fully specified by choosing the product compositions and the 

reflux ratio, either in the rectifying or stripping section. Once either reflux ratio has 
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been specified, the other may be determined from an energy balance around the 

column, but the assumption of constant molar overflow (similar latent heat and heat 

effects of all components) allows one to determine the remaining reflux ratio by a 

material balance at the feed stage. The rectifying and stripping sections are thus 

related by Equation 4.4: 

 

R
S

Fq DR
R

D F








       (4.4) 

 

Where the subscripts S and R indicate rectifying and stripping column sections and q 

is the vapour quality of the feed. All parameters for both column sections are thus 

completely specified (as XΔ is equivalent to the product specification in each column 

section) to construct their associated shifted tetrahedrons. These shifted tetrahedrons 

are presented in Figure 4.8 a-c, showing a feasible design at minimum reflux, an 

over-refluxed feasible design and an under-refluxed infeasible design for a quaternary 

feed. Note that for the design at minimum reflux (Figure 4.8 a) that the planes of the 

purple and black tetrahedrons are exactly co-planar. The over-refluxed design (b) is 

characterised by the purple and black tetrahedrons overlapping one another i.e. past 

the co-planar condition, while the under-refluxed design (c) shows that the purple and 

black tetrahedrons do not touch each other at all, i.e. before the minimum reflux 

condition.” 

  

B 

C 

A 

D 

XB 

XT 

XF 
B 

A 

C 

D 

XB 

XT 

XF 



Chapter 4: Design and analysis of multiple thermally coupled configurations… 

 

100 

 

(a) (b) 

 

 

 

 
 

(c) (d) 

Figure 4.8: A design for an equimolar quaternary mixture in a simple column for the AB-CD 

split at (a) minimum reflux, (b) above minimum reflux, (c) below minimum reflux and (d) planar 

intersection through eigenvectors evaluated at the feed condition. 

 

Figure 4.8 shows how feasible designs may be graphically discriminated using this 

simplifying case of the CPM technique. The interactions of the transformed 

tetrahedrons with one another under minimum reflux conditions provides a unique, 

geometric opportunity for evaluating the feasibility of a certain column (see Figure 

4.8 a and d). Other authors have shown that the minimum reflux for ternary systems 

based on any sharp split would be established when the transformed triangles of the 

rectifying and stripping section meet along a boundary through the feed (See Figure 

4.9) (Abbas et al., 2010, Holland et al., 2010). With specified feed, distillate and 

bottoms compositions, the exact condition for minimum reflux is thus that the tangent 

to the saddle pinch profile and the feed pinch point is a straight line through the feed 

composition. This creates a co-linearity criterion under minimum reflux conditions 

based on the feed where the saddle node of the rectifying section is collinear with the 

unstable node of the stripping section and the feed composition. The boundaries 
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between stationary points for constant relative volatility systems are straight lines 

since the eigenvectors evaluated at the stationary nodes point directly towards the 

other stationary points. For a ternary system this is easily visualised, and can be seen 

in Figure 4.9. 

 

Figure 4.9: Minimum reflux Transformed Triangle interaction depicting the co-linear common 

eigenvector. 

 

Figure 4.9 shows that one of the eigenvectors (in red) at the feed are exactly co-linear 

to the shifted triangle indicated in blue. Although there exists two eigenvectors at the 

feed, only one is pertinent to the system. This is regarded as the common (or 

dominant) eigenvector, analogous to the common roots of the Underwood Equation. 

The selection of the appropriate eigenvector based on product specifications of the 

column. A more in depth analysis is given on eigenvectors for distillation design is 

given by Abbas, Halvorsen and Holland (Abbas et al., 2010). 

 

For the quaternary system, a minimum reflux solution is based on interactions of the 

planes of the transformed tetrahedrons. More specifically, the minimum reflux 
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solution is found when the planes of the rectifying and stripping sections are co-

planar through the feed. Thus, the eigenvectors evaluated at the feed condition 

provides the co-planar surface where the transformed tetrahedrons interact under 

minimum reflux conditions. If the feed is a liquid the planes of the liquid transformed 

tetrahedrons will pass through the feed and vice versa for a vapour feed. Therefore by 

evaluating the eigenvectors at the feed condition produces the co-planar surface 

where the saddle pinch and feed pinch lie on the same plane through the feed at 

minimum reflux. The eigenvector evaluation at the feed composition thus produces 

an opportunity to determine the stationary points along the co-planar surface and 

therefore the reflux associated to the minimum transformed tetrahedrons. 

 

Finding the stationary points, for any system irrespective of thermodynamic 

properties, would involve solving the right hand side of the Difference Point Equation 

when it is equivalent to zero. At a stationary point this implies from a geometrical 

point of view that the mixing vector,         , becomes co-linear with the 

separation vector,          . In order to determine the pinch point of the 

transformed tetrahedron on the co-planar surface, simple analytic tools may be used 

as the roots for a constant relative volatility system can be relatively easily. In fact, 

Chapter 6 of this thesis shows that for constant relative volatility systems, it is 

possible to calculate the stationary points of the difference point equation (very 

swiftly) for a given column section by simply finding the roots of a polynomial, using 

a variable transformation technique. The commonality of the co-planar surface 

eigenvectors and the co-linear mixing and separation vectors allows for the 

determination of the stationary point associated to the minimum reflux transformed 

tetrahedrons. This feasibility criterion using the eigenvectors is depicted in Figure 4.8 

d. Importantly, the solutions obtained using the techniques described above for 

finding minimum reflux is exactly equivalent to the minimum reflux solutions 

predicted by the Underwood method. 
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Special feed conditions 

 

The solution discussed above is only applicable to feeds that are either pure liquid i.e. 

q=1, or pure vapour i.e. q=0. Since this paper utilises two-phase feeds with 0<q<1, 

as well as super-heated vapour (q<0) and sub-cooled liquid (q>1) feeds, and not only 

pure liquid or vapour feeds, a slight modification to the aforementioned minimum 

reflux solution is required. The solution involves finding the minimum reflux 

transformed tetrahedrons for both pure liquid and pure vapour feeds first and then 

determining the transformed tetrahedrons for a different quality of feed. Due to the 

fact that shifting of the liquid and vapour transformed tetrahedrons are very similar 

when changing the reflux, it is remarkable to note that it is only necessary to focus on 

the liquid or the vapour transformed tetrahedrons to find the solution for a different 

quality of feed. This can be seen in Figure 4.10. 

 

 

Figure 4.10: Pinch point locations for various feed qualities 

 

The solid black line is the location of the rectifying pinch points where the feed has 

two phases. The dashed lines indicate the pinch location of superheated vapour and 

sub-cooled liquid on either side of two-phase region. The two phase feed solution will 

0 0.5 1 1.5 

X1 

XD 

Xpinch at q>1 

XB 

XF 

Xpinch at q=1 

Xpinch between  

0< q<1 

Xpinch at q=0 

Xpinch at q<0 

1.5 

1 

0.5 

0 

-0.5 

-0.5 

X2 



Chapter 4: Design and analysis of multiple thermally coupled configurations… 

 

104 

 

thus involve using the two stationary points at the minimum reflux conditions; one 

point on the liquid feed solution and the same nature of node on the vapour feed 

solution will arise. A straight line through these nodes sets the relative bound of the 

two phase feed (0<q<1). The liquid stationary point solution with a feed quality of 

0.5 for example will then lie on the middle point of the line between these nodes. As 

the difference points are already known, the only variable left to calculate is the 

relative minimum reflux solution which is now based on the set quality of the feed. If 

the solution for a super heated vapour feed is required, the same interpolation like 

procedure can be used. When a super heated vapour is required, then the stationary 

point is found in the direction of the vapour transformed tetrahedron on the same 

straight line and vice versa for a super cooled liquid feed. 

 

The extension to the equivalent higher order systems minimum reflux solution is 

based on the same principles as the ternary and quaternary systems. As mentioned 

previously the minimum reflux solution for the ternary system is based on the linear 

interactions of the eigenvectors, mixing vectors and separation vectors. The 

quaternary solution is based on the planar interactions of the transformed tetrahedrons 

for the rectifying and stripping sections and the evaluated eigenvectors at the feed. 

. 

In the same way in which we evaluated the eigenvectors at the feed composition and 

produced the co-linear and co-planar lines and surfaces where the transformed 

triangles/tetrahedrons met, the eigenvector evaluation at the feed composition for 

higher order systems produces the co-hyper-planar boundaries where the transformed 

hyper planes touch. In order to determine higher order system minimum reflux 

solutions the stationary points must thus interact on hyper planes of the desired 

number of components as required.  In order to determine the pinch point of the 

transformed hyper planes, the point where the co-linear mixing and separation vector 

intersects with the co-hyper-planar boundary is one of the minimum reflux stationary 

points. The exact same solution as mentioned above for different quality of feeds is 

directly applicable to any higher order systems, but cannot be graphically visualised. 
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The minimum reflux solution discussed above is called the Column Profile Map-

Eigenvector technique (CPM-E). Figure 4.8 d shows the interaction of planes at 

minimum reflux conditions. The CPM-E technique and hence the eigenvector 

evaluation at the feed composition depending on the quality of the feed is thus an 

exact criterion for finding a feasible design and is not limited by the number of 

components to be considered. This criterion can be extended to non-ideal systems as 

an approximation, since the eigenvectors at stationary points do not exactly line up 

with one another along lines/planes. It is important to note that even though a wide 

variety of feed conditions are encountered in our design problems, the generic liquid 

and vapour transformed polygons both always intersect with one another when the 

design is feasible. It is therefore only necessary to evaluate the liquid transformed 

polygons and profiles (Holland et al., 2010) for discriminating between feasible and 

infeasible designs.  

 

4.3.6 THERMALLY COUPLED COLUMN SECTIONS 

 

Section 4.3.5 discusses how designs may be classified as feasible for a simple 

column. The design procedure outlined thus far allows for a unique graphical insight 

into the design of simple distillation columns at minimum reflux. In order to analyse 

more complex thermally coupled columns, it is therefore useful to retain the general 

design ideas for simple columns and extrapolate it to more complex systems. A 

similar approach to the one described in this section has been adopted by other 

authors using the Underwood equations (Carlberg and Westerberg, 1989), but it is 

somewhat laborious in that new parameters have to be defined for each thermal 

coupling. We present is here in terms of our generalised defined variables to show the 

applicability of the CPM-E technique to the analysis of thermally coupled columns. 

Fortunately, the definition of XΔ allows one to easily extend this methodology to any 

structure since it is in fact a pseudo composition. Using the techniques described 

here, any column may be broken down into a network of simple columns with the 
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same general design procedure described for the simple column. To illustrate this 

fact, consider a generic thermally coupled side rectifying and stripping unit as shown 

in Figure 4.1 a and b. 

  

(a) (b) 

Figure 4.11: A generic thermally coupled (a) side rectifying and (b) side stripping with the 

corresponding net flow directions of each column section. 

 

In the side rectifying arrangement Figure 4.11 a, the vapour from column section j 

feeds both column sections i and k, while column section i and k’s combined liquid 

streams feed column section j. The amount of vapour to be distributed between 

sections i and k are governed by the vapour split ratio. Since the vapour split and 

liquid feed point is assumed to take place at the same location in the column and 

column sections j and k are producing end products, the net material flow from 

column section i is effectively the feed to column sections j and k. Thus, by adding 

the directional vapour and liquid in the feed column section, i, the net feed flowrate 

may be obtained. In terms of our CPM parameters this results in:  Fi =|∆i|, since the 

feed always has to be positive. This is then essentially the pseudo feed to the simple 

column comprising of rectifying section k and stripping section j. Furthermore, the 

composition of this pseudo feed stream is equivalent to the Difference Point of 

column section i (XΔi), which may be calculated a priori once the product 

compositions have been set (see section 4.3.2) as shown in Figure 4.6 and Table 4.1. 

i

j

k
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f
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The quality of the pseudo feed is the fraction of liquid in the feed, and can thus be 

written as: 

 

i i i
i i

i i i

L L L
q R

F
    

 
      (4.5) 

Since Column Section i is in stripping mode and ∆i is negative. In a similar manner, 

the flowrate, composition and quality of the pseudo feed may be derived for the 

generic stripping section. The parameters for both configurations are summarised in 

Table 4.2. 

Table 4.2: Summary of pseudo feed streams to the generic side rectifying and stripping sections 

Structure 
Feed flowrate 

(F) 

Feed composition 

(Xf) 
Feed quality (q) 

Side Rectifier 
i i iV L    iX   iR  

Side Stripper ( )g g gV L     gX   gR  

 

Interestingly, the pseudo feed quality is always the negative of the generalised reflux 

ratio in the feed column section, regardless of the structure. Thus, the feed to a 

column section with a side rectifier can be seen as pseudo superheated, since R∆i is 

always positive, and conversely the feed to a column section with a side stripper can 

be seen as pseudo sub-cooled since R∆g is always negative. The key parameters in the 

CPM technique thus extend naturally to incorporate thermally coupled columns. 

Essentially, these definitions aid in breaking down the complex structures to a set of 

pseudo binary columns which may easily be analysed and interpreted. 

 

4.3.7 STEPWISE DESIGN ALGORITHM 

 

The theory described in the preceding sections can now be put together in a stepwise 

design algorithm which allows one to evaluate virtually any given structure. This 

design procedure is summarised as follows: 
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 Step 1: Formulate a configuration to evaluate or design. 

 Step 2: Set the product specifications for each product producing column section and 

determine the overall mass balance. 

 Step 3: Define the appropriate split ratios, choose a reference reflux ratio for one 

column section (usually one located above/below the feed) and determine the generic 

internal mass balances, which specify all internal Difference Points and material 

flows. 

 Step 4: Determine the minimum reflux for the “pseudo simple column” using the 

CPM-E technique with column sections located above and below the feed, using the 

Difference Points as bottoms and distillate compositions.  

 Step 4b: If necessary, specify an over-refluxed factor, i.e. a factor that will account 

for a non-pinched design. 

 Step 5: Determine all net material flows and reflux ratios in the respective “pseudo 

simple column” and use these as the new feed for the new adjacent “pseudo simple 

column” with the feed conditions outlined in section 4.3.6. 

 Step 6: Repeat from Step 4 until the entire column has been specified.  

 

4.4 FINALISING THE DESIGN 

 

4.4.1 ISO-REFLUX ANALYSIS 

 

Once a fundamental understanding of the design procedure has been gained, we may 

easily evaluate our given structures. In order to determine what the minimum 

operational conditions of a particular structure is, it is at first useful to specify that all 

column sections operate at minimum reflux. This constraint allows one to search for 

feasible design using the eigenvector theory discussed above and allows for a fair 

basis of comparison between various structures. However, this constraint can be 

easily relaxed and one can decide to operate a certain set of column sections above 

minimum reflux once it has been determined. Since our thermally coupled units 
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described above have three internal degrees of freedom (one reflux ratio and two split 

ratios), it is convenient to represent all column sections in one diagram to obtain an 

intuitive understanding of the interaction of column sections. This can be done in an 

iso-reflux plot, shown in Figure 4.12 for the DSS, where ΦL1 and ΦL2 indicate the top 

and bottom liquid split ratios in the DSS as shown in Figure 4.4. This plot is obtained 

by writing all the reflux ratios in the column sections in terms of the split ratios (see 

Appendix E). Once the minimum reflux for each column section has been obtained 

through the eigenvector techniques outlined above, these reflux values can be simply 

substituted into the equations given in Appendix E for each given structure. One can 

then obtain what range of split ratios that will satisfy the minimum reflux condition 

for each column section and conveniently represent this in a split ratio space. 

 

Figure 4.12: An iso-reflux plot for the DSS at minimum reflux. 

 

Figure 4.12 shows the range of split ratios that result in specific column sections 

operating at minimum reflux. The specific reflux ratios at minimum reflux are given 

at the end of this section in Table 4.3. From this diagram one is able to quickly realise 

that there is a certain combination of ΦL1 and ΦL2 that results in a specific 
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combination of a column sections operating at minimum reflux to the one adjacent to 

it. However, there is only a single point where all sections are at minimum reflux 

with one another. This point occurs where all the iso-reflux lines intersect one 

another, as every simple pseudo simple column operates at minimum reflux, therefore 

the entire column operates at minimum reflux. Thus, we have now determined from 

this relatively simple plot what the reflux ratios in each column section is required to 

be, and therefore the split ratios too, for the entire column to operate at minimum 

reflux. Figure 4.12 shows that there is only one selection of ΦL1 and ΦL2 that satisfies 

the minimum reflux criterion, where all iso-reflux lines intersect one another.  

 

Each curve in Figure 4.12 represents the reflux ratio that a particular column section 

is required to be at. It is important to note that the mass balance has been performed 

by starting across the feed stage and working upwards. From this mass balance 

perspective, the reflux of top column sections, i.e. 1 and 3, are dependent on both ΦL1 

and ΦL2 (blue and green curves), while the refluxes of column sections 2 and 5 are 

only dependent on ΦL1 (red and cyan curves) .The iso-reflux curves of column 

sections 1 and 3 are thus curved, while those of column sections 2 and 5 are straight 

lines that fall exactly on one another.  From this figure it may also be inferred that 

there not only is the interaction between the main column and the thermally coupled 

side units, but also between the side units themselves.  

 

Apart from showing the absolute minimum reflux of all column sections, these iso-

reflux lines also depict an Attainable Region. By Attainable Region we mean the 

region containing all possible operating modes of the process (Hildebrandt and 

Glasser, 1990). In other words, any selection of parameters within the Attainable 

Region will result in a feasible design for the given feed and product specifications. 

However, it should be noted that not all points within the Attainable Region are 

equal, i.e. some point may be more desirable than others. Although the Attainable 

Region idea was first used to identify optimal reactor structures, it has also been 

applied to distillation by other researchers for simple columns (Kauchali et al., 2000, 
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Jobson et al., 1995), although not using the same ideas expressed in this work.  

Specifically, this is the Attainable Region when the column sections adjacent to the 

feed stream are at minimum reflux. All possible combinations of ΦL1 and ΦL2 that 

would lead to a feasible design between minimum reflux and infinite reflux for the 

other column sections are depicted in the direction of the arrows. Any values of ΦL1 

and ΦL2 that do not lie in inside this region will lead to design where at least one pair 

of adjacent column sections are below minimum reflux, and therefore are classified as 

infeasible designs. It is important to reiterate that the column sections across the feed 

are still at minimum reflux, and thus this iso-reflux does not depict the entire 

Attainable Region, but merely a part of it. If this minimum reflux condition were to 

be relaxed for these column sections, the Attainable region would expand, until an 

infinite reflux condition is specified whereby the entire Φ-space would be attainable. 

 

 Notice that there are four iso-reflux lines in Figure 4.12, and not one for each column 

section, since the minimum reflux condition across the feed stage is completely 

independent of both split ratios. Interestingly, this Attainable Region shows that there 

are in fact infeasible designs when one pair of column sections, 1 and 3 in this case, 

operate at infinite reflux (ΦL1→1), but there are still feasible designs when the other 

pairs of adjacent column sections, 1 and 2, and 2 and 4 respectively, operate at 

infinite reflux (ΦL1, ΦL2→0). The shifted tetrahedrons at minimum reflux are shown 

in Figure 4.13a-e for each pair of adjacent column sections. The colour of the shifted 

tetrahedrons corresponds to the colours of the iso-reflux lines in Figure 4.12.  

