6 research outputs found

    Howling and Entrainment in Hearing Aids: A Review

    Get PDF
    This review focuses on howling and entrainment artifacts in digital hearing aids. The howling may occur (especially at high gains), essentially due to the close proximity of the input microphone and the output loudspeaker. The entrainment, on the other hand, occurs when the input to the hearing aids is periodic, for example, music signals or alarm signals with strong tonal characteristics. We give details on methods for howling avoidance, which are mainly based on adaptive filtering-based acoustic feedback cancellation. We also give an overview of many recent works on entrainment in hearing aids. Finally, we remark that efficient acoustic feedback cancellation scheme which can avoid howling, can also well manage the entrainment artifact

    Signal processing algorithms for digital hearing aids

    Get PDF
    Hearing loss is a problem that severely affects the speech communication and disqualify most hearing-impaired people from holding a normal life. Although the vast majority of hearing loss cases could be corrected by using hearing aids, however, only a scarce of hearing-impaired people who could be benefited from hearing aids purchase one. This irregular use of hearing aids arises from the existence of a problem that, to date, has not been solved effectively and comfortably: the automatic adaptation of the hearing aid to the changing acoustic environment that surrounds its user. There are two approaches aiming to comply with it. On the one hand, the "manual" approach