 

Figure 4.13 a-e shows that, as with the simple columns design, that each pair 

transformed tetrahedrons of adjacent column sections just touch each other. The 

column is thus said to be operating at overall minimum reflux. The shaded regions in 

Figure 4.13 a-e show the planes that touch one another at minimum reflux. A “real” 

column  is often said to operate at a factor between 1.05 and 1.50 times the minimum 

reflux (Seader and Henley, 2006a). Thus, using these guidelines, each simple column 

in the entire column has to operate at a factor above minimum for the entire column 
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to operate above minimum reflux and a similar iso-reflux plot can be generated to 

depict the over-refluxed design. Using the same procedure outlined previously, 

similar iso-reflux figures for the DSR in its respective Φ-space may be constructed 

along with their shifted tetrahedrons. 
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(e) 

 

Figure 4.13: Transformed tetrahedrons at minimum reflux for the DSS. (a) Column sections 1 

and 3. (b) Column sections 4 and 6. (c) Column sections 2 and 5. (d) Column sections 1 and 2. (e) 

Column sections 2 and 4. 

 

Figure 4.14: An iso-reflux plot for the DSR at minimum reflux. 
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(e) 

Figure 4.15: Transformed tetrahedrons at minimum reflux for the DSR. (a) Column sections 5 

and 6. (b) Column sections 3 and 4. (c) Column sections 1 and 2. (d) Column sections 2 and 4. (e) 

Column sections 4 and 6. 

 

The DSR operating at minimum reflux may be interpreted in a similar way to DSS 

structure, but it should be noted that the split ratios are now vapour splits (ΦV). The 

mass balance has been performed from the feed stage downwards, and thus the 

bottom column sections (4 and 6) are dependent on both split ratios. Again, there is 

an Attainable region indicated by the direction of the arrows, where over-refluxed 

feasible designs may be found when the column section 4 and 6 are at minimum 

reflux. Again, the shaded regions indicate where the planes touch each other.  

 

In order to construct iso-reflux plots for the HSSR, it is important to point that the 

mass balance and minimum reflux calculation have to be initiated across the feed 

stage. The iso-reflux plots for the HSSR are thus unique because the feed is situated 

between the two split ratios. Thus, these split ratios are independent of one another at 

minimum reflux conditions. This is depicted in Figure 4.16, along with the 

corresponding shifted tetrahedrons in Figure 4.17. 
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Figure 4.16: An iso-reflux plot for the HSSR and Kaibel column at minimum reflux. 
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(c) (d) 

 

(e) 

Figure 4.17:   Transformed tetrahedrons at minimum reflux for the HSSR and Kaibel columns. 

(a) Column sections 1 and 3. (b) Column sections 2 and 4. (c) Column sections 5 and 6. (d) 

Column sections 1 and 2. (e) Column sections 4 and 6. 
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dependent on the liquid split ratio. Vapour and liquid shifted tetrahedrons have been 

constructed in Figure 4.17 that represents the appropriate feed condition. 

Table 4.3: Reflux ratios at minimum reflux for all respective minimum structures 

CS DSS DSR HSSR Kaibel 

1 8.77 4.42 6.72 6.72 

2 2.44 -2.81 1.22 1.22 

3 -3.89 1.33 -4.27 -4.27 

4 0.718 -4.88 -3.22 -3.22 

5 -2.72 1.22 1.35 1.35 

6 -6.16 -10.98 -7.79 -7.79 

7 - - - ∞ 

 

4.4.2 IDENTIFYING OPTIMAL DESIGNS 

 

We shall discriminate between good and bad designs based on the minimum energy 

requirement of a particular structure. As the reboiling column sections are typically 

the most expensive to operate in terms of utility cost, we will evaluate the vapour 

flow rates required in each of these column sections. In structures that contain 

multiple reboiling units, the overall vapour flowrate is merely the sum of all the 

vapour flows in respective column sections. We shall evaluate all designs based on 

minimum reflux operation, as this is a fair basis of comparison of the minimum 

achievable energy expenditure for each structure.  

 

Furthermore, a unique property of multiple side rectifiers and strippers is the fact that 

they operate at multiple temperature levels. Thus, thermodynamic efficiencies (or 

second law efficiencies) also have an important role to play when deciding on an 

optimal structure since one structure may reject heat at a temperature where it is 

added to another. Once vapour flows have been obtained with our methods we can 

easily calculate the thermodynamic efficiency of the respective structures using a 
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modified version of the Clausius-Clayperon equation coupled with an energy and 

exergy balance across the structure (see Appendix D: Thermodynamic Efficiencies 

for a detailed derivation). Agrawal and Fidkowski (1998) used this same principle for 

calculating thermodynamic efficiencies of ternary structures. It is easy recognisable 

that the feed composition of the mixture may influence which structure is superior. In 

Table 4.4 we consider the effect of the feed composition on which structure is optimal 

by analysing the minimum vapour flows and the thermodynamic efficiency (η) for a 

mixture.  

Table 4.4: Minimum vapour flows and thermodynamic efficiencies for all respective thermally 

coupled structures for volatilities of 6, 4, 2 and 1. 
# Feed Type zf DSS DSR HSSR Kaibel 

- - - VTOT/F η VTOT/F η VTOT/F η VTOT/F η 

1 Equimolar [0.25, 0.25, 0.25] 2.441 0.451 2.495 0.503 2.516 0.508 1.698 0.120 

2 A rich [0.85, 0.05, 0.05] 2.769 0.196 2.856 0.272 2.857 0.1875 1.506 0.035 

3 B rich [0.05, 0.85, 0.05] 3.700 0.157 3.709 0.130 3.702 0.145 1.927 0.027 

4 C rich [0.05, 0.05, 0.85] 2.864 0.134 2.828 0.160 2.830 0.196 2.713 0.089 

5 D rich [0.05, 0.05, 0.05] 1.142 0.318 1.065 0.461 1.159 0.474 1.023 0.172 

6 AB rich [0.45, 0.45, 0.05] 3.258 0.301 3.286 0.304 3.283 0.283 1.718 0.053 

7 AC rich [0.45, 0.05, 0.45] 2.295 0.298 2.547 0.399 2.553 0.370 1.968 0.104 

8 AD rich [0.45, 0.05, 0.05] 1.617 0.517 1.705 0.732 1.743 0.535 1.007 0.108 

9 BC rich [0.05, 0.45, 0.45] 3.291 0.250 3.297 0.246 3.301 0.285 2.340 0.071 

10 BD rich [0.05, 0.45, 0.05] 2.178 0.426 2.209 0.386 2.183 0.426 1.210 0.083 

11 CD rich [0.05, 0.05, 0.45] 2.030 0.323 1.998 0.399 2.015 0.475 1.892 0.203 

12 ABC rich [0.32, 0.32, 0.32] 3.003 0.333 3.088 0.360 3.091 0.364 2.035 0.083 

13 ABD rich [0.32, 0.32, 0.04] 2.353 0.483 2.392 0.501 2.378 0.469 1.269 0.089 

14 ACD rich [0.32, 0.04, 0.32] 1.833 0.436 1.966 0.605 2.000 0.569 1.600 0.169 

15 BCD rich [0.04, 0.04, 0.04] 2.526 0.377 2.509 0.390 2.535 0.446 1.847 0.115 

 

Fifteen different feed compositions have been characterised and evaluated for each 

structure in Table 4.4. These compositions correspond to various combinations of 

purity for single components, binary, and ternary mixtures. The structure requiring 

the minimum vapour flowrate, excluding the Kaibel column, has been shaded grey 

while the structure with the highest thermodynamic efficiency has been shaded in red. 

Not considering the Kaibel column for the moment, the results indicate that the DSS 
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is by far the most prevalent structure in terms of minimum vapour flowrates, 

highlighted by grey shading. Out of the fifteen different feed compositions considered 

there are only four cases where the DSS does not have the minimum vapour flow 

rate. These four scenarios correspond to a feed rich in C and D, or a combination 

thereof, where the DSR has the minimum vapour flowrate. This can be attributed to 

the fact that, since the highest boiling components are plentiful, only a small amount 

of the lighter components have to be vaporised and sent through the column. Thus, 

the largest savings with the DSS can be achieved when the feed is rich in component 

A, and conversely the largest DSR savings when the feed is rich in components B, C 

and D, since these are the “condensing components”.  

 

This is a significant result, because it shows that the optimal configuration is 

dependent on the feed composition and that this has to be considered when deciding 

on refinery options. For the special case of synthetically produced crude via the 

Fisher-Tropsch synthesis reactions, there is however always more low-boiling 

component than high boiling component present as predicted through Anderson-

Schulz-Floury product distribution model: 

 

1

n

n

C

C




        (4.6) 

 

Where Cn is carbon chain containing n-carbon atoms and α is the chain growth 

probability such that 1> α >0. Thus, crude generated synthetically through Fisher-

Tropsch chemistry would be well suited to a side stripping arrangement, if the 

minimum heat duty were the only concern and it were assumed that the temperature 

at which the heat is added to the column is of no concern.  

 

Apart from the quantity of the heat added the column however, the other factor to 

consider however is the second law efficiency of the columns, which gives an 
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indication of the quality heat added to the column, or in other words, the useful work 

added to the column and may be related trough the efficiency by: 

 

/idealreal WW        (4.7) 

 

In essence, a high thermodynamic efficiency means heat is being added and rejected 

at intermediate temperature levels, and not at temperature extremes like the Kaibel 

which leads to low efficiencies. Despite requiring the least amount of heat, the DSS 

rarely has the best thermodynamic efficiency, meaning that the work being added to 

the distillation column is not being used as effectively as other structures are. In other 

words, some the work being added to the structure is being used only to vaporise 

liquid, and not to perform actual separation work and thus the column has a higher 

work requirement. Thus, in a perfect world, one would like to have a feed where the 

optimal structure has both the lowest heat duty as well as the highest efficiency, as in 

scenarios 3 and 10. This may imply that one may like to design upstream processes to 

obtain certain feed conditions to obtain this unique condition. 

 

Interestingly, there is not one case where the HSSR is the optimal structure in terms 

of minimum vapour flowrate, but is extremely prevalent in terms of thermodynamic 

efficiencies. This can be attributed to the fact that heat is being both added and 

rejected at intermediate temperatures. At feed conditions like 11 and 15, for instance, 

there is a significant advantage to choosing the HSSR in terms of efficiency when 

compared to the other structures, and the vapour duties in both instances are very 

comparable with that of the DSS or DSR. Thus, in cases like these, the HSSR would 

in fact be the better option since it provides a higher efficiency (lower work 

requirement) without sacrificing too much on the heat duty. Furthermore, closer 

inspection reveals that the HSSR achieves minimum vapour flowrates where the feed 

mixture contains large fractions of B and C. The highest relative vapour flowrates of 

all structures seem to occur where component A is plentiful, since in all of the 
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structures, all of the A has to vaporised meaning that a large reboil load is required. 

Thus, if the amount of heat added at high temperature to the column is limited, one 

may consider the HSSR since it utilises the heat at temperature much better, in 

general.  

 

Notably the thermodynamic efficiencies of the Kaibel are very low relative to all 

other structures, essentially because all the heat is added and rejected at the highest 

and lowest temperatures, respectively. However, Agrawal and Fidkowski showed that 

there are potential feed compositions in ternary separations where the fully thermally 

coupled columns have an advantage in terms of efficiency, but these were found to be 

very limited (Agrawal and Fidkowski, 1998). The Kaibel column does however offer 

vast savings in terms of the overall energy requirement, with as much as a 92% 

improvement in overall vapour flow over the best thermally coupled structure where 

the feed is rich in B. Although this may seem like an incredibly high number, it does 

make sense since the Kaibel column is structurally similar to the HSSR but it 

essentially does the reboiling of component B for free. Again, if the quality of the 

heat wasn’t a factor, the Kaibel column would certainly be the best choice, assuming 

of course that its complex control issues can be dealt with. However, if the quality of 

the heating and or cooling agents to the column were of concern, this column would 

be the worst by far.  

 

Finally, the reader should be aware of some of the underlying assumptions made in 

this comparison of structures. Firstly, comparing structures at minimum reflux 

conditions implies that an infinitely large column and therefore an infinitely large 

capital investment. This is obviously an unwanted operating condition. However, in 

modern times, energy has become increasingly important (and expensive), and thus 

the minimum energy requirements of a column is a key factor in discriminating 

between potential designs. One can simply design for minimum reflux and operate 

slightly above this value to obtain finite sized, realistic column. This in turn assumes 

that all structures reduce to finite sized columns equivalently, i.e. if an over-refluxed 
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factor of say 1.3 above minimum reflux is specified in all columns, then all columns 

are assumed to require the same capital investment. This may not necessarily be true, 

but our strategy allows one to, if nothing else, eliminate bad column designs from the 

decision making process. Also, our lost work calculations assume that the process 

receives reversible work when converting the feed into pure products. This 

assumption is generally not true and hence the thermodynamic efficiencies are just 

approximate. Nevertheless, these efficiencies serve as good guides for identifying 

more efficient columns. 

 

4.5 DISCUSSION AND CONCLUSIONS 

 

In this work, a method has been presented to design multiple thermally coupled 

distillation columns through the use of CPMs and eigenvector theory. This method 

allows one to quickly assess the minimum reflux for a simple column for the special 

case of sharp splits and constant relative volatilities. The key parameters used in the 

CPM technique are easily extendable to the design and analysis of complex 

structures, including multiple thermally coupled units.  

 

Furthermore, iso-reflux plots are presented as a quick way of determining the 

minimum reflux conditions in a multiple thermally coupled column in a constrained 

split ratio space. The plots not only show the intersection of minimum reflux curves, 

but also indicate an Attainable Region of all possible operating parameters that result 

in a feasible design.  

 

Using the aforementioned techniques we have considered four thermally coupled 

structures, each having one large main column. Of the these structures, the fully 

thermally coupled Kaibel column is for the fifteen different feeds considered by far 

the most prevalent in terms of minimum heat demand, but also has thermodynamic 

efficiencies which are comparatively very low. Of  the “conventional” multiple 
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thermally coupled columns, it is in fact the side stripping column that appears to 

require the minimum amount of heat for the majority of feeds. This stripping type 

column is similar to one used in crude refineries and therefore can aid in explain why 

these type of columns are so widely used. However, there are certain feed scenarios 

when a multiple side rectifying column may be best in terms of heat demand, and 

using the techniques described in this work, it is a simple task to identify these feeds 

and design the process accordingly.  

 

Importantly however, total heat demand may not be the only objective and/or 

constraints when deciding on a potential structure. In some cases, for instance, it may 

be advisable to choose a hybrid structure because this structure provides good 

thermodynamic efficiencies for a wide range of feeds, and in some instances still 

provides a comparatively good heat demand. This is because the HSSR uses the heat 

addition and removal to and from the column much more efficiently for the widest 

range of feeds because the heat is both being added and rejected at intermediate 

temperature levels. Thus, when deciding on a design it should be clear what the 

objective for the design is, as the columns with the lowest heat demand may not 

necessarily us this heat in the most efficient manner. Using the tools presented in this 

chapter, it is relatively easy to identify superior designs, especially in the early stages 

of the design process. 

 



 

 

Chapter 5  : A PHENOMENA BASED COLUMN 

PROFILE MAP APPROACH TO UNDERSTANDING 

COUPLED REACTOR-COLUMN SECTIONS 

 

This work has been prepared in the form of a paper for future publication. It has been 

presented at the AIChE annual meeting in Salt Lake City, USA in 2010. It is 

exclusively my own approach.  

__________________________________________________________________ 

ABSTRACT 

In this chapter, we address the reactive distillation design problem by designing a 

CSTR with simultaneous equilibrium separation and mixing, and feeding the product 

from this process to a non-reactive rectifying or stripping distillation column section 

depending on what component has to be removed. Three hypothetical cases are 

presented as well as an industrially relevant MTBE case study. Using a phenomena-

based Column Profile Map approach, a novel, geometric understanding may be 

achieved which allows for quick feasibility screening. A unique understanding of the 

relation between phase equilibrium, mixing and chemical reaction is presented that 

provides insight into what set of process chemistry may be attractive for this reactive 

distillation arrangement. An attainable region is shown which depicts all possible 

process parameters that would result in a realizable design. This method also aids in 

the understanding of the unique, reverse interaction between pieces of process 

equipment and operating conditions.  
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5.1 INTRODUCTION 

 

The concept of combining a chemical reaction and separation of the products in a 

single unit is by no means a new one, the idea being mentioned as early as 1948 

(Berman et al., 1948). This combined process, reactive distillation, may be 

implemented to replace conventional reaction-separation networks, and has the 

potential to greatly reduce expenditures. Taylor and Krishna compiled a 

comprehensive review on reactive distillation and have identified several advantages, 

including significant savings on capital cost due to the simplification or elimination 

of the separation network; improved heat integration, especially if the reaction is 

exothermic, and an improvement in both selectivity and reactant conversion (Taylor 

and Krishna, 2000). 

 

Due to the fact that reaction and separation (and mixing) occur in a single vessel, 

modelling of reactive distillation processes are considerably more complex than 

conventional systems. Models that have been proposed may be classified as either 

equilibrium or non-equilibrium stage based, almost all of which are computer 

orientated (Taylor and Krishna, 2000). Equilibrium based methods assume that 

vapour and liquid streams leaving each stage are in equilibrium with each other, 

while non-equilibrium models are rate based and consider mass and heat transfer 

effects. Non-equilibrium models are fundamentally more rigorous and complex than 

equilibrium models and often require large computer based optimization routines or 

specialised software packages. An example of a rigorous computer aided model used 

for the design of reactive distillation is determining the optimum number of 

equilibrium stages, feed tray location and reflux by combining tray-by-tray balances, 

kinetic rate based expressions and cost estimates using mixed integer non linear 

programming (Ciric and Gu, 1994). Although undoubtedly these all encompassing 

computer models are extremely effective and precise, due to the large amount of 
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equations and parameters required they do not always allow the user to obtain 

insights into the final solution.  

 

In contrast to this, Hauan and co-workers have developed a phenomena-based 

approach for analyzing and synthesizing reactive separation processes, by considering 

the effects of the three phenomena present: chemical reaction, equilibrium separation 

and mixing (Hauan and Lien, 1996, Hauan and Lien, 1998, Hauan et al., 2000). Using 

this relatively simple technique, they showed how different phenomena influence the 

reactive distillation process, without using rigorous simulations. The advantages of 

this technique are that only physical and chemical data are required to estimate the 

phenomena, which are independent of the structural design of the unit; and 

furthermore, by only considering the key phenomena allows the designer to assess the 

process independently of equipment structure (Almeida-Rivera et al., 2004).  

 

One particular version of a reactive distillation unit employs a continuously stirred-

tank reactor (CSTR) with a rectifying or stripping column mounted above/below it. 

Both batch processes and continuous processes based on this technology are found in 

industry, but both the steady state design and the dynamics of these coupled units are 

poorly understood (Yi and Luyben, 1996a). In this chapter, we shall be concerned 

with designing a steady state CSTR with simultaneous equilibrium separation and 

mixing, and feeding the product from this process to a non-reactive rectifying or 

stripping distillation column section, depending on what component has to be 

removed. The column section will be designed using the Column Profile Map (CPM) 

technique proposed by Tapp, Holland and co-workers (Tapp et al., 2004, Holland et 

al., 2004a). CPMs were derived from an adaptation of differential equations proposed 

by Van Dongen and Doherty (Van Dongen and Doherty, 1985a). These maps take 

into account the net molar flows and reflux ratios in a column section and 

conveniently show all possible separations in a generalised column section.  
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Although this coupled reactor/column section problem has been tackled by other the 

researchers (Yi and Luyben, 1996a, Yi and Luyben, 1996c, Yi and Luyben, 1996b), 

the techniques proposed for use in this paper allows the designer to graphically assess 

the performance of the process and aims to bring forth a greater understanding into 

interaction of process equipment and design a process accordingly. The techniques 

and interpretations shown in this chapter aims to be a quick means of feasibility 

screening, especially in the conceptual design stage of a process, before resorting to 

expensive and time consuming rigorous simulations. Furthermore, by combining the 

phenomena based approach of Hauan and co-workers with the CPM technique allows 

for a quick assessment of the process and greatly aids in the understanding of why 

certain sets of process chemistry may be more attractive than others for reactive 

distillation.  

 

5.2 DERIVATION OF MODEL 

 

5.2.1 REACTIVE DISTILLATION 

 

Consider a CSTR as in Figure 5.1, with a feed stream of flowrate F containing nc 

components, and the composition of the feed stream is xF. A single chemical reaction 

takes place in the liquid phase within the reactor with a certain reaction rate 

r=(r1,r2, ri, ...rnc)= (1, 2, i, ..nc)r, where i is the stoichiometric coefficient of 

component i. Volatile products are boiled off simultaneously with a flowrate of V and 

a composition of y, where y is the vapour composition in phase equilibrium with the 

composition inside the reactor, x. The molar holdup in the reactor is H and the 

reaction rate constant is kf. 
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Figure 5.1: A CSTR with a continuous feed and simultaneous vapour liquid equilibrium 

separation 

 

Following the phenomena based approach of Hauan & Lien (1998), an unsteady state 

component balance over the process described above yields: 

 

nc

F

i=1

dx
=( )(x-y)+( )(x -x)+ (r-x )f i

V F k r
H Hdt

    (5.1) 

 

This phenomena based approach allows a simple means of assessing phenomena 

interaction from a topological perspective. There are essentially three phenomena 

present in this process: separation, mixing, and reaction. The three terms on the right 

hand side of Equation 5.1 represent these three processes respectively. Each term can 

be seen as a vector field, scaled by various process parameters. For example, the 

mixing vector field is given by: 

 

F

dx
= (x -x)

dt
         (5.2) 

 

where β is a scalar coefficient, defined here as F
H

. Individual vector fields can be 

represented graphically in concentration space, as shown in Figure 5.2. 

 

F, xF
H, r , x

V, y
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Figure 5.2: Phenomena vector fields for (a) Mixing with xF= [0.2, 0.3]; (b) Separation for a 

constant relative volatility system with α= [5, 1, 2]; and (c) Reaction for 1I+1H↔2L with 

elementary reaction rate and Keq=25 

 

It can thus be said that the overall process is merely a linear combination of different 

phenomena, scaled by the appropriate process parameters. As apparent from Figure 

5.2, and in general, mixing vectors point towards the mixing composition, the 

separation vectors point towards the highest boiling component and the reaction 

vectors towards the reaction equilibrium curve. For the overall process described by 

the individual phenomena in Figure 5.2 with a feed of 1 mol/s, a reaction coefficient 

kf = 10, and a holdup of 5 mol, the overall process vector field can be constructed in 

concentration space, as shown in Figure 5.3. 

 

The profiles in Figure 5.3.  track the liquid composition in the reactor with changing 

time and are essentially a linear combination of all vector fields shown in Figure 5.2. 

Notice that all the profiles run towards a single point, a stable node. At this point the 

composition inside the reactor is no longer changing, and the process has reached a 

compositional steady state ( x
0

d

dt
 ). If one were for instance to increase the effect of 

the mixing vector field by increasing the feed flowrate, the profiles would be more 

attracted to the feed composition. The stable node would consequently be shifted 

nearer to the feed composition. When the feed flowrate is infinitely large, the overall 
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process field reduces exactly to that of the mixing vector field. The other process 

phenomena on the overall process may be interpreted in a similar way. Thus, by 

understanding the effect individual phenomena has on the entire process, we can, 

qualitatively at least, very quickly and easily determine whether a certain product 

specification can be achieved or not, and furthermore, design the process to achieve 

that specification. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Overall reactive distillation process vector field with a feed composition of 

xF= [0.2, 0.3] indicated by a black dot. 

 

Perhaps more importantly, understanding the phenomena interaction allows one to 

gauge what can or cannot be achieved in a batch reactive distillation setup. For 

instance, for the conditions depicted in Figure 5.3 one can only achieve, at best, a 

final composition equal to the stable node composition. It is impossible to transform 

the composition in the still from one end of the composition space to the other. In 

fact, the upper limit is governed by the reaction equilibrium curve. The absolute best 

one can do with an initial reactor composition lying on either side of the reaction 

equilibrium curve and a feed entirely depleted of component low boiling component, 

0 0.2 0.4 0.6 0.8 1

0  

0.2

0.4

0.6

0.8

1  

xL

xH

Stable Node



Chapter 5: A phenomena Based Column Profile Map approach to understanding… 

 

132 

 

is achieving a final reactor composition that lies on the reaction equilibrium curve, 

and even this would require an infinitely large reactor.  

 

5.2.2 COLUMN PROFILE MAPS 

 

A Column Profile Map describes the behaviour of a multicomponent system in a 

column section by setting parameters such as the net molar flow and the reflux ratio. 

The first step in constructing a Column Profile Map is to define a column section, 

which per definition of is “a length of column between points of addition or removal 

of material and/or energy” (Tapp et al., 2004), as in Figure 5.4.  

 

 

Figure 5.4 A generalised column section. 

 

A steady state material balance over a column section, assuming constant molar 

overflow accompanied with a Taylor expansion around n yields: 

 

 
x 1 1

1 x y(x) ( x)
d

X
dn R R



 

   
       

   
    (5.3) 
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where  
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L
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and V≠L. Equation 5.3 is known as the Difference Point Equation (DPE). RΔ is the 

reflux ratio in the column section, n the number of stages, and XΔ can be thought of as 

a pseudo composition vector, valid anywhere in the composition space and only 

needs to be a real composition in column sections that are terminated by a total 

condenser or reboiler. XΔ basically indicates the net compositional flow of each 

individual component, a negative element entry just implies that that particular 

component is moving downward in the column section. XΔ is also subject to the 

constraint that the sum of its components be 1. From an initial composition, 

integration may be performed from n=0 to values of n>0. Integration can be 

performed in the negative direction as well, equivalent to determining the 

composition profile in the column section from bottom to top. A complete derivation 

of the Difference Point Equation is given in Appendix G. 

  

Notice that the DPE is, from a mathematical point of view, very similar to unsteady 

state balance on the CSTR. The DPE has two terms on the right hand side which are 

essentially equivalent to the vapour liquid separation and mixing vector fields in the 

unsteady state reactor, both scaled by respective scalar coefficients. Thus, even 

though both pieces of equipment differ greatly, they are in a mathematical sense very 

similar and can thus be interpreted in an analogous fashion. 

 

Furthermore, notice that the DPE is not mathematically bound by positive 

compositions, thus Equation 5.3 may be integrated into the negative composition 

space too. Due to the fact that topological properties of positive compositions extend 

smoothly to the negative composition space, analyzing negative compositions does 

offer considerable insight in how to affect a separation. To illustrate this, consider the 

CPM in Figure 5.5 for an arbitrary choice of XΔ and RΔ.  
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Figure 5.5 : A CPM for XΔ= [0.2, 0.3]  (black dot) and RΔ=8. The blue lines represent the Column 

Profiles inside and outside the black Mass Balance Triangle (MBT). 

 

Figure 5.5 shows that profiles are shifted from those in Figure 5.2 (b), and do not 

terminate at the pure component vertices. At infinite reflux, the DPE reduces to 

exactly the separation vector field, effectively the residue curve equation. The shifted 

stationary points have been connected by bold lines, resulting in a so called shifted 

triangle. By operating a column section with a certain combination of XΔ and RΔ, 

profiles may be manipulated in such a way to suit the exact specifications of the 

separation required.  In fact, as shown in Figure 5.5, profiles and their nodes may be 

shifted outside the physically realizable composition space. Although this fact is not 

of immediate use in this paper, it is important to realise that liquid composition 

profiles may be manipulated in almost any desirable manner, depending on the 

selection of XΔ and RΔ. The reader is referred to Tapp et al. (2004) for an in depth 

analysis and design possibilities of this global topological view.  
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5.3 PROCESS INTEGRATION  

 

In this section, we shall look at the implications of integrating a reactor with a non-

reactive column section, in order to achieve a certain predefined product purity. Three 

hypothetical cases are studied using a conventional rectifying or striping column 

section terminated by a reboiler or condenser, where the equilibrium limited reactions 

form a low boiling, high boiling and an intermediate boiling product respectively. 

The reaction products are assumed to be the desired product for the process as well. 

In the same manner, the industrially relevant MTBE process is also studied using a 

stripping column section.  

 

5.3.1 LOW BOILING PRODUCT 

 

Suppose a stream of 1 mol/s containing a certain mole fraction of High (H) and 

Intermediate (I) boiling components, is fed to a reactor where the following liquid 

phase reaction takes place: 

 

 1 1 2H I L   

 

Where L is a valuable low boiling component. The reaction may be described by an 

elementary rate law, given by: 

 

2

r ( )L
f H I

eq

x
k x x

K
       with Keq = 25 

 

The Vapour Liquid Equilibrium may be determined by a constant relative volatility 

model, with volatilities of 5 and 2 for L and I relative to H respectively. The final 

product specification is set such that xL = 0.950 with impurities xH = xI = 0.025. Since 
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we know that these high purities cannot be obtained using a simple batch distillation 

setup, this leads to the question: what else can be done to achieve the final product 

specification? By feeding the vapour product of the CSTR to a rectifying column 

section, we can cross the reaction equilibrium curve, and achieve an overhead product 

meeting the specified product specification, as in Figure 5.6. This process can 

effectively be described as a reactive reboiler. The concept of a reactive reboiler has 

been investigated by other authors, but the focus was largely on control (Svandova et 

al., 2006) and singularity analysis based design (Qi et al., 2004), and not on design 

and the interaction of phenomena as presented here. 

 

 

Figure 5.6: A CSTR coupled with a rectifying column section, a reactive reboiler. 

 

Notice that the only difference between the reactor in Figure 5.6 and Figure 5.1 is an 

additional mixing stream (L) of composition xn, which is a strong function of the 

number of stages in the column section. Using the definition of XΔ combined with a 

material balance over the column section yields: 

 

F, xF
H, r , x

V, yL, xn

V, YTL, XT
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 (5.4) 

 

Assuming that the column section is terminated by a total condenser (effectively a 

rectifying column section), XΔ is simply equal to the vapour and liquid compositions 

at the top of the column section, i.e. XΔ = X
T 

= Y
T
, hence XΔ = [0.950, 0.025], where 

X∆ is in the form [L,H]. Since the sum of the individual entries of X∆ are unity, 

component I’s Difference Point composition may be easily inferred from this 

notation. By specifying a reflux value, the amount of stages in the column section, 

and using X
T
 as the initial integration condition, we are able to calculate the 

composition of material being recycled back into the reactor (xn) by integrating the 

DPE. Once this composition is known, the vapour composition, y, being fed to the 

reactor may be calculated from Equation 5.4 and hence the composition within the 

reactor, x, is known through the phase equilibrium relationship. Liquid composition 

profiles in the column section for different values of the reflux ratio and theoretical 

stages are shown in Figure 5.7. 

 

Figure 5.7: The effect of reflux and amount of stages on bottom liquid composition profiles for 

XΔ = [0.950, 0.025] 
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From a topological point of view, notice that the specific combination of reflux and 

the amount of stages has a significant influence on the composition being recycled to 

the reactor. In order to link the two pieces of equipment with each other, a steady 

state component balance over the reactor along with the definition of RΔ  is 

performed, resulting in Equation 5.5: 

 

Fx r x (1 )y 0nF FR F R          (5.5) 

 

φ is a variable defined by kf.H and is proportional to the size of the reactor, assuming 

as a first approximation that the reaction rate constant (kf) is independent of 

temperature. Once RΔ, XΔ and the amount of stages are specified for the column 

section and xn and y have been calculated by integrating the DPE, the problem 

described in Equation 5.5 above is completely specified. Hence, the reactor size and 

the remaining two feed compositions may be calculated. By specifying that the feed 

contains no product (xFL=0) and arbitrarily chosen values of RΔ =3 and n=5, the feed 

to the process and the reaction coefficient is determined to be xF = [0, 0.5] and 8.243, 

respectively. However, without immediately imposing the constraint that the feed 

must not contain any of the final desired product (L), and specifying a range of 

possible values for xFL, the entire process may be summarized graphically for 

different feed compositions, as shown in Figure 5.8. 
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Figure 5.8: A CSTR coupled with a rectifying column section for RΔ =3, n=5 and 

XΔ = [0.950, 0.025]. The red and blue line represent the Column Profile and the Feed locus line, 

respectively, while the red, black and blue dots represent the bottom liquid composition of the 

column section, the reactor composition and the feed composition that contains no product, 

respectively. The black curve represents the reaction equilibrium curve. 

 

The red line in Figure 5.8 represents the liquid composition profile in the column 

section for the given parameters and product specification. The blue line shows the 

locus of all possible feed compositions that would achieve the composition in the 

reactor to meet the product specification. The values of  change along this feed 

locus, from 0 where the feed composition is exactly that of product specification, to 

8.243 where there the feed is entirely depleted of component L. The fact that the 

reactor size reduces to zero may also be inferred by rearranging the definition of 

equation such that:  

 

n Fy x x r

i

V L F
X

V L F r






   
          

    (5.6) 
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Furthermore, notice that feed locus line spans across almost the entire composition 

space. Although the range of  across the feed locus line may differ for other choices 

of reflux and the number of stages, the feed line remains fixed.  This implies, 

somewhat counter intuitively, that any feed composition that does not lie on the feed 

line will result in the product specification not being met, regardless of the choice 

other process parameters. The black dot Figure 5.8 represents the reactor composition 

and closely follows the profile termination point. 

 

From Figure 5.7 and Figure 5.8 it is simple to deduce that there is a relationship 

between the size of the reactor or amount of catalyst (φ), the number of stages (n) and 

the reflux ratio (RΔ). For example, a choice of n and RΔ that forces the composition in 

the reactor to be near or on the reaction equilibrium curve, will cause the reactor size 

will grow sharply. On the other hand, if the column profile can be manipulated in 

such a way that the reactor composition lies close to the feed composition, the reactor 

will be comparatively small. The design engineer is thus faced with a trade off 

between the energy usage of the process (RΔ), and the capital cost thereof (φ and n). 

Although the feed line in Figure 5.8 is useful when analyzing what the process is 

capable of, a feed which does not contain any valuable product (xFL=0) is probably 

the most realistic scenario. Thus, using this condition and discrete values of n, we can 

represent all the design parameters of the process on one graph, as shown in Figure 

5.9.  
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Figure 5.9: The effect of the number of stages and reflux ratio on reactor size for XΔ = [0.950, 

0.025] and xFL = 0 for a CSTR coupled to a rectifying, non-reactive column section. 

 

Figure 5.9 illustrates a very interesting result, as increasing the number of stages from 

2 to 5 corresponds to a reduction in the size of the reactor for a specific reflux value. 

Up to approximately 5 stages the two pieces of equipment are interacting with each 

other in an inverse manner, as increasing the size of one piece of equipment 

associates with it a decrease in the other. For example, by operating with 3 separation 

stages almost halves the reactor size requirement as when operating with 2 stages, 

because the additional stage has pushed the reactor composition further from the 

reaction equilibrium curve. However, as the stage number starts to increase greater 

than 5, the interaction is such that an increase in one piece of equipment leads to an 

increase in the other too. This is because the stripping composition profile, and thus 

the reactor composition too, is pushed back towards the reaction equilibrium curve as 

the number of stages and reflux is increased. 

 

This interaction between pieces of equipment poses an interesting design problem, as 

there exists a unique optimum where reflux, stage number, and reactor size are 
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minimised. Notice however that operating near the minimum feasibility bound for 

reflux (near R∆=2) causes the reactor size to change rapidly. Once again, this is 

caused by the reactor composition being forced near the reaction equilibrium curve. 

Even though minimum reflux corresponds to minimum energy usage, operating in the 

region where R∆<2 may not a desirable operating condition, as parameters are very 

sensitive to change in this range of reflux. From an operating point of view, a safe 

operating region is probably where the reactor size start to asymptote with changes in 

R∆ and where both reactor size and stage number are minimized. 

 

Figure 5.9 is also very useful in terms of showing the spectrum of feasibility, or in 

other words, where certain combinations of parameters simply would not result in a 

viable process. In effect, this is an Attainable Region, as it shows all possible process 

alternatives that will result in a feasible design (Hildebrandt and Glasser, 1990).  For 

example, there is a minimum bound on the size of the reactor where no combination 

of reflux or stages that will compensate for such a small reactor. Analogously, there 

also exists an upper bound on the process. Beyond approximately 10 equilibrium 

stages an increase in reactor size merely associates with it an equivalent higher 

operating reflux ratio to ensure feasibility. This is almost equivalent to a pinch point 

in traditional distillation, where an infinite amount of stages can be used with no 

influence on process performance. Furthermore, the minimum number of stages for a 

feasible process is two, as one separation stage does not provide enough length to the 

column composition profile to force the composition at the top of the column section, 

and the reactor composition, past the reaction equilibrium curve. For the same reason 

there exists a minimum bound on the reflux too. Interestingly, only the extreme 

combination of infinitely many stages and infinite reflux will lead to an infeasible 

process at the upper bound, because these conditions correspond to residue curves. 

The final compositions on residue curves correspond to the pure component vertices 

in ideal systems, which also corresponds to a composition on the reaction equilibrium 

curve, causing an infinitely large reactor. Thus, apart from showing the interaction 
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between phenomena in a coupled reaction-separation process, it also shows an 

envelope of realizable designs. 

 

5.3.2 HIGH BOILING PRODUCT 

 

Analogously to the process described in the previous section, a process may be 

devised whereby a high purity of the high boiling component is achieved. Achieving 

this requires a slightly different process to the one described in the previous section, 

as the high boiling component cannot be effectively removed with a rectifying 

section. Instead, a stripping column section is proposed, fed with a stream that has the 

same composition as that in the CSTR, as depicted in Figure 5.10. Although this 

process is slightly different, the equations describing it are very similar. 

 

 

Figure 5.10: A CSTR coupled with a stripping column section, a reactive condenser. 

 

Assuming that the column section is terminated by a reboiler (effectively a stripping 

column section), XΔ is simply equal to the liquid product specification at the bottom 

of the column section, i.e. XΔ = X
B
. Analogously to the previous example, specifying a 

reflux value, the amount of stages in the column section and using X
B
 as the initial 
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condition for integration, we are able to calculate what the composition at the top of 

the column section is, and therefore the composition in the reactor (x) since these two 

compositions are equivalent, through the DPE. Once this is known, the composition 

of the vapour being recycled back to the reactor (y) may be calculated from Equation 

4 using the definition of XΔ. Again using the parameters in the DPE along with a 

steady state component balance across the reactor then yields: 

 

  F nx r ( )x (1 1 )y 0F F R F R      
  

(5.7) 

 

It should be noted that for stripping columns, i.e. where net material flow is 

downward, values for RΔ are negative since L>V. For this example, we shall study the 

reaction: 

 

1 1 2L I H    

 

where component H is a valuable high boiling component. In order to make a fair 

comparison between the light boiling process, assume that the reaction rate can be 

described by a similar expression to the previous example, with the exception that the 

product is now the high boiling component. The reaction equilibrium constant and the 

VLE behaviour are equivalent to the previous example, and the final product 

specification is set to xH = 0.950 with impurities xL = xI = 0.025. The product 

specification automatically sets XΔ, and by choosing an arbitrary reflux ratio and 

amount of stages, the process is then completely specified. The overall process for a 

range of feeds may then be represented as depicted in Figure 5.11 for RΔ=-7 and n=5. 
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Figure 5.11: A CSTR coupled with a stripping column section for RΔ=-7, n=5 and 

XΔ=[0.025, 0.950]. The red and blue line represent the column profile and the feed locus line, 

respectively, while the red, black and blue dots represent the bottom liquid composition of the 

column section, the reactor composition and the feed composition that contains no product, 

respectively. The black curve represents the reaction equilibrium curve. 

 

The blue feed locus line in Figure 5.11 is somewhat different to that presented in the 

previous example, because the reactor coefficient never drops to zero, even when the 

feed composition is exactly that of the product specification. Furthermore, the reactor 

composition is exactly the profile termination point. This may be inferred by 

arranging the mass balance in the form:  

 

Fx ry x

i

FV L
X

V L F r






  
          

   (5.8) 

 

The interaction between process variables for the special case when xFA=0 for this 

hypothetical problem may also be represented on a single graph, as in Figure 5.12. 

Note that reflux values presented here are negative, but the interpretation thereof 
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remains the same: a high negative reflux value corresponds to a high energy 

requirement since a large amount of vapour has to be produced through boiling.  

 

 

Figure 5.12: The effect of the number of stages and reflux ratio on reactor size for 

XΔ=[0.025, 0.950] and xFH = 0 for a CSTR coupled to a stripping, non-reactive column section. 

 

Figure 5.12 shows a qualitatively similar result to that of the light-boiling product 

process in Figure 5.9, as in both cases there exists an optimum selection of process 

variables and there is a “reversal behaviour” in the equipment sizes. In this case, there 

is an inverse interaction between equipment up until 3 separation stages, but 

increasing the amount of stages past this point simply leads to an increase of reactor 

size. Again, operating near the minimum reflux bound makes the process very 

sensitive to changes in reflux and causes sharp rises in the reactor size. Furthermore, 

once more than 3 equilibrium stages is used, an increase in reflux causes an increase 

in the reactor size, meaning that overall the process requires high operating costs as 

well as high capital costs.  
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The operation envelope in this specific case is qualitatively similar to the light boiling 

case. There is again a lower bound on the number of stages, and reflux, where the top 

column section composition cannot cross the reaction equilibrium curve. Also notice 

that operating at minimum reflux is extremely sensitive to changes in reflux. Stages 

begin to asymptote to pinched conditions at around n=9, where no further increase on 

the number of stages will influence other process variables. However, noticeably 

different from light boiling process is the big leap between process conditions from 

stage two to three. 

 

5.3.3 INTERMEDIATE BOILING PRODUCT 

 

For the same general problem described in the previous section, we can extend our 

analysis method to achieving a high purity of the intermediate boiling component. 

This case is a relatively common problem in reactive distillation, as isomerisation 

reactions typically produce intermediate boiling components. The reaction to be 

analysed here is:  

 

   1 1 2H L I   

 

Removing the intermediate boiler is possible via either one of the processes described 

above (reactive reboiler or condenser). Consider then firstly the reactive reboiler 

arrangement.  In order to compare all the scenarios on the same basis, we assume that 

the reaction can be described with a similar expression for the reaction rate as in 

previous sections, with the exception that the product is now the intermediate boiling 

component. Furthermore, the reaction equilibrium constant is assumed to be the same 

as well as the VLE. The product specification is set to xI = 0.950 with impurities 

xH = xL = 0.025. Once again, by specifying the amount of stages and the reflux ratio, 

the system is completely specified as the product specification is equivalent to XΔ for 

a total condenser. 
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Figure 5.13: A CSTR coupled with a rectifying column section for RΔ=10, n=12 and 

XΔ = [0.025, 0.025]. The red and blue line represent the column profile and the feed locus line, 

respectively, while the red, black and blue dots represent the bottom liquid composition of the 

column section, the reactor composition and the feed composition that contains no product, 

respectively. The black curve represents the reaction equilibrium curve. 

 

 

Figure 5.13 is useful for qualitatively understanding the difficulty of achieving a 

product with a high purity of the intermediate boiling component. The liquid profile 

in the column section (red line) simply does not provide enough curvature to move 

the reactor composition away from the reaction equilibrium curve, which leads to 

very large reactor volumes. Notice that the range of values for the reaction coefficient 

on the feed locus line is significantly higher than the case where the light or heavy 

boiling components were the desired product. Again there is a relationship between 

all process parameters, illustrated in Figure 5.14 for this process. 
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Figure 5.14: The effect of the number of stages and reflux ratio on reactor size for 

XΔ = [0.025, 0.025] and xFI = 0 for a CSTR coupled to a rectifying, non-reactive column section. 

 

Conversely to the results shown in both the light and heavy boiling cases, for this 

specific process there are in fact potential gains in the process by increasing the 

amount of stages in the separation, as there is no reverse interaction between 

equipment. However, as seen from Figure 5.14, a continual increase of the amount of 

stages eventually does not offer any advantages, as the stages start to converge to 

pinched conditions after 15 stages.  

 

There are a few interesting points that may be inferred about the operation envelope 

from this graph. Firstly, notice the incredibly large values for the reaction coefficient 

 as well as the relatively high reflux ratios that are required for this process. 

Secondly, because the reactor composition has to lie on “the feed side” of the reaction 

equilibrium curve, the minimum amount of stages for the process to be feasible also 

increases. When compared to the analogous process for the low boiling component, 

the minimum amount of stages is extremely high, only starting at n=11.  All of these 

factors indicate that it is extremely expensive to operate such a process, and it is 

certainly worth considering whether a conventional reactor-separation sequence is 
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more viable. For example, operating a system as described above requires a relatively 

high reflux ratio (and therefore a high energy demand due to the amount of boiling), 

but removing the intermediate boiling component in 2 columns may require less 

boiling overall and thus be more efficient.  

 

As stated previously, the intermediate boiling component may also be removed by a 

reactive condensing process. However, due to the symmetrical nature of the problem 

we may expect similar results to those presented in Figure 5.14 for the reactive 

reboiler arrangement. The reactive condenser where the intermediate boiling 

component is assumed to be the valuable product is summarised in Figure 5.15. 

 

 

Figure 5.15: The effect of the number of stages and reflux ratio on reactor size for 

XΔ = [0.025, 0.025] and xFI = 0 for a CSTR coupled to a stripping, non-reactive column section. 
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the minimum number of stages for the process to be feasible is much lower, 7 for the 

reactive condenser versus 11 for the reboiler arrangement. The reflux ranges appear 

to be similar and no significant gain can be achieved from an energy expenditure 

point of view. Although this process does seem to offer some advantages, the reactor 

volumes are still extremely large relative to removing the high boiling component in 

a similar arrangement. Once again, this is due to the compositional profiles in the 

rectifying column section that do not provide enough curvature to push the reactor 

composition beyond the reaction equilibrium curve. 

 

It might be inferred, rather paradoxically, that it is the ideal nature of this process that 

makes it an unattractive process alternative. Studying Figure 5.13 more closely shows 

that if there were a binary minimum or maximum boiling azeotrope between the light 

and heavy components, the liquid composition profile would terminate or pinch at 

this point, and thus be drawn further away from the reaction equilibrium curve. This 

would make reactor volumes significantly smaller as well decreasing the reflux 

needed to render the process feasible. This is highlighted by the highly non-ideal 

MTBE case study, shown in the following section. 

 

5.3.4 THE MTBE PROCESS 

 

Methyl Tert-Butyl Ether (MTBE) is widely used as a fuel additive and is one of the 

most well known applications of reactive distillation. As a final example, the well 

known reaction between methanol (MEOH) and iso-butene (IBUT) to form MTBE is 

studied. In the industrial version of the process, the IBUT stream is made up of inert 

hydrocarbons, but we will neglect these in this analysis. The reaction is given by: 

 

1 1 1IBUT MEOH MTBE    

 

and the rate law may be described by: 
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r MTBE MTBE
f IBUT IBUT MEOH MEOH

eq

x
k x x

K


 

 
   

   

 

Where γi is the liquid phase activity coefficient, calculated here using the Non 

Random Two Liquid (NRTL) thermodynamic model with binary interaction 

parameters obtained from the ASPEN PLUS Databank. The reaction rate constant (kf) 

and equilibrium constant (Keq) are taken from the works of Venimadhavan et al. 

(1994) to be: 

 

-11.240exp(3187.0 )  [s ]fk T   

88.33 10  exp(6820.0 )eqK T 
 

 

where T is in degrees Kelvin. The VLE behaviour of the system is highly non-ideal 

with two minimum-boiling binary azeotropes between MEOH and MTBE, and 

MEOH and IBUT, respectively, described by the modified Raoult’s law: 
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i i i
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x P
y

P


   

 

The liquid phase activity coefficients are calculated by the NRTL equation shown 

below, for Isobutene (1), Methanol (2) and MTBE (3): 
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The notation above is such that Fij implies the i’th row and j’th column entry of 

matrix F. The vapour pressures, SAT

iP  are determined by using the Antoine Equation:  

10log (Pa)
(K)

SAT

i

B
P A

T C
 


   

The Antoine Vapour Pressure coefficients are given in Table 5.1: 

Table 5.1: Antoine constants for Isobutene, Methanol and MTBE 

 Isobutene Methanol MTBE 

A 20.6455 23.4999 20.7162 

B -2125.7489 -3643.3136 -2571.5846 

C -33.160 -33.434 -48.406 

 

A residue curve map and reaction equilibrium curves at different temperatures are 

shown in Figure 5.16 a and b, respectively.  

 

 

Figure 5.16: The IBUT-MEOH-MTBE system at 1atm: (a) a Residue Curve Map and (b), 

reaction equilibrium curves. 
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The residue curve map in Figure 5.16 indicates that the stationary point on the MTBE 

pure component vertex is a stable node, and can be seen as the high-boiling 

component within its distillation region. Hence we will use a CSTR coupled with a 

stripping section as in Figure 5.10 in our analysis. Although this system is 

considerably more complex than those discussed in the previous examples, the 

general method remains unchanged. We also shall assume that the streams leaving 

and entering the reactor are at their boiling points, and thus the reactor has to be at 

this temperature too. Thus, the reaction equilibrium curve will be different for a 

different combination of reflux and amount of equilibrium changes. For arbitrarily 

chosen process conditions of 1 atm system pressure, 5 equilibrium stages, a reflux of 

-8 and a product specification of xMTBE=0.950 and xMEOH=xIBUT=0.025, the process 

may be represented as in Figure 5.17. 

 

 

Figure 5.17: CSTR coupled with a stripping column section for the MTBE system at 1 atm, with 

RΔ= -8, n=5 and XΔ=[0.950, 0.025]. The red and blue line represent the column profile and the 

feed locus line, respectively, while the red, black and blue dots represent the bottom liquid 

composition of the column section, the reactor composition and the feed composition that 

contains no product, respectively. The purple line is the reaction equilibrium curve at 65.49
o
C 
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For the process parameters mentioned above, the reactor temperature has to be 

operated at 65.49
o
C. Also, as we have kinetic data available, we are able to calculate 

the actual molar holdup in the reactor. It is now apparent that there is not only an 

interaction between the size of the reactor and the stripping column section, but also, 

the operating conditions of the reactor are influenced by the choice of stages and 

reflux. A summary of the entire process for a feed containing no MTBE may be seen 

in Figure 5.18 and Figure 5.19 illustrating the molar holdup and operating 

temperature in the reactor, respectively. Importantly, notice from Figure 5.17 that 

even though the MTBE is the intermediate boiling component, the final composition 

on the stripping column section’s liquid composition profile (x) is relatively far away 

from the reaction equilibrium curve. This is due to the MEOH-IBUT binary azeotrope 

attracting the profile, and not the stationary point situated on the pure component 

vertex, as in the previous intermediate boiling ideal example. Thus, this non-ideal 

VLE behaviour does make this a more attractive alternative from a topological 

perspective.  

 

Figure 5.18: The effect of the number of stages and reflux ratio on molar holdup for the MTBE 

process at 1 atm, with XΔ=[0.950, 0.025] and xMTBE=0 for a CSTR coupled to a stripping, non-

reactive column section. 
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Figure 5.19 The effect of the number of stages and reflux ratio on reactor temperature for the 

MTBE process at 1 atm, with XΔ=[0.950, 0.025] and xMTBE=0 for a CSTR coupled to a stripping, 

non-reactive column section.. 

 

Figure 5.18 may offer some insight as to why the production of MTBE by a reactive 

distillation process has become so popular, as there is no reversing behaviour in the 

process design, i.e. although over-designing the process will result in higher 
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o
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may again analyse the interaction of process parameters as in Figure 5.20 and Figure 

5.21. 

 

Figure 5.20: The effect of the number of stages and reflux ratio on reactor size for the MTBE 

process at 8 atm, XΔ=[0.950, 0.025] and xMTBE=0 for a CSTR coupled to a stripping, non-reactive 

column section. 

 

 

Figure 5.21: The effect of the number of stages and reflux ratio on reactor temperature for the 

MTBE process at 8 atm, XΔ=[0.950, 0.025] and xMTBE=0 for a CSTR coupled to a stripping, non-

reactive column section. 
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Figure 5.20 shows that the trend in process interactions is similar at the elevated 

pressure of 8 atm, although the molar holdup in the reactor is approximately ten times 

smaller than that at 1 atm. Also, the stages begin to asymptote to pinched conditions 

much quicker at around 3 stages, implying that there is a greater risk of over-

designing the system at pressure. From Figure 5.21 it can also be seen that operating 

at a higher pressure also allows for more reasonable reactor temperatures (± 70
o
C). If 

one considers the feasible regions for the two scenarios depicted above, it may be said 

that the high pressure process has a smaller region, but the gains in reactor size are 

considerable. These figures now give the designer freedom of choice when deciding 

on the feasibility of a process. It is up to the designer to decide on operating 

conditions and to weigh up the cases for low energy costs (high reflux) against high 

capital cost (mainly reactor size and stages), and vice versa. In modern chemical 

industries the drive is towards low energy usage, but here, it comes with a price as a 

large reactor is required to offset this. However, by understanding the interactions 

between the processes involved, one might be able to save on the amount of stages 

required, and hence lower the capital cost. 

 

5.4 CONCLUSIONS 

 

In this contribution, a method is presented to better understand the effects of 

phenomena interaction in a so called coupled reactor-separation process. This is 

achieved by utilising the graphical CPM method for modelling the rectifying or 

stripping column section, coupled with a steady state, CSTR with simultaneous 

mixing, reaction and equilibrium separation. A novel, graphical understanding of the 

overall process is presented which could be particularly useful in the early stages of 

conceptual design. It has been shown why some vapour liquid equilibrium and 

reaction behaviour do not allow for a desirable process in the whole. In some cases, it 

may be desirable to have non-ideal phase equilibrium behaviour as this could present 

topological advantages that can benefit a reactive distillation process. A specific 
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example of this is the industrially relevant MTBE system, where the azeotropic 

behaviour reduces reactor size as well as reflux requirements. 

 

Three different hypothetical cases have been studied, where the forward chemical 

reaction produces a low, intermediate and high boiling component respectively. A 

region of feasible operation for each process has been determined, which indicates the 

minimum (and maximum) values for process parameters to achieve a certain product 

specification.  A graphical summary of each process has been presented and it has 

been shown that the interaction between separation and reaction parameters (reactor 

size, reflux ratio and amount of stages) has to be understood, as over designing the 

problem could lead to an overall worse process in some scenarios. Producing an 

intermediate boiler as final product is by far the worst overall process because the 

liquid composition profiles do not provide sufficient curvature away from the reaction 

equilibrium curve for an ideal system. 

.



 

 

Chapter 6  :  PINCH POINT CALCULATIONS AND 

ITS APPLICATION TO ROBUST DISTILLATION 

DESIGN 

This work for this chapter was completed during my stay at the University of Illinois 

at Chicago. Parts of this chapter was included in a peer-reviewed conference paper 

for ESCAPE 20 in Naples, Italy. Both Seon Kim and Prof. Andreas Linninger made 

valuable contributions to this chapter, but it is largely my own work. It has been 

accepted in the Chinese Journal of Chemical Engineering under the same title as 

above. 

____________________________________________________________________ 

 

Rising energy costs and growing environmental awareness motivates a critical 

revision of the design of distillation units. Systematic design techniques, such as the 

Rectification Body, Column Profile Map, and Temperature Collocation methods, 

require exact knowledge of all Pinch Points in a particular system, because these 

stationary points delineate the possible composition trajectories realizable in 

separation columns. This paper demonstrates novel methods for rigorously 

determining all Pinch Points for the constant relative volatility, ideal and non-ideal 

systems. Constant relative volatility and ideal solution systems are transformed into 

one-dimensional polynomial and nonlinear functions, regardless of the number of the 

components. A deflation method is proposed to locate all roots in ideal and non-ideal 

zeotropic problems. For more challenging non-ideal problems, a novel hybrid 

sequential niche algorithm is used to solve hard azeotropic problems successfully. 

Finally, the design implications of these Pinch Point locations are investigated to 

show how new separation configurations can be devised. Methodically the paper 

points out the use of rigorous Pinch Point computations in conjunction with 

continuous composition profiles for robust distillation design. 

____________________________________________________________________  
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6.1 INTRODUCTION 

 

Distillation is by far the most utilized large scale industrial method of liquid mixture 

separation. It is an energy intensive process and accounts for a significant percentage 

of plant utility costs. A survey conducted in the mid 1990’s estimates that energy 

inputs to distillation columns in the United States accounts for approximately 3% of 

the country’s total energy consumption.(Ognisty, 1995) Due to the significant costs 

associated with operating distillation units and the rising cost of energy and 

environmental concerns, new methods are required to improve the understanding of 

these systems so that more energy efficient processes can be designed. 

 

A rigorous means of determining whether a distillation unit, simple or complex, is 

feasible requires solving multiple tray-by-tray mass, equilibrium, summation and heat 

(MESH) equations. However, solving separation problems with MESH equations 

become difficult as the number of components increase and exceeds current 

optimization techniques. Numerous simplified techniques, such as the Rectification 

Body Method (Bausa et al., 1998) and the Underwood Method (Underwood, 1945, 

Underwood, 1946b), have been proposed to facilitate the design of distillation 

systems. Specifically, the Rectification Body Method proposes the estimation of 

column feasibility by investigating a design space delineated by Pinch Points. This 

method has been applied to azeotropic separations, complex column arrangements as 

well as reactive distillation problems. The Underwood equation applies only to 

solutions that can be approximated with a constant relative volatility model. Recently, 

Hildebrandt and Glasser’s group introduced Column Profile Maps, a graphical 

technique that approximates stage-by-stage liquid composition profiles through a first 

order ordinary differential equation (Holland et al., 2004a, Holland et al., 2004b). 

Their generalized difference point equation is an adaptation of rectifying and 

stripping profile equations first proposed by Van Dongen and Doherty.(Van Dongen 

and Doherty, 1985b) The general nature of these equations allows the designer to 
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assess both simple and complex columns as well as thermally coupled column such 

as Petlyuk columns (Petlyuk et al., 1965). Furthermore, they suggested the advantage 

of extending the study of profiles, and Pinch Points, seen outside the physically 

realizable space. They demonstrate that this global topological view renders critical 

novel insights into the design, before being bound by a predefined structures. 

 

Linninger’s group devised a Temperature Collocation technique for systematically 

ascertaining feasible column configurations searching for liquid composition profile 

intersections using a bubble point distance objective function (Zhang and Linninger, 

2004). This technique was successfully used to synthesize simple column networks 

(Zhang and Linninger, 2006b). Recently, they extended the Temperature Collocation 

method to systems of columns, both simple and complex, using elements of the 

generalised Column Profile Map technique and were able to show that their designs 

matched; a rigorous, MESH solving, process simulation package (Ruiz et al., 2009, 

Ruiz et al., 2010, Kim et al., 2010b). A central part of this automated design 

procedure is finding all Pinch Points. 

 

A recurring theme in the aforementioned  design methods (Rectification Body 

Method, Column Profile Maps, and Temperature Collocation) is that determining the 

Pinch Points is a prerequisite for finding interesting distillation configurations. Lucia 

has presented an extensive review of other separation synthesis techniques that also 

make use of the knowledge of the Pinch Points in distillation, such as the Zero 

Volume method (Julka and Doherty, 1990),  Eigenvalue methods (Poellmann et al., 

1994) and minimum vapour diagrams (Halvorsen and Skogestad, 2003a). However, 

previous works focused on simple column configurations. In this paper we shall 

address Pinch Point locations for generalised Column Profile Maps needed for the 

design of complex and heat integrated columns. Several novel techniques that 

guarantee convergence at speed are presented. The aim of these works is thus to 

present an in-depth understanding and highlight underlying properties of Pinch Point 
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calculations for all solutions, both zeotropic and azeotropic, and to explore the design 

implications. 

 

The chapter is structured as follows: Section 6.2 gives a theoretical background of the 

Column Profile Map, Temperature Collocation and Rectification Body Methods. It 

also discusses general properties of the difference point equation, such as the 

significance of the vapour liquid equilibrium model and the validity of negative 

compositions for analysis. Section 6.3 describes novel mathematical techniques for 

solving each respective phase equilibrium model. The applicability of the considered 

design methods and the significance of Pinch Points are then discussed in section 6.4, 

followed by several conclusions that may be drawn from this work in section 6.5. 

 

6.2 THEORETICAL BACKGROUND 

 

6.2.1 THE DIFFERENCE POINT EQUATION 

 

The Difference Point Equation was developed by Glasser and Hildebrandt (Tapp et 

al., 2004) for a generalized column section from which a Column Profile Map may be 

constructed by setting parameters such as the reflux ratio and net compositional 

flows. The definition of generalised column section is given  as a length of column 

between points of material addition or removal, as shown in Figure 6.1 (a). The 

equation describing the liquid compositional change, x(n), along the column section 

may then be derived through a steady state material balance over a column section, 

assuming equilibrium of liquid-vapour phases on each stage and constant molar 

overflow, accompanied by a Taylor expansion, which yields in a vectorised form:  

 

 

 



Chapter 6: Pinch Point calculations and its application to robust distillation design 

 

164 

 

  
x 1 1

1 x y(x) ( x)
d

X
dn R R



 

   
       

      

 (6.1) 

 

where 
T TVY LX

X

 
  

 

, L
R 


,and V L   .

  

 

In this equation, RΔ is a generalized reflux ratio in the column section, n the number 

of stages, and XΔ is known as the mixing or Difference Point, can be thought of as a 

pseudo composition vector, valid anywhere in the composition space. XΔ need only 

be a real composition in column sections that are terminated by a condenser or 

reboiler, and like real compositions it is also subject to the constraint that the sum of 

its components be unity. A negative element entry for vector XΔ is entirely possible in 

practical design situations, and merely implies that the corresponding component is 

flowing downward in the column section. Also, a column section with a positive 

value of RΔ corresponds to an equivalent rectifying section, with net upwards flow., 

while a column section operating with a negative RΔ corresponds to an equivalent 

stripping section. The vapour composition y(x) can be related to the liquid 

composition using an appropriate Vapour-Liquid Equilibrium model. For a given 

operating condition like the generalized reflux RΔ and Difference Point, XΔ, 

composition profiles may be drawn by integrating Equation 6.1. We term a principal 

profile one which terminates in a real product like the distillate in Figure 6.1 (a). In 

this case, the product composition is equal to the Difference Point composition. 
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(a) 

 

(b) 

 

Figure 6.1: (a) A single liquid composition profile with R∆=9 and X∆= [0.2, 0.2], with the 

definition of a generalized Column Section, and (b) a Column Profile Map with R∆=9 and 

X∆=[0.2, 0.2]where the blue lines represent the column profiles, inside and outside the positive 

composition space, and the red triangle indicates the shifted Pinch Points.  

 

There are also other profiles corresponding to internal column sections, found in 

complex distillation structures, satisfying the same mass balance constraints, but that 

produce a liquid and a vapour stream whose mixing composition is equal to the 

Difference Point composition. Hence, secondary profiles do not produce a product, 

but two streams whose combination would give the Difference Point. These 

secondary profiles give unique design opportunities for complex column 

configurations and have previously not been investigated systematically. A family of 

such secondary composition profiles with different initial compositions are depicted 

in the Column Profile Map of Figure 6.1 (b). Note that when our view is confined to a 

single profile only existing within the mass balance as in Figure 6.1 (a), one gains a 

very limited perspective into how to realize a desired separation task. Furthermore, 

the topological features in Figure 6.1 (b) extend smoothly from the mass balance 

triangle (in black) to regions in which some species compositions are negative. The 

Pinch Points are stationary points of all composition profiles shown in Figure 6.1 (a) 

and (b), which means that the liquid and vapour compositions no longer change with 

respect to stage numbers and may be determined by solving dx/dn=0 The Pinch 

Points’ location is cardinal for understanding the topology of a specific separation 
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task, because they delineate all composition profile trajectories attainable in a certain 

column section. Also, notice in Figure 6.1 (b) that the Pinch Points influence the 

paths of all profiles. Valuable insights may be gleaned by viewing profiles, and their 

Pinch Points, outside the physically realizable space as they have a marked effect on 

topology of real column profiles inside the mass balance triangle.  

 

Previous work on Column Profile Maps have investigated the topological effects of 

varying the two relevant design parameters in the Difference Point Equation, RΔ and 

XΔ and moreover, the design implications using the CPM method (Tapp et al., 2004). 

They showed that placement of the XΔ parameter has a significant effect on the locus 

of Pinch Points and identified discrete regions of XΔ placement that have similar 

topological features. Furthermore, at the extreme case of infinite reflux (RΔ=∞), the 

Difference Point Equation simply reduces to the residue curve equation and the Pinch 

Points are located on the pure component vertices of the mass balance triangle. A 

network of column sections, which constitute a complete column, may be rendered 

feasible if two liquid composition profiles of neighbouring column sections intersect 

one another. A design technique based on Column Profile Maps for multi-component 

separation, entitled Temperature Collocation, has been developed to rigorously search 

for feasible designs (Zhang and Linninger, 2004). 

 

6.2.2 RECTIFICATION BODY METHOD  

 

The Rectification Body Method was developed by Marquardt’s group (Bausa et al., 

1998) as a rapid means of determining minimum energy requirements for a proposed 

split involving non-ideal and azeotropic n-component mixtures. This method requires 

that the saddle and stable/unstable nodes be known for each column section. A 

rectification body can then be constructed by connecting these two points with each 

other as well as the product specification’s coordinate with a straight line. The reflux 

ratio can then altered until the rectification bodies of adjacent Column Sections 

intersect which constitutes a feasible design, as shown in Figure 6.2. However, it will 
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be shown in section 6.5 that in general the Rectification Body method is neither a 

necessary nor a sufficient feasibility criterion, because there are cases where pinch 

point compositions are complex or where the convex rectification bodies do not 

contain all realizable column section profiles. 

 

 

Figure 6.2: Intersecting Rectification Bodies for the Benzene / Xylene / Toluene system 

 

6.2.3 VAPOUR – LIQUID EQUILIBRIUM MODELS 

 

At first glance, calculating the Pinch Points of the Difference Point Equation seems to 

be easy. However, non-linear phase equilibrium models may introduce several 

complexities. Phase equilibrium models can be divided in to three main categories, 

namely constant relative volatilities, ideal solutions obeying Raoult’s law, and non-

ideal solutions (both zeotropic and azeotropic) which may be modelled with a 

modified Raoult’s law. These respective models are shortly discussed in the 

following sections. 
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Constant relative volatilities 

 

The simplest means of relating vapour and liquid compositions is by assuming that 

the relative volatilities between respective components do not change with 

temperature, i.e.  

 

 i i
i

i i

x
y

x







       (6.2) 

 

Interestingly, the number of roots obtained from this equation is always equivalent to 

the number of components in the system (see Figure 6.1 b and the “Shifted Triangle 

for a ternary system).  

 

Ideal solutions  

 

The first degree of complexity for solving the stationary points in the Difference 

Point Equation is modelling saturated vapour pressures by the Antoine equation and 

relating vapour and liquid compositions through Raoult’s law which is given by:  

 

 ,i sat i

i

P x
y

P
        (6.3) 

 

where 
,log( )

( )

i
i sat i o

i

B
P A

T C C
 


, and Ai, Bi, Ci are the Antoine coefficients for 

component i. Similarly to the constant relative volatility model, this model also 

produces the same amount of solutions as components in the system and is 

topologically similar to the constant relative volatility system described above and 

shown in Figure 6.1 b. 
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Non-Ideal solutions 

 

Numerous models relating vapour and liquid compositions for non ideal mixtures 

exist in the literature, such as the Non Random Two Liquid (NRTL), Wilson, 

UNIQUAC, etc. These models allow one to determine an activity coefficient (γi), 

whereby the vapour composition may be determined using a modified Raoult’s law:   

 

 ,
 ,         where ( , ),    ( , )

i i sat i

i i i

i

P x
y f x T y T

P


 


    (6.4) 

 

The activity coefficient allows for the presence of azeotropes and other non-ideal 

phase equilibrium behaviour. The non-ideality of the gas phase is usually neglected in 

separations design by setting the fugacity (Φ) to unity. 

 

6.2.4 THERMODYNAMIC CONSISTENCY OF NEGATIVE COMPOSITIONS 

 

From Figure 6.1 one may see that stationary points may be shifted outside positive 

composition space at finite reflux. The location of the Pinch Point outside the mass 

balance triangle is relevant, because all trajectories are connected through the 

constellation of the Pinch Points. To achieve desired separations, the designer may 

purposefully position certain Pinch Points inside or outside the positive composition 

space. However, it is fair to ask whether these negative compositions are 

thermodynamically consistent and if Pinch Points outside the composition space 

permit drawing meaningful conclusions for separations. Models such as UNIQUAC 

and Wilson can immediately be excluded because both contain logarithms which are 

undefined for negative compositions. However, other models such as van Laar and 

Margules, as well as the NRTL model can safely be extrapolated to negative 

compositions, as shown in the residue curve map in Figure 6.3 for the azeotropic 

Acetone / Benzene / Chloroform system. Notice that there are multiple stationary 

points, both inside and outside the composition space. In a similar way to which 
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stationary points were shifted from their original positions in the Residue Curve Map 

for a constant relative volatility system in Figure 6.1, so to may stationary points be 

shifted in Figure 6.3 for finite choices of RΔ. 

 

 

Figure 6.3: Residue curve map for the Acetone/Benzene/Chloroform using the NRTL activity 

coefficient model in positive and negative composition space showing multiple stationary points. 

 

Interestingly, there is a locus of indeterminate behaviour shown as a dashed red line 

in Figure 6.3, caused by a denominator in the NRTL function which tends to zero for 

some values of composition. Even for simple constant volatility models, it is possible 

for the denominator to tend to zero, which leads to a line of discontinuity. 

Indeterminacies in the ideal solution model occur only where temperatures tend to 

negative value of Antoine coefficient Ci. However, Ci is usually in the range of 150–

250, and even if a temperature outside the composition space is found that satisfies 

the indeterminacy condition, it is extreme enough not to have a visible influence 

within the space of realizable compositions. However, in all equilibrium models, 

discontinuities never occur in real composition space. 
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For any equilibrium model to be valid, they have to adhere to the Gibbs-Duhem 

relationship shown in Equation 6.5:  

 

 
1

ln( )
0 ,                for 1,2,...,

nc
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i j

d
x j nc

dx





     (6.5) 

 

Intuitively, all vapour-liquid equilibrium models obey this relationship in positive 

composition space, but in order to be sure that is useful, and valid, to analyze 

negative compositions, the Gibbs-Duhem relationship should be maintained for 

negative composition too. Since γi=1 for the ideal and constant relative volatility 

cases, this condition is always valid for the entire composition spectrum. For the 

NRTL model, we have found that the residual errors of Equation 6.5 is in the order of 

10
-15

 for all compositions, confirming that the non-ideal equilibrium model is also 

valid for analysis throughout the composition spectrum. The only region where these 

models fail to abide by the Gibbs-Duhem relationship is at the discontinuity locus, as 

indicated in Figure 6.3. We therefore conclude that extrapolation of column profile 

maps does not cause inconsistencies in most thermodynamic vapour-liquid 

equilibrium models, and that the topology of profiles should not be limited to the 

mass balance triangle to obtain a global computation about a specific separation 

problem. 

 

6.3  ROBUST AND EFFICIENT PINCH POINT LOCATION  

 

It has been demonstrated that design techniques such as the Rectification Body 

Method, Column Profile Map, and the Temperature Collocation method all require 

the exact location of all Pinch Points. Even points that lay outside physically 

realizable space have to be considered as they determine the path of liquid 

composition profiles and delineate areas of reachable compositions for the final 
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design. Next, strategies are discussed for the efficient and rigorous location of all 

Pinch Points, for the three VLE models discussed in the previous section. 

 

6.3.1 PINCH POINT LOCATION FOR CONSTANT RELATIVE VOLATILITIES 

 

We demonstrate here that Pinch Points for this model which is the simplest of the 

three phase equilibrium models may be solved with polynomial arithmetic. The 

derivation will also introduce a unique new parameter providing a thermodynamically 

insightful basis for the bubble point temperature approach (Zhang and Linninger, 

2004). It will be shown that the Bubble Point temperature allows one to solve for the 

Pinch compositions using a simple polynomial transformation. The derivation of 

polynomial starts from Equation 6.1 subject to a pinched condition, x / 0d dn  , as 

shown in Equation 6.6. 

 

  , , .1 0i i i i iR x R y X           (6.6) 

 

Substituting yi defined in Equation 6.3 for a constant relative volatility system into 

Equation 6.6 we have 
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Equation 6.7 may be rewritten in terms of xi such that  
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We now define a new parameter, 
1

c

j j

j

x


   , which can be interpreted as the 

mixture’s vapour pressure, and is thus inversely related to the Bubble Point 
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temperature (Zhang and Linninger, 2004). This parameter is also related to the 

classical Underwood Roots, although Underwood never used this method for pinch 

point location. Replacing  in Equation 6.8 results in an expression for the Pinch 

Points as shown in Equation 6.9.  
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Using the fact the compositions sum to unity:  
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By multiplying the denominator throughout in Equation 6.10, the equation may be 

transformed into a polynomial function in terms of  , as in Equation 6.11 

 

 1 2 2

1 2 2 1 0... 0nc nc nc

nc nc nca a a a a a 

              (6.11) 

 

The polynomial coefficients a0 to anc are completely determined by specifying the 

generalized reflux ratio RΔ and XΔ. The order of this transformed polynomial is equal 

to the number of components in the system. This scalar equation is a simple, one-

dimensional polynomial, regardless of the amount components that are being 

considered. Once the polynomial roots have been determined, the pinch 

compositions, xi, can be calculated from Equation 6.9. Note that Equation 6.10 and 

6.11 is a function of  only, and no implicit or iterative procedure is required to solve 

the roots of Equation 6.11. 

 

The fact that the Difference Point Equation reduces to a polynomial for a constant 

relative volatility system, makes it entirely possible for the solutions to have 

imaginary parts. Thus, although for a three component system there are always three 
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solutions, only one of these may be real as the other two are conjugate complex pairs. 

Even though two pinch points are complex, the column profile with X
T
 and Y

T
 as the 

entering composition has no odd or unrealistic behaviour. However, complex 

solutions are only found in systems where the Difference Point lies outside the 

composition triangle (Tapp et al., 2004). A ternary Column Profile Map with only 

one real root is shown in Figure 6.4 for constant relative volatilities (A=5, B=2, 

C=1).  The design implications of this result will be discussed in greater detail in the 

section 6.4.1. 

 

 

Figure 6.4:  A Column Profile Map for a mixture with constant relative volatilities of (1=5, 

2=2) showing with only one real solution at a reflux of 0.6 and XΔ= [1.2, -0.1]. The thick black 

trajectory indicates a realizable liquid composition profile of a typical Column Section. 

 

It is important to reiterate that the pinch solutions found using the aforementioned 

parameter transformation are exactly equivalent to those found via the Underwood 

method (Underwood, 1946a) (the derivation in fact initiates from the same point – 

Equation 6.6). However, the method shown here may have advantages over 

Underwood’s procedure because: 
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 The polynomial form of the equation allows for very rapid solution. In fact, 

software packages like Matlab have tailor-made solution methods for finding 

polynomial root-finding problems and convergence is obtained very quickly 

and reliably, even when the order of the polynomial is high. 

 Once the polynomial equation has been obtained (Equation 6.11), it is very 

easy to see when and why roots are complex or equal; as both scenarios may 

have interesting and counter-intuitive behaviour on topology. 

 

Furthermore, quick and reliable solution of the classic Underwood equation may be 

difficult at times, as demonstrated by Billingsley (Billingsley, 2002). Billingsley 

showed an alternate technique that also ensures rapid convergence to a desired root of 

the pinch equation, much more complex than the one showed here. Although not 

presented in this thesis, it is thought that these aforementioned polynomial type 

equations, and the Underwood method, can be used for non-ideal systems. This, 

however, is likely to be extremely complex since the volatility is a function of both 

composition and temperature, and thus potentially simpler techniques have been 

sought. 

 

6.3.2 PINCH POINT LOCATION FOR IDEAL SOLUTIONS 

 

Ideal solutions that adhere to Raoult’s law already elevate the complexity for solving 

the pinch point equations due to the presence of an exponential term in the Antoine 

equation. Although a single solution may be found with a basic numerical technique 

such as the Newton method, this firstly requires a good initial guess of both 

composition and temperature and secondly, even a good initial guess does not 

guarantee convergence to the specific root that one wishes to find. Again using the 

Bubble Point temperature will allow reducing the search for all Pinch Points to a 

single non-linear equation. The Difference Point Equation, for pinched conditions, 

may be rewritten in terms of the liquid composition, such that:  
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where Ki is the equilibrium constant defined as ,
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 , and T is the Bubble 

Point temperature. Again exploiting the fact that compositions sum to unity, the 

Pinched Difference Point Equation may then be rewritten in the following form for an 

nc-component mixture:  
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     (6.13) 

 

Even though this function does not reduce to a polynomial function like in the case of 

constant volatility system, this single non-linear equation, f(T), is significantly 

simpler to solve than the original pinched Difference Point Equation system in 

Equation 6.6 because it only depends on temperature and not composition (since the 

equilibrium constant Ki is a function of temperature only). Once all roots are obtained 

in terms of the Bubble Point temperature, the Pinch Point compositions can be found 

by using Equation 6.13. To better elucidate this scheme, in Figure 6.5 plots Equation 

6.13 for a particular case of a quaternary mixture of Pentane/Hexane/Heptane/Octane, 

for a specific reflux of 5 and a difference point (XΔ) of [0.9, 0.05, 0.03].  
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Figure 6.5: A one dimensional Pinch Point temperature search showing all pinch temperatures 

where f(T)=0 for XΔ=[0.9, 0.05, 0.03] and RΔ=5, accompanied by a table showing all pinch 

temperatures and compositions. The Pinch temperatures indicated on the graph (T1-T4) are the 

bubble point temperatures of the four pinch points. 

 

Again, the transformation has the distinct advantage that the problem reduces to a 

simple one-dimensional problem that is only a function of single variable, 

temperature, regardless of the number of components. However, although the 

dimensionality of the problem has been reduced, it is still not a trivial matter to locate 

all the respective roots. The following section aims to address this.  

 

6.3.3 ONE DIMENSIONAL DEFLATION METHOD 

 

Although the one-dimensional equation transformation described in the preceding 

discussion significantly reduces the numerical complexity of the problem, a 

numerical technique such as the Newton Method may still not find all desired roots, 

especially if two roots are located nearby one another. To this end, a novel deflation 

method is proposed. By starting with an initial guess for temperature greater than the 

maximum pinched temperature, convergence to the highest pinch temperature is 

guaranteed. In order to locate all subsequent roots quickly and efficiently without 
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convergence problems, we modify the original pinched Difference Point Equation, 

f(T) in Equation 6.13 to create a surrogate function, g(T), preventing the algorithm 

from converging to a previous root. The surrogate function, g(T), features previously 

found roots in the denominator, forcing it to near infinity near a previously found root 

and thus preventing repeated convergence to this specific solution. The sequence of 

surrogate equations, gnr(T), is given in Equation 6.14. 
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     (6.14) 

 

Where nr is the number of roots previously found and TP,j is a previously found pinch 

temperature. This equation may then be solved in a relatively straightforward manner 

with a simple numerical technique such as the Newton-Method. Moreover, this 

method guarantees convergence to all roots as Equation 6.14 nears infinity near 

previously found solutions. An illustration of the systematic elimination of previously 

found roots is shown in Figure 6.6 (a), (b), and (c). 

 

 

Figure 6.6: (a) Surrogate function g1(T) vs. Bubble Point temperature where the highest Pinch 

Point has been eliminated, (b) surrogate function g2(T) vs. Bubble Point temperature where the 

two highest Pinch Points have been eliminated, and (c) surrogate function g2(T) vs. Bubble Point 

temperature where the three highest Pinch Points have been eliminated 
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Figure 6.6 (a) shows the surrogate function, g1(T), versus bubble Point temperature 

after the highest Bubble Point temperature has been eliminated. All subsequent 

solutions may then also be obtained by systematically dividing by the product of all 

previous roots as shown in Figure 6.6 (b) and (c).  

 

6.3.4 PINCH POINT LOCATION FOR NON-IDEAL SOLUTIONS 

 

Preceding sections have shown that, even for simple phase equilibrium models, the 

Difference Point Equation requires some modification in order to efficiently find all 

solutions. Due to the fact that temperature and composition are implicitly linked to 

one another by the activity coefficients, γi(x,T) a one dimensional equation 

transformation is not possible. This implicit relationship between temperature and 

composition may be seen in the NRTL activity coefficient model given in Equations 

6.15-17 
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Other numerical techniques such as Interval and Continuation methods have been 

applied in an attempt to solve these non-linear equations. The interval method was 

shown to be a quick and reliable tool for finding all azeotropes in both reactive 

(Maier et al., 2000) and non-reactive systems (Maier et al., 1998). However, in these 

earlier works the search for azeotropic points was confined to the mass balance 

triangle and global pinch point location was not pursued. Although a Newton interval 
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method may have potential to solve the Pinch Point problem, our trials with an 

interval toolbox in MATLAB, INTlab (Rump, 2009), were not successful. This is 

mainly due to the fact that Newton interval method requires the entire interval to be 

smooth and differentiable, and the multidimensional, highly non-linear nature of the 

NRTL equation is particularly difficult for current interval computation techniques. 

Furthermore, even when confining the search interval to differentiable regions, this 

method may not succeed in finding solutions that are located near one another. 

Continuation methods, on the other hand, have the drawback that it requires pre-

existing knowledge of number and location of stationary points in the entire 

composition space and can also be time consuming as an entire reflux locus has to be 

generated for a specified XΔ.  

 

With these limitations in mind, we have tested two new techniques: (i) a 

multidimensional deflation method, and (ii) a novel hybrid sequential niche 

algorithm. Both these methods are discussed in the following sections: 

 

6.3.5 MULTI-DIMENSIONAL DEFLATION METHOD 

 

Extending the one-dimensional deflation method discussed in the previous section is 

a robust and easily implemented method for finding all roots in non-ideal zeotropic 

mixture. The general equation/procedure for the extension of the deflation method 

from one dimension to multi-dimension is given in Equation 6.18 
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where nr is the number of roots previously found and TP,j and xP,j is a previously 

found pinch temperature and composition, respectively. Similarly to the one 
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dimensional version, the surrogate function, hi(T) will tend to infinity near any 

previously found root. Notice however that denominator in this case is the residual 

error of all previous roots. However, without good initial guesses, convergence to 

specific roots is still not guaranteed. To ensure that all roots can be found reliably, the 

multivariable deflation method has to be employed in conjunction with good initial 

guesses obtained from the ideal solution model discussed in the previous section. 

This approach is very effective in locating all fixed points, even for highly non-ideal 

zeotropic mixtures, as depicted in Figure 6.7 for the Acetone / Ethanol / Acetic Acid 

system. 

 

Figure 6.7: Comparison of stationary points using the NRTL model for the 

Acetone / Ethanol / Acetic Acid system (green circle) with the multivariable deflation method, 

the ideal solution model (black square), and the constant relative volatility model (red cross), for 

choices of XΔ= [0.8, 0.1] and RΔ=-3  
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calculated by different thermodynamic models. This difference is caused by the non-

ideal nature of the components, and it is imperative to use a method that robustly 
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when the search space is discontinuous, or when the initial guesses for each root are 

bad. The method’s major advantage is that one is assured that convergence won’t 

occur to the same root. Thus, although this method is useful in locating all Pinch 

Points for zeotropic problems, it is not sufficient for more complex azeotropic 

problems, as the method requires reasonably good initial guesses to converge to a 

solution using numerical methods. The next section discusses a method for 

overcoming these limitations. 

 

6.3.6 HYBRID SEQUENTIAL NICHE ALGORITHM  

 

The use of hybrid algorithms can overcome many of the shortcomings associated 

with conventional numerical techniques for locating all roots. Specifically, a hybrid 

sequential niche algorithm developed by Linninger’s group has been proposed to 

solve problems with multiple local minima (Moon and Linninger, 2009). They have 

demonstrated that this method can locate all minima in difficult global optimization 

problems found in the open literature, even when they are in close approximation of 

one another. Because the algorithm does not need derivative information when 

searching for clusters around a minimum, it can handle non-differentiable spaces.  

 

A brief description of the algorithm follows, a more detailed explanation can be 

found elsewhere (Moon and Linninger, 2009). The algorithm initiates by performing 

a global, stochastic search, that converges to regional clusters around extrema points. 

When derivative information of the cost function is available, Newton, Quasi–Newton 

or simplex algorithms are deployed, but if the search space is undifferentiable or ill-

conditioned, as in areas of discontinuity, the Nelder–Mead downhill simplex method 

is employed. Once a cluster around an area of attraction has been identified, the 

algorithm switches to a traditional, deterministic local optimizer such as Newton to 

precisely locate the extreme points in the second stage. The algorithm then returns to 

a new genetic search stage, where a new population sample is generated randomly. If 

the precise solution is new, a novel cluster is registered. If the precise solution has 
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already been identified, the radius of its cluster is enlarged to block an expanding area 

of attraction. Thus, cluster radii are dynamically adjusted, which ensures locating all 

solutions even when their distribution is not uniform. This technique requires neither 

pre-existing knowledge about the search space nor informed initial guesses regarding 

the number and distribution of solutions. The algorithm terminates after a preset 

generation or solution count has been reached.  

 

In order to demonstrate the algorithm’s applicability and efficiency, two challenging 

problems are presented here: The Acetone / Methanol / Chloroform system shown in 

Figure 6.8 and the Isobutene / MTBE / Methanol system shown in Figure 6.9. The 

exact Pinch coordinates and temperatures are given in Table 6.1 for the 

Acetone / Methanol / Chloroform and the Isobutene / MTBE / Methanol systems, 

respectively. Notice that for Acetone / Methanol / Chloroform system that all Pinch 

temperatures are located within ±10
o
C of one another.  

Table 6.1: All Pinch compositions and temperatures for both the 

Acetone / Methanol / Chloroform and the Isobutene / MTBE / Methanol systems. 

Residue Curve Map Column Profile Map at RΔ=8 and XΔ=[0.8, 0.1] 

 Acetone Chloroform Methanol T (°C)  Acetone Chloroform Methanol T (°C) 

P1a -0.0002 0.6504 0.3498 54.0733 P1b -0.1424 0.3157 0.8267 52.3508 

P2a 0.7756 -0.0012 0.2256 55.3295 P2b 0.7735 0.2602 -0.0336 54.9455 

P3a 0.9997 -0.0009 0.0012 56.2607 P3b 0.9908 0.034 -0.0248 55.6163 

P4a 0.3277 0.2358 0.4365 57.2933 P4b 0.3845 0.496 0.1195 57.1328 

P5a -0.0002 1.0001 0.0001 61.7216 P5b -0.1583 0.002 1.1563 59.399 

P6a 0.0001 0.0003 0.9997 64.4888 P6b 0.0809 0.9097 0.0093 61.7423 

P7a 0.3333 0.6666 0.0001 64.6017 P7b 0.4587 0.0047 0.5366 63.8488 

Residue Curve Map Column Profile Map at RΔ=-5 and XΔ=[0.8, 0.1] 

 I-butene MTBE Methanol T (°C)  I-butene MTBE Methanol T (°C) 

P1a 0.9909 0.0091 0.0000 -6.2870 P1b 0.9442 0.0346 0.0211 -5.7269 

P2a 1.0001 -0.0001 0.0000 -6.2585 P2b 1.0019 -0.0237 0.0218 -5.0952 

P3a 0.0000 0.3121 0.6880 51.2931 P3b -0.0179 0.3457 0.6722 56.8094 

P4a 0.0000 0.0000 1.0000 55.1463 P4b -0.0252 -0.0152 1.0404 62.2397 

P5a 0.0000 1.0000 0.0000 64.7553 P5b -0.0029 1.0101 -0.0072 70.0436 
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Figure 6.8: Column Profile Maps showing all stationary points for the 

Acetone/ Methanol/ Chloroform system at (a) infinite reflux and (b) at a finite reflux of RΔ=8 and 

XΔ=[0.8, 0.1]. Composition profiles are indicated by blue lines, while pinched compositions are 

given by black dots. Discontinuous regions are represented by a dashed black line. 

 

 

Figure 6.9: Column Profile Maps showing all stationary points for the 

Isobutene / MTBE / Methanol system at (a) infinite reflux and (b) at a finite reflux of RΔ=-5 and 

XΔ=[0.8, 0.1]. Composition profiles are indicated by blue lines, while pinched compositions are 

given by black dots. Discontinuous regions are represented by a dashed black line. 

 

A range of 0.2 was chosen either side of the pure component vertices to search for 

potential solutions. Notice that the respective Pinch Points correspond very well to 

composition profiles in both systems. Moreover, there are two Pinch Points in the 
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Isobutene / MTBE / Methanol system that are extremely close to one another, within 

0.03
°
C. The algorithm successfully identified all pinched compositions in all cases, 

irrespective of their proximity to one another as well as near un-differentiable 

regions. These solutions are typically found within a few milliseconds. This efficacy 

is hard to achieve with traditional numerical techniques, especially for challenging 

pinch point location in highly non-ideal mixtures as displayed here. The method is 

especially attractive for searching the entire composition space since it does not fail to 

find solutions even when the space has discontinuous regions. Various case studies 

for all the proposed methods are summarized in Table 6.2 at infinite reflux 

conditions. 

Table 6.2: A comparison of various algorithms tested for Pinch Point location 

System Method 
Roots 

identified 

CPU 

time 

(ms) 

Pentane / Hexane / Heptane / Octane (Ideal) One dimensional Deflation 4/4 177 

Benzene/ Xylene /Toluene (Ideal) 
Interval method using 

INTlab 
0/3 - 

Acetone / Ethanol / Acetic Acid (NRTL)* Multidimensional Deflation 3/3 1084 

Acetone / Ethanol / Acetic Acid (NRTL) Sequential niche 3/3 35 

Acetone / Ethanol / Acetic Acid (NRTL) 
Interval method using 

INTlab 
0/3 - 

Isobutene / MTBE / Methanol (NRTL)* Multidimensional Deflation 2/5 11560 

Isobutene / MTBE / Methanol (NRTL) Sequential niche 5/5 78 

Acetone/ Methanol/ Chloroform (NRTL) Sequential niche 7/7 121 

*Random initial guesses 

 

Table 6.2 shows that the sequential niche algorithm finds all roots, even for hard 

azeotropic problems. The computing time is generally very fast when compared to 

other methods. The computing time shown here is the average of twenty different 

trials. Although significantly slower than the sequential niche algorithm, the 

multidimensional deflation method still manages to find all roots for zeotropic 

problems (Acetone / Ethanol / Acetic Acid). However, the  multidimensional 
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deflation method does not perform as well with azeotropic systems, since one has no 

knowledge of the approximate location of the roots as in ideal systems. The interval 

method, using the Matlab toolbox INTlab, fails even for simple problems. The one 

dimensional deflation works very well for ideal systems, because it is firstly easily 

implementable and secondly relatively fast. 

 

6.4 DESIGN OBSERVATIONS 

 

The preceding discussions highlight several techniques for solving the Difference 

Point Equation at pinched conditions. This section discusses design implications that 

can be derived from knowing Pinch Compositions.  

 

6.4.1 LIMITATIONS OF THE RECTIFICATION BODY METHOD 

 

The Rectification Body Method relies explicitly on the fact that all Pinch Points are 

known in order to estimate minimum refluxes. However, as may be seen even for the 

constant relative volatility system, that complex solutions may exist. The immediate 

consequence of this result is that it is impossible to construct a convex Rectification 

Body for Column Sections that display these properties, since there is only one real 

root. Although such Column Sections do not occur in simple distillation 

configurations (as the Difference Point always lies within the Composition Triangle), 

several other important column configurations may display this property, such as 

complex, thermally coupled and reactive columns. It should be noted that even 

though some pinch points are complex, the composition profiles are still completely 

valid. Thus, for rigorous and robust design it is imperative to know not only the Pinch 

compositions, but also the respective composition profiles. A simple example with 

constant relative volatilities highlighting this fact is shown in Figure 6.10, where a 

feed is distributed in the column, thus creating an internal Column Section which has 
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have complex roots. In this specific example, the operating conditions (shown in 

Figure 6.10) in the internal column section cause its three Pinch Points to be: 

Pinch Point 1 [0.3666 0.0375 ,0.2678 0.0057 ,0.3655 0.0318 ]

Pinch Point 2 [0.3666 0.0375 ,0.2678 0.0057 ,0.3655 0.0318 ]

Pinch Point 3 [0.0800,1.0965, 0.1765]

i i i

i i i

   

   

 

 

Clearly, it is impossible to form a convex rectification body in real composition space 

with complex Pinch Points. As evidence that this design is in fact realistic, even with 

complex Pinch Points, an AspenPlus validation of the design in Figure 6.10 is shown 

in Figure 6.11. 

 

 

Figure 6.10: An example of a feasible distributed feed column where the internal Column 

Section has complex Pinch Points. Constant relative volatilities of 5 and 2 have been assumed. 

All composition profiles intersect one another, indicating a feasible design. 
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Figure 6.11: A comparison of the design with complex Pinch Points shown in Figure 6.10 and an 

AspenPlus design 

 

The design in Figure 6.11 was obtained using a column with 20 stages in total and the 

feed streams located on stage 16 and 17. Furthermore, Benzene, p-Xylene and 

Toluene were chosen as the three components since their relative volatility behaviour 

is very close that specified in Figure 6.10. It is clear from Figure 6.11 that the design 

is in fact realizable. Further motivation for not relying explicitly on pinch 

compositions, but on the composition profiles too, may be seen in Figure 6.12 (a) and 

(b) below. These figures show two different, arbitrarily chosen feed and product 

specifications for the Acetone/ Benzene/ Chloroform system. Figure 6.12 (a) 

indicates that there is an intersection of composition profiles but not rectification 

bodies, while Figure 6.12 (b) shows the inverse result, rectification body intersection 

but not composition profile intersection. The assumption that the faces of the 

rectification bodies are linear has the consequence that the method fails both as a 

necessary as well as sufficient condition for design, especially in systems that have 

significant non-ideal behaviour. Thus, the Rectification Body Method is a useful tool 

for fast reflux approximations, but the method is neither a necessary nor sufficient 
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condition for determining column feasibility. It is not rigorous for feasibility 

screening, especially when the non-ideal behaviour of the system is considerable. 

 

 

Figure 6.12: Failure of the Rectification Body Method as a rigorous feasibility test: (a) 

Composition profiles intersect indicating a feasible design, but Rectification Bodies do not touch, 

(b) Rectification Bodies intersect but composition profiles do not intersect. The design is 

infeasible despite the positive Rectification Body method indication. 

 

6.4.2 COLUMN SECTION DESIGN THROUGH COLUMN PROFILE MAPS 

 

Although the Column Profile Map method does not explicitly rely on Pinch Point 

location, finding them are still useful from a design point of view as the designer can 

quickly scan the Pinch Points which can aid in the understanding of the Maps. 

Furthermore, Holland et al. showed that Pinch Points be placed at will to affect a 

certain separation and from this design the process accordingly (Holland et al., 

2004b). For instance, one may decide to devise a separation where azeotropic 

compositions are completely shifted outside the composition space. By specifying the 

desired Pinch Composition and a reflux value, one may algebraically determine XΔ 

and construct a Column Profile Map. A particular case of this “inverse” design is 

shown in Figure 6.13 (a) and (b) for the extremely non-ideal Acetone / Methanol / 

Chloroform system. 
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Figure 6.13: The Acetone / Methanol / Chloroform  showing (a) a Residue Curve Map with seven 

Pinch Points inside mass balance triangle, and (b) no Pinch Points inside the mass balance 

triangle at XΔ= [1.0, 0.25] and RΔ=-3 

 

Notice in Figure 6.13 (b) that there are no pinched compositions within the real 

composition space, even though the Residue Curve Map contains seven. Any 

desirable separation may be devised to suit the needs of the separation by creatively 

placing parameters XΔ and RΔ. This result is quite noteworthy from a practical point of 

view, especially if one considers that these large topological transformations are only 

a result of a combination of mixing through reflux and liquid-vapour phase 

separation.  
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design entire networks of simple and complex columns (Ruiz, 2009). This variable 

transformation has the advantage that designs may be rigorously and quickly assessed 

in an algorithm using a bubble point distance (BPD) function. The thermodynamic 

transform is given by:  
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 (6.19) 

 

where Ki is the equilibrium constant relating vapour and liquid compositions with 

each other, defined by ,i i SAT

i

P
K

P


 . Although the Column Profile Map technique is 

useful in devising new separations, it is not well suited for rigorous feasibility testing 

in an algorithmic fashion. The Temperature Collocation technique, on the other hand, 

allows one to determine whether a network of Column Sections will result in a 

feasible design through searching for profile intersection. Pinch Points are needed in 

these calculations for three main reasons: 

 

Search space reduction. By merely using the Pinch Point temperatures, designs may 

be quickly excluded if there does not exist an overlapping temperature window 

between two Column Sections. If a Temperature overlap is found, one may then 

proceed to construct profiles. 

 

Rigorous profile computation. To assess whether profiles of two adjacent column 

sections intersect each other, a polynomial is fitted to the composition profile. 

However, in order to ensure that the fit is accurate, the profile is divided in to finite 

elements. In areas of high curvature close to the saddle points, the element division 

has to be more dense to ensure an accurate polynomial fit. 

 



Chapter 6: Pinch Point calculations and its application to robust distillation design 

 

192 

 

Profile validation. By exactly knowing the coordinates where profiles initiate, 

terminate and are attracted to, the composition profiles may be easily validated and 

affirmed. Furthermore, by precisely specifying the integration boundaries through the 

Pinch Points, one is assured that profiles will terminate at the exact Pinch Point, and 

thereby limiting the numerical errors or approximation. 

 

 By rigorously computing composition profiles, one does not need to assume that 

convex rectification bodies intersect in order for a design to be feasible. An example 

of the application of finding all Pinch Points for the Temperature Collocation method 

is shown in Figure 6.14 for a simple quaternary column for the 

Benzene / Toluene / Octane / Nonane system. 

 

 

Figure 6.14: Intersecting liquid profiles by fitting a polynomial and finding all Pinch Points. 

Pinch points are marked for both rectifying (blue triangle), and stripping (red square) column 

sections. Profiles of rectifying (blue) and stripping (red) intersect, indicating a feasible design. 

 

Figure 6.14 shows profiles generated through the Temperature Collocation method 

fitted with a piecewise orthogonal polynomial. All Pinch Points are indicated for both 

rectifying and stripping column sections. Profiles in red and blue indicate rectifying 

and stripping sections, respectively, while the lighter, dashed profiles show the 
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continuation of the respective profiles toward Pinch Points. Notice the high profile 

curvature near the saddle points which require dense element division. The 

quaternary solution was obtained readily with the help of the Temperature 

Collocation and pinch point location and may be validated with AspenPlus. 

 

6.5 CONCLUSIONS 

 

This paper presents the significance of Pinch Point location in separation synthesis 

problem and highlights novel, robust, fast and reliable techniques for calculating 

Pinch Point compositions for constant relative volatility, ideal and non-ideal systems, 

as well as illustrating the importance of finding all pinched solutions, even when they 

are located outside the mass balance triangle. The Bubble Point temperature 

transformation reduces the Pinch Point location to a simple one-dimensional search in 

both the constant relative volatility and ideal solution models. In both instances, this 

allows for a rapid, convenient way of assessing Pinch Points.  

 

Furthermore, a deflation method is presented to systematically and robustly find all 

roots of these one dimensional transformations. It has been described how the 

deflation method may be extended to a multivariate non-ideal zeotropic problem, 

where temperature and composition are implicitly linked with one another. For more 

difficult, azeotropic problems, a hybrid niche algorithm (Moon and Linninger, 2009) 

is applied which successfully locates all pinch solutions, even for challenging 

problems with narrow temperature ranges and ill-conditioned search spaces. 

 

Finally, the design applications of finding all pinched compositions are discussed. 

Three, state of the art design methods requiring Pinch Point calculations, the 

Rectification Body, Column Profile Map and Temperature Collocation methods have 

been evaluated. Specifically, the Rectification Body Method relies exclusively on 

pinched compositions and assumes that these compositions are connected by linear 
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faces. It was demonstrated that Pinch Points may be complex so that rectification 

bodies cannot be constructed. Furthermore, when considering non-ideal systems the 

assumption of linear rectification faces appears to be particularly limited.  These 

assumptions cause the method to be neither a necessary nor sufficient condition to 

distinguish whether a separation task is realizable or not. 

 

It has been shown how new separations may be devised by wilfully placing Pinch 

Points in composition space to suit the needs of the separation. Specifically, the 

Acetone / Chloroform / Methanol that contains seven Pinch Points at infinite reflux 

may be transformed to not contain any Pinch Points in the positive composition 

space. Furthermore, it has been shown how knowledge of the Pinch Points may be 

applied to the Temperature Collocation method to rigorously assess column 

feasibility. Therefore, the authors advocate the use of continuous composition profile 

computations in conjunction with rigorous Pinch Point calculations for reliable 

distillation design.  

 

 



 

 

 

Chapter 7 : DISCUSSION 

 

7.1 OVERALL THESIS CONCLUSIONS 

 

This thesis has aimed to bring forth mathematical techniques, mostly graphically 

based, for the synthesis of separation systems. The methods that have been presented 

are mainly to aid the design engineer to make informed decisions about process 

feasibility, operability and profitability. Since these techniques have a graphical basis, 

through the use of Column Profile Maps (CPMs), they lend themselves to be easily 

interpreted and in gaining and understanding of the fundamental process involved in a 

separation system.  

 

Furthermore, the thesis has attempted to illustrate that, unlike many other existing 

design techniques, the CPM design and analysis methodology is not configuration 

specific. Although the design parameters and selection (and number of degrees of 

freedom may differ from structure to structure, the design procedure is in essence the 

same because the generalized definition of the column section fits in with any 

counter-current vapour-liquid separation device. Many other short-cut design 

techniques are produced specifically for a particular configuration, which limits their 

applicability to a great extent. As such, we have demonstrated that it is possible to 

synthesize counter-intuitive column sections by merely imposing a sharp split 

constraint on the system, resulting in unique and potentially useful profile behavior. 

Significant results that stem from this includes: 

 

 It is possible to place any stationary point, i.e. saddle, stable or unstable 

node, on any pure component vertex causing the direction of profiles to be 

manipulated at will. 
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 There exists unique reflux ranges for which these stationary may be placed, 

and this is conveniently depicted in a novel Zone-graph. 

 It is thought that these distinctive sharp split profiles have the greatest 

potential in complex columns which contain internal column sections. 

 

Thermally coupled columns have received increasing attention in the separations 

community due to the large energy and capital savings they have promised. As with 

reactive distillation systems, thermally coupled are notoriously hard to design without 

making constricting assumptions. A key feature of the CPM method is that it is 

generalized, allowing it to be applied to any conceivable distillation structure. In this 

thesis, two chapters are presented on the design of thermally coupled columns. The 

first chapter deals with the generic design of single side rectifiers and side strippers, 

without making assumptions with regard to the vapour liquid equilibrium or sharp 

product splits, as is currently the practice with design using the traditional 

Underwood equations. Perhaps the biggest contribution from this chapter is the fact 

that side rectifier and stripper column design was performed automatically in an 

algorithmic fashion using elements of the CPM method as well as the closely related 

Temperature Collocation method. Significant outcomes from this chapter include, 

among others: 

 

 A stepwise design algorithm for designing single side rectifying or stripping 

columns, regardless of the phase equilibrium properties or the product 

distribution. Additionally, an inverse design methodology is given, which 

allows the designer to set product targets, and from this determine feasibility 

as well as rationally determine values for operating variables that generally 

require significant insight or design experience, such as the overall stage 

requirement, the feed tray, the side draw tray location, etc. This is in contrast 

to rigorous simulation packages, which requires the designer to set the 

aforementioned parameters and “fiddle” until the desired product 

specifications have been met. 
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 For a specific choice of feed and product compositions, a spectrum may be 

obtained that contains all feasible designs. 

 Systematic methods are presented to hone in on good design and eliminate 

bad design decisions based on the overall heat demand, the overall number of 

stages required and the energy efficiency. 

 Feasible designs obtained using the Column Profile Map agree very well with 

rigorous simulation package such as AspenPlus and generally leads to rapid 

convergence, thereby saving on valuable engineering time. 

 

The design of thermally coupled columns using the CPM method has been expanded 

in Chapter 4, which handles multiple side rectifying and stripping units for the special 

case of constant volatility and sharp product specifications. This study is extremely 

relevant to the crude refining industry since separation is achieved via a multiple side 

stripping unit with one main column. The special simplifying case, although 

idealistic, does present an opportunity for rapid first approximation design using 

eigenvector theory.  

 

For all possible thermally coupled designs using a main column and thermally 

coupled sidestream units in a quaternary system, a novel iso-reflux plot shows the 

exact conditions for the entire column to operate at minimum reflux. This is not a 

trivial matter using conventional methods, as all column sections are linked to one 

another in such columns. The iso- reflux plot also shows part of an Attainable 

Region, and interestingly, that a design may still be infeasible even if some column 

sections operate under residue curve conditions. Furthermore, it has been shown how 

such complex columns may be systematically analyzed using the CPM method by 

merely breaking down the column into a series of simple columns using the CPM 

parameters. 

 

To further demonstrate the versatility of the CPM method, it has also been applied to 

reactive distillation problems, specifically problems where a rectifying/stripping 



Chapter 7: Discussion 

 

198 

 

section is mounted above/below a reactor unit. Reactive distillation has traditionally 

been considered a difficult design problem, mainly thanks to the non-linear 

interaction of reaction, mixing and separation phenomena. However, we have shown 

that CPM method aids significantly in the interpretation of this phenomena 

interaction and therefore the design of such integrated units. Furthermore, we have 

shown with the CPM method that: 

 

 The design of reactive distillation system with a particular set of process 

chemistry differs greatly from another set. 

 There are certain sets of reactions that result in a “reverse” interaction 

between the number of stages, the reactor size and the reflux ratio, meaning 

that increasing, for example, the reactor size, may actually lead to the entire 

process performing much worse. Thus, there exists a unique optimum 

variable selection for each for each process. 

 There exists an Attainable Region for each design problem that conveniently 

shows the trade-offs between process variables. 

 Unlike conventional distillation, non-ideal phase equilibrium behavior is not 

only useful, it may even be necessary for overall process feasibility.  

 

The final working chapter offers insight into an often neglected part of CPM theory, 

finding all stationary points in a given system quickly and efficiently. The stationary 

points are very important because the indicate the extreme operating bounds of 

columns at stable or unstable nodes, i.e. pinched conditions, as well as areas of high 

profile curvature at saddle points. It has been shown that for constant volatility 

systems, the pinched Difference Point Equation simply reduces to a polynomial with 

the same order as the number of components. This can be done for any number of 

components, and since polynomials are expressions that are easy to compute, the 

roots may be easily identified. Similar techniques are given for ideal systems, 

although some manipulation is required for fast and reliable computation. 



Chapter 7: Discussion 

 

199 

 

Furthermore, a hybrid sequential niche algorithm was tested and proved very efficient 

for difficult azeotropic problems. 

 

The design implications of robust pinch point calculation was also given. With 

knowledge of CPM topology and pinch point behavior, we transformed a complex 

azeotropic system, Acetone Methanol / Chloroform, containing seven stationary 

points in the mass balance space at residue curve conditions, to not containing any 

stationary points at finite reflux conditions. This is a powerful demonstration to what 

CPMs are capable of: that the designer is able to manipulate column profiles (and 

pinch points) before being constrained by pre-conceived structures and thereby 

devise a separation strategy. 

 

In this thesis, we have thus covered a large body of separation synthesis problems 

with a single, versatile technique. The problems range from reactive distillation to 

thermally coupled columns to new column section synthesis.  

 

7.2 FUTURE WORK 

 

In this work, special attention was given mostly to ternary and quaternary systems to 

exploit the graphical characteristics of the technique. However, a systematic 

procedure for designing higher order systems is yet to be explored. Although the 

Temperature Collocation method address this matter mathematically, it is difficult to 

synthesize new columns without having some graphical insight into the system’s 

phase equilibrium behavior. The use of eigenvector theory as shown in Chapter 4 

may prove invaluable in this endeavor. Thus, a certain area of future research is 

applying Column Profile Maps to higher order systems. 

 

The family of CPM related techniques is rapidly expanding. Reactive Distillation has 

received considerable attention in this thesis as well as from other members of the 
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COMPS research group (Mulopo et al., 2008). Other members of the family include 

Membrane separation processes (Peters et al., 2006, Peters et al., 2008) and  the 

experimental validation of column profiles (Modise et al., 2005, Modise et al., 2007). 

It is foreseeable that CPM technique may be adapted to encompass other staged 

equilibrium based separation processes in a similar manner. These may include, but 

are not limited to: solvent extraction or liquid-liquid equilibrium based separations, 

leaching processes for solid liquid equilibrium separations, or batch distillation for 

small-scale separation.  
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APPENDIX A: NODE DERIVATION AND 

CLASSIFICATION 

For the ternary system with components x1, x2 and x3, the following DPE matrix may 

be written describing the change in liquid composition of each of the tree components 

as the stage number (n) progresses in a column section: 

 

     
     
     

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

1 1 x y 1 x x

DPE 1 1 x y 1 x x

1 1 x y 1 x x

R R X d dn DPE

R R X d dn DPE

R R X d dn DPE

  

  

  

        
     

           
             

(A-1) 

 

Note that DPE3 need not be computed since it may be inferred through the unity 

summation properties of compositions, i.e. DPE3=1-DPE2-DPE1. The system is 

therefore completely described by DPE1 and DPE2. Now, according to Lyapunov’s 

theory for dynamic stability it is required to determine the Jacobian matrix (J) of the 

DPE matrix above. Thus: 

 

1 1

1 2 1 2

3 42 2

1 2

DPE DPE

x x J J
J

J JDPE DPE

x x

  
    
    
    

   

  (A-2) 

 

 It can be shown that J is only a function of R∆, x, and the thermodynamics of the 

system. Assuming the thermodynamic relationship and R∆ has been specified, and the 

stationary points (XS) of the system is known, it is possible to determine the 

characteristic eigenvalues (λ) of the stationary point XS by solving for det(J-λI)=0: 

 

       1 1 4 2 2 3det( ) 0J I J J J J          (A-3) 
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Where I is the identity matrix.  For a ternary system, Equation A-3 is a quadratic 

polynomial in terms of λ and can be solved for λ1 and λ2. The following cases are then 

possible which characterize the nature of the singularity: 

 

(1) The roots λ1 and λ2 are distinct and real: 

(a) λ1 < 0 and λ2 < 0. The singular point is asymptotically stable (stable node). 

(b) λ1 > 0 and λ2 > 0. The singular point is asymptotically unstable (unstable node). 

(c) λ1 < 0 and λ2 > 0. The singular point is asymptotically unstable (saddle point). 

 

(2) The roots of the characteristic equation are complex and in the form: 

 λ1 =  p + iq and λ2 = p - iq  

 

(a)  p < 0 and q = 0. The singular point is asymptotically stable (stable focus).  

(b)  p > 0 and q =0. The singular point is asymptotically unstable (unstable focus). 

(c)  p = 0 and q ≠ 0. The singular point is asymptotically stable (midpoint). 

 

(3) The roots of the characteristic equation are not distinct: 

(a)  λ1 = λ2 < 0. The singular point is an asymptotically stable node.  

(b) λ1 = λ2 > 0. The singular point is an asymptotically unstable node. 

 

(4) The roots of the characteristic equation have at most one zero eigenvalue:  

(a) λ1 = 0 and λ2 < 0. The singular point is an asymptotically stable half-node/saddle 

(Doherty). 

(b) λ1 = 0 and λ2 > 0. The singular point is an asymptotically unstable half-

node/saddle. 
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APPENDIX B: THE BUMPING POINTS 

 

From the knowledge that pinch point curves for sharp splits are linear, we could 

calculate the bumping point by simply knowing what the general equation of the 

pinch point is.To determine the general equation of a straight line at least 2 points in 

the x1-x1 space are required. The points required here are 2 points of 2 shifted 

triangles. Note, for sharp splits, 2 corners of the shifted triangle always lie on an axis. 

The coordinates of these 2 corners are useless for determining the bumping point. The 

coordinates that are of interest here are the ones that cause the pinch point curve to 

have a skewed slope. 

 

The procedure for calculating the bumping point is thus to solve for x1 and x2 when 

the DPE=0, for 2 different values for R∆ which would give the 2 points that are 

required. Generally, there are 3 solutions for x1 and x2 respectively (The 3 coordinates 

for the shifted triangle’s corners), although there are exceptions. However, as 

mentioned, 2 of these solutions are useless. By identifying the x1 and x2 solutions that 

would give a skewed slope and defining them as point 1: );( 1,11,2 xx  and point 2: 

);( 2,12,2 xx  respectively it follows fairly quickly that the slope of the pinch point curve 

(m) will be  

2,11,1

2,21,2

xx

xx
m






      

 (B-1) 

 

and the y-intercept (c),can be written as:
  

 

mxxc .1,11,2         (B-2) 

 

From this knowledge, the general equation for a pinch point curve for sharp splits can 

be written as:  
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x    (B-3) 

 

Now that the equation has been derived, it can easily be calculated at what points the 

pinch point curve will intersect the axes. It is important to note that depending on 

which pure component axis X∆ is chosen, the bumping point will differ. When X∆ lies 

on the x1 axis, the bumping point occurs on the x1 axis (x2=0); when X∆ lies on the x2 

axis, the bumping point occurs on the x2 axis (x1=0); and when X∆ lies on the x3 axis, 

the bumping point will occur on the x3 axis, i.e. where x2=x1-1. Furthermore one of 

the axis intersections has to be at 1 or 0, seeing as the pinch point curve always has to 

pass through the pure component vertices.  

 

Consider now an example where X∆ is chosen as X∆= [0.5,  0]. By solving the DPE=0 

for x1 and x2 at say R∆=5 and R∆=3, one would get 2 shifted triangles. By identifying 

the coordinates that do not lie on an axis, the equation of  the skewed pinch point 

curve can be calculated. In this case, the 2 points are: Point 1: [0.0833 , 0.5833] and 

Point 2: [0.0500, 0.7500]. It follows directly then that that the equation for this 

selection of  X∆ is given by: 

 

   x2 = -5x1 + 1     (B-4) 

 

The example given above is illustrated in Figure B-1. From the derived equation for 

this system it can easily be calculated where the bumping point will occur. For this 

case, it occurs at x1 = 0.2. From  Figure B-1 it can also be seen that the pinch point 

curve does indeed intersect a pure component vertex. By following the algorithm 

described above, one could determine the bumping points of any sharp split. 

 

Now that the bumping points have been identified, the questions still remain: at what 

R∆ value the bumping will occur? and what is happening to the nodes at this point? It 

would be helpful now to define this unique R∆ where node bumping occurs as the 
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critical R∆. The section that follows will discuss the critical R∆ value as well as the 

nature of the nodes at the bumping point.  

 

 

 

Figure B-1: Pinch point curve calculation with = X∆ = [0.5, 0] 

•Shifted Triangle  at RΔ=5

•Shifted Triangle at RΔ=3

x2 = -5x1 + 1x2

x1
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APPENDIX C: MULTICOMPONENT EXAMPLE  

Table C-1: Multicomponent hydrocarbon example with sharp split specifications  X∆=[0,0,1,0,0] 

where the reflux is such that an intermediate boiling component (Hexane) is removed from as a 

high boiling component in a single column section (Case A); and where the high boiling 

component (Nonane) is removed as an high boiling component (Case B) 

 

Case A: R∆=0.25, X∆=[0,0,1,0,0] 

 
Molar 

flows 
Pentane Hexane Heptane Octane Nonane 

 

LB 0.990 0.000 0.000 1.000 0.000 0.000 

LT 1.000 0.200 0.200 0.200 0.200 0.200 

VB 5.000 0.000 0.000 1.000 0.000 0.000 

VT 5.010 0.040 0.040 0.840 0.040 0.040 

X∆ - 0.000 0.000 1.000 0.000 0.000 

Case B: R∆=1, X∆=[0,0,1,0,0] 

  

Molar 

flows Pentane Hexane Heptane Octane Nonane 

  

LB 0.990 0.000 0.000 0.348 0.001 0.650 

LT 1.000 0.200 0.200 0.200 0.200 0.200 

VB 2.000 0.001 0.002 0.696 0.001 0.300 

VT 2.010 0.100 0.100 0.621 0.100 0.078 

X∆ - 0.001 0.001 1.038 0.001 -0.043 
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APPENDIX D: THERMODYNAMIC EFFICIENCIES 

 

Given an arbitrary column with a set of reboilers (R) and condensers (C) with heat 

(Q) being added and rejected respectively, an energy balance across the column 

yields equation D-1. For the energy balance we have assumed that heating and 

mixing effects are negligible (i.e feed and products enter and leave at ambient 

conditions), and that the latent heats of vaporisation are equal. These assumptions are 

essentially the constant molar overflow assumptions and hold quite well for ideal 

mixtures. These assumptions also allows one to relate the heat duties to the vapour 

flowrates in the respective column sections: 

,    R C Vap R Vap CQ Q H V H V           (D-1)
 

Assuming heat is added to the reboiler at temperature TR (boiling point of 

component(s) in the reboiler) and rejected at TC (boiling point of component(s) in the 

condenser), we can write an expression for the lost work (LW) in the column through 

the following relationship (again assuming negligible heat effects) (Seader and 

Henley, 2006a): 

, ,( )CR
o irr o MIX F MIX P

R C

QQ
LW T S T F S P S

T T
         

  

 (D-2) 

Where P denotes a product stream. The entropy of mixing of a particular stream K 

may be calculated through: 

, ln( )MIX K KiKi
S R x x         (D-3) 

Note that for the special case of pure product streams (sharp splits) that ∆SMIX=0. By 

replacing the heat duty terms with vapour flowrates (D-1) in equation D-2, and 

assuming sharp splits, equation D-2 becomes: 

  , ,  CR
o MIX F Vap

R C

VV
LW T F S H

T T
         

        (D-4) 
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The LW function in D-4 is only a function of the vapour flowrates in the respective 

column sections, the feed composition, and the boiling temperatures. Agrawal 

showed that, using the Clausius Clayperon relationship (Smith et al., 2005), it is 

possible to write the boiling temperatures temperatures in terms of the relative 

volatilities of the mixture (assuming they are constant) (Agrawal and Fidkowski, 

1998) 

1 1ln( )
Vap

CR
C R

H

T TR


    
      (D-3)

 

 

Now, the definition of thermodynamic efficiency is as follows (Smith et al., 2005): 

IDEAL

IDEAL

W

W LW
 

       (D-4)
 

Where WIDEAL is the ideal theoretical work required by a process. In terms of sharp 

split distillation, the ideal work required by a process is merely the Gibbs free energy 

of mixing in the feed. Thus:

  
0 0 ,IDEAL MIX MIX MIX MIX FW G H T S T F S            (D-5)

 

 

The thermodynamic efficiency the reduces to: 

 

0 ,

0 ,

MIX F

MIX F

T F S

T F S LW





 
     (D-6) 

For each of the structures defined in chapter 4, we can identify the appropriate VR and 

VC streams, and substitute α for the boiling temperatures in each stream using D-3:

 

Double Side Stripper: 

 3 5 6 1 3 2 5 3

ln( )

( ) ln( ) ln( ) ln( )

Fi FiF x x

V V V V V


  




   



 (D-6)
 

 

Double Side Rectifier:  
1 3 3 1 5 2

ln( )

ln( ) ln( ) ln( )

Fi FiF x x

V V V


  




 



   (D-7)
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Hybrid Rectifier/Stripper: 
1 1 5 3 1 5 6 2

ln( )

ln( ) ln( ) ( ) ln( )

Fi FiF x x

V V V V V


  




   


  (D-8)

 

 

Kaibel:    
1 1

ln( )

ln( )

Fi FiF x x

V








    (D-9) 

 

Notice that in each of these equations, the R and ∆HVap have disappeared. Equations 

D-6 to D-9 give the thermodynamic efficiencies of all structures and are only a 

function of the relative volatilities, feed composition and vapour flowrates in the 

relevant column sections. The vapour flowrates may be calculated through the 

eigenvector criterion elucidated in chapter 4. Chapter 4 elucidates some of the 

underlying assumption made with these calculations. 
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APPENDIX E: REFLUX RATIO EQUATIONS 

 

Reflux Ratio equations in terms of defining Column Section for the various 

configurations 
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Hybrid Side Stripper and Rectifier 
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APPENDIX F: FOCAPD 2009 SUMMARY PAPER 

COMPUTER-AIDED GRAPHICAL TOOLS FOR 

SYNTHESIZING COMPLEX COLUMNS 
Daniel A. Beneke, Ronald Abbas, Michaela Vrey, Simon Holland, Brendon 

Hausberger, Diane Hildebrandt and David Glasser 

Centre of Material and Process Synthesis (COMPS), University of the Witwatersrand, 

Johannesburg, South Africa 

Abstract 

There has recently been a renewed interest in the design of distillation processes due to the development 

of Column Profile Maps (CPMs). Using CPMs one is able to change topology within the composition 

space and hence many separations that have been thought of as difficult or unviable, can now be 

achieved. The CPM technique has also been proven to be extremely useful as a design tool as any 

column configuration, irrespective of complexity, can be modelled and graphically understood. This 

paper aims to summarize the most important and interesting results and applications obtained using the 

CPM technique. It shows how CPMs may be used to synthesize complex columns like a Petlyuk or 

Kaibel column, as well as showing how new sharp split separations can be devised. 

Keywords 

Column Profile Maps, Distillation design, Sharp splits 

INTRODUCTION 

In modern chemical industries, the task of separation is a 

very energy consuming process, where distillation is used 

for about 95% of liquid separations. The energy usage 

from this process accounts for around 3% of the world 

energy consumption, as estimated by Hewitt et al. (1999). 

Graphical methods for designing distillation schemes have 

been popular over the years. Residue Curve Maps (RCMs) 

are often used as a graphical method for designing multi 

component distillation systems. RCMs are basically a 

range of trajectories that track the liquid compositions of 

the chemical species over time in a simple distillation 

operation. RCMs can tell one much about the feasibility of 

separation and the nature of singular points, such as 

azeotropes and pure component vertices.  

However, the RCM technique has its limitations in that it 

only gives information at infinite reflux, quite an 

impractical condition for the design engineer. Recently, in 

a series of papers by Tapp et al. (2004) and Holland et al. 

(2004 a, b) a new theory was explored in distillation: 

Column Profile Maps (CPMs). CPMs were derived from 

an  adaption  of  ODEs   proposed  by   Van  Dongen   and 

Doherty (1985), which take into account the net molar 

flows and  reflux ratios in  a  column  section. CPMs  were  

 
*  Corresponding author email: diane.hildebrandt@wits.ac.za 

shown to display the same topological behaviour as 

RCMs, as well as being an extremely useful tool in 

distillation design by allowing the designer to set reflux 

ratios and net molar flows to suit the specifications of the 

separation. 

COLUMN PROFILE MAPS 

A CPM describes the behaviour of a multicomponent 

system by setting appropriate parameters such as the net 

molar flow and the reflux ratio. The first step in 

constructing a CPM is to define a Column Section, which 

according to the definition of Tapp et al. (2004) is “a 

length of column between points of addition or removal of 

material and/or energy”. A steady state material balance 

over a Column Section accompanied with a Taylor 

expansion yields:  

  )(
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)(1
1

XX
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XYX
Rdn
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Equation (1) is known as the Difference Point Equation 

(DPE). XΔ can be thought of as a pseudo composition 

vector and is valid anywhere in the composition space, 

even in the space outside the Mass Balance Triangle 

(MBT). It is however subject to the constraint that the sum 

of the components of XΔ be 1. XΔ need only be a real 

composition  in columns sections that are  terminated by a 

condenser or reboiler. Notice that the DPE is not bound by 

physically relevant initial conditions, thus one is able to 

perform the integration outside of the composition space.  

Furthermore, notice that the DPE reduces to the Residue 

Curve Equation at infinite reflux. Thus, for an arbitrary 

choice of  XΔ and RΔ one can now begin to construct a  

CPM for an ideal system
*
, as in Figure 1. 

                                                 

*
 In this paper, an ideal system refers to the assumption of 

constant relative volatilities. Unless it is otherwise stated, α1 =3, 

α2 =1, and  α3 = 1.5, which means that x1 is the low boiler, x3  is 

the intermediate boiler and x2 is the high boiler. 
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Figure 1: CPM  for  XΔ = [0.3, -0.2] and R∆ = 9 

Notice in Figure 1 how stationary points (nodes) have 

been shifted in the composition space, resulting in 

completely different profiles within the blue Mass Balance 

Triangle (MBT). These stationary points can be 

determined by algebraically solving the DPE=0. If we 

connect these shifted nodes with straight lines we can see 

a Transformed Triangle (TT) being formed. In theory, one 

can now move these nodes in composition space by simply 

fixing the aforementioned parameters. This could lead to 

many new and exciting designs that have been previously 

thought to be unviable. 

APPLICATIONS 

Petlyuk design  

Using the CPM design methodology, one is able to break 

down any column configuration into simpler Column 

Sections, and from there design the entire column 

according to the separation specifications. The famed 

Petlyuk Column, which offers significant savings in 

energy, can also be broken down into Column Sections 

(CS) as shown in Figure 2. For simplicity, we shall look at  

 

Figure 2: Column section breakdown for the Petlyuk 

column 

a the case where the Petlyuk operates at overall infinite 

reflux,  but  with  CS 2-5  operating  at a finite  reflux,  i.e. 

a column that draws infinitesimal product flows, but does 

not necessarily operate with L=V in sections 2, 3, 4 and 5. 

For this example, we shall set an intermediate product 

specification of 90% and achieving this specification will 

be the primary concern when deciding on a XΔ. CS 1-6 will 

simply operate on Residue Curves. 

It can be shown mathematically that the constraints placed 

on this system leads to: 

 CS 2 and 4 have identical TTs 

 CS 3 and 5 have identical TTs 

 CS 2 and 4 and CS 3 and 5 operate on the 

same Difference Point, with equal magnitude but 

opposite signs for RΔ.  

The criteria for feasible column profiles is that the liquid 

profiles intersect twice. If one then superimposes the 2 

CPMS for the coupled sections, for an appropriate 

selection of XΔ and RΔ, it can be seen that the feasible 

region intersects with the product specification. Hence a 

feasible design has been found, as shown in Figure 3. 

 
Figure 3: Superimposed transformed triangles for coupled 

column system 

Modelling Sharp Splits with CPMs 

Invariably, the aim of any separation process is to achieve 

essentially pure products. Thus the sharp split constraint 

presents an interesting and relevant case study. 

Tapp et al (2004) have shown that there are 7 regions of XΔ 

placement which result in unique Pinch Point curves (see 

Figure 4). The boundaries of these regions correspond to 

the extended axes of the MBT. In terms of CPMs, a sharp 

split effectively means that XΔ is placed on the boundary of 

these regions. A sharp split thus displays Pinch Point 

Curve behaviour of 2 regions.   
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Figure 4: Pinch Point Curve Behaviour for different 

placement of XΔ. 

It is interesting to note that the nodes for sharp splits are 

shifted in composition space in a different manner to non-

sharp splits. Pinch point curves for sharp splits are linear, 

and appear to intersect at a point. In fact, the curves don’t 

intersect, but merely meet at a point. The point at which 

this occurs is termed the “bumping point”, because at this 

point nodes “bump” each other from their positions. For 

example, a saddle could be bumped from its position and 

be replaced by a stable node and thereby altering the 

topology within the MBT drastically. This result is very 

useful, as one could now theoretically place a node almost 

anywhere in composition space to suit the separation by 

simply choosing RΔ and XΔ appropriately. 

An immediate application of this is fixing XΔ to the 

intermediate boiler vertex. By making use of the “node 

bumping” phenomenon, it is now possible to fix a stable 

node or an unstable node to the intermediate boiling 

vertex, as shown in Figure 5. This result suggests that the 

intermediate boiler can be completely removed in a single 

stripping section, and hence making the removal of the 

intermediate boiler significantly easier. Similarly, there are 

certain choices for RΔ and XΔ which can fix a saddle to the 

high or low boiler vertex, and hence making separation 

much more difficult for these components. 

It is of special interest to determine when and how a 

certain  node  can  be  fixed  in composition  space. For the  

 

 

Figure 5 : A stable node fixed on the intermediate boiler 

special case where XΔ is placed on one of the 3 pure 

component vertices, a node is also fixed to the same 

vertex. So, by knowing the position of a stationary point 

and XΔ, we can trace the nature of the node by varying RΔ. 

For example, Figure 6 shows which values of RΔ 

correspond to a specific node on the intermediate boiler 

vertex. The nature of the nodes are defined by the 

eigenvalues of the Jacobian when the DPE=0. 

 

 

Figure 6: Operating regions for XΔ=[0;0;1] 

Sharp split Kaibel column design 

 

This work considers the implementation of a Kaibel 

column, (i.e. a fully-thermally coupled column with an 

adiabatic wall dividing the column into two equal halves 

for the production of four product streams). The Kaibel 

Column allows for a feed mixture of four or more 

components from which it produces a distillate, bottoms 

and two product side streams. Compared to the 

conventional 3 column direct split sequence, the Kaibel 

column can be built in a single shell, making it an 
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attractive alternative in terms of capital cost savings along 

with its counterpart; the Petlyuk Column. Further, the 

reduction in the number of reboilers and condensers’ 

required leads to improved operating costs. 

 In this section of work we demonstrate the use of 

CPMs for the comprehensive analysis and design of 

Kaibel columns by applying the CPM technique for a 

system at sharp-split conditions. From the results of the 

topological analysis, it is shown that, for set product 

composition specifications, when using an ideal system 

(constant relative volatilities), there is only one set of 

feasible operating parameters. 

The Kaibel Column Section breakdown is similar to the 

Petlyuk in Figure 2 but with an additional CS between CS 

2 and 4, as two products are removed between these CSs. 

It can be shown that for the Kaibel column, CS 2 and 4’s 

XΔ's are placed on the intermediates pure components. A 

mass balance shows that the net flow through the 

connecting CS of the side draws is zero. As a result, this 

mass balance can only be satisfied completely if the 

difference point for component 2 (B) in this same CS (XΔ7, 

2) is infinitely big. Due to the fact that this CS has a net 

zero flow, does not mean that the profile produced will be 

a residue curve, but by substituting zero net flow into the 

DPE the differential becomes an infinite reflux expression. 
Figure  is the only correct CS mass balance layout in the 

quaternary system mass balance space. As can be seen 

from Figure 7 only one solution is possible as this is the 

only feasible mass balance that exists. 

 

 

Figure 7: Mass balance lines between intersecting CSs 

We can represent the results on a phi space diagram as 

shown by Figure 8. The single zero net flow line for CS 7 

of the Kaibel arrangement is the only operating line that 

will produce feasible results for a double shell-single 

reboiler system (Red line). If we shift over to a Kaibel 

Dividing Wall Column (DWC) we operate at a single 

point (black dot in Figure 8), as one cannot throttle the 

vapour split at the bottom of the column. This shows that 

there is no movement allowed to change the system by 

changing the liquid and vapour splits. As can be seen from 

Figure 8, the Petlyuk feasible region in the Phi space is 

much larger and thus much more operable than the single 

operating line for the Kaibel. 

 

Figure 8: Phi space diagram for the Petlyuk and Kaibel 

CONCLUSION 

In this paper it has been shown that CPMs have 

tremendous potential in designing and understanding 

simple and complex distillation systems. Nodes can almost 

be placed at will in composition space to suit the 

requirements of the separation, so much so that it is 

possible to place stable or unstable nodes on the 

intermediate boiler’s vertex. The CPM technique offers a 

better understanding of the interaction between parameters 

due to its graphical nature. Furthermore, it has been shown 

that CPMs are extremely useful in designing complex 

distillation systems such as the Petlyuk or Kaibel column, 

and hence more efficient and creative designs can be 

thought of.  
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APPENDIX G: DERIVATION OF DPE 

 

In order to derive the DPE, it is necessary to firstly define a column a length of where 

no material or energy is being added or removed, as shown in Figure G-1, with 

stream definitions. 

 

Figure G-1:Definition of a Column Section (CS) 

 

Notice that in this column section, constant molar overflow is assumed, meaning that 

the liquid (L) and vapour (V) streams remain constant throughout the section. With 

this in mind, it is possible to write a component balance for the column section: 

 

 n+1 n+1x y 0B BL VY LX V        (G-1) 

It is now convenient to define a parameter known as the Difference Point as (Tapp et 

al., 2004)  

                            
B BVY LX

X





                                       (G-2) 

                                      Where: ,    and    V L V L                                      (G-3)  

V, YBL, XB

V, ynL, xn+1
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Replacing the definition of the X∆ into Equation G-1:  

                                        1n n

V
x y X

L L
 


                                            (G-4) 

Furthermore, defining a generalised reflux ratio as 
L

R 


, Equation G-4 can be 

written as:  

                                    1

1 1
1n nx y X

R R
 

 

 
   

 
                                    (G-5) 

Now, expanding xn+1 around stage n in Equation G-5 using a Taylor Series gives:  

                               

2
2

n+1 n 2

x x
x x ...

d d
n n

dn dn
                                  (G-6) 

Assuming that only the first order derivative is significant in G-6 and noting that 

∆n=(n+1)-n=1, we obtain: 

                                                 
n+1 n

x
x x

d

dn
                                          (G-7) 

Finally, replacing xn+1 in Equation G-5 by the definition in Equation G-7  and 

rearranging, results in a first order differential equation describing the change in 

composition across column section, known as the Difference Point Equation (DPE):   

                                           
x 1 1

1 x y x
d

X
dn R R



 

   
       

   
               (G-8) 

It is important to note that X∆ at the bottom of the column section (X∆B) and X∆ at the 

top of the column section (X∆T) are equivalent, and this derivation could initiated with 

either definition of X∆. Integration in a positive direction of n indicates tracing 

composition upwards in the CS, while integration in a negative direction of n 

indicates change in composition from the top-down. 
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APPENDIX H: TEMPERATURE COLLOCATION 

THE 

The transformation of the DPE (derived in Appendix G) from a stage dependent 

integration coordinate to a Temperature dependant integration coordinate initiates by 

first stating the classical DPE (in vector form): 

    
x 1 1

1 x y x
d

X
dn R R



 

   
       

   
                (H-1) 

Where y is the vapour composition in equilibrium with its liquid composition x, and 

may be modelled as follows: 

  y x ,          where       ( , , x( ))K K f P T T                  (H-2) 

Where T is the bubble point temperature at which x and y are at equilibrium, and P is 

the total system temperature. Now, it is known that the sum of liquid and vapour 

composition each have to be unity. Thus, it is possible to write: 

1

1

[ ( , , ( )) ]

 =0

nc

j j

j

d K P T x T x

dx




                          (H-3) 

Using the product rule for differential calculus, it is possible to expand H-3 further: 

1 1 1

 =0
nc

j j

j j

j

dK dx
x K

dx dx

 
 

 
                           (H-4) 

H-4 can also be rewritten as: 

1 1 1

 =0
nc

j j

j j

j

dK dxdT
x K

dT dx dx

 
 

 
                           (H-5) 

The terms in H-5 van be rearranged and collected and rewritten to yield equations H-

6 and H-7: 

1 11 1

 =
nc nc

j j

j j

j j

dK dxdT
x K

dT dx dx 

 
 

 
                  (H-6) 
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11

1 1

 =

nc
j

j

j

nc
j

j

j

dK
x

dTdx

dxdT
K

dx










                   (H-7) 

 

The derivates dxj/dx1 can be eliminated in H-7 in terms of the stage number (n): 

1 11 1

1 11

 = =

nc nc
j j

j j

j j

nc nc
j j

j j

j j

dK dK
x x

dT dTdx dx

dx dxdndT dn
K K

dn dx dn

 

 

 

 

 
                  (H-8) 

Finally, inserting H-1 into equation H-8, yields: 

   

   

1 1 1 1

11

1

1 1
1

 =
1 1

1

nc
j

j

j

nc

j j j j j

j

dK
x y X x x

R R dTdx

dT
K x y X x

R R



 



  

    
       

    
    

       
    





       (H-9) 

H-9 describes the change in bubble point temperature in a column section with 

change in composition of component x1. H-9 may be derived analogously for all other 

components xj. The derivative  
jdK

dT
 may be computed as follows. First, the exact 

definition for Kj is: 

,         for    1,2...

VAP

j j

j

P
K j nc

P


                   (H-10) 

γ is known as the activity coefficient, which accounts for non-ideal behaviour and is a 

function of both temperature and composition. P
VAP

 is the vapour pressure and is only 

a function of temperature through the familiar Antoine equation. Now, the derivative 

of H-10 with respect to temperature is: 

   

1
+ ,         for    1,2...

VAP

j j jVAP

j j

dK d dP
P j nc

dT P dT dT




 
  

  
                  (H-11) 

The differential of the activity coefficient with respect to tempertature may obtained 

through the chain rule as: 
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       1

nc
j j jk

k k

d d

dT x dT T

  



 
 

 
               (H-12) 

Finally, replacing H-12 into H-11, we obtain the full expression for dKj/dT: 

1

1
+ ,         for    1,2...

VAPnc
j j j jVAP k

j j

k k

dK dPd
P j nc

dT P x dT T dT

 




  
   

   
      (H-13) 

 

 

 

   

 

 

  

 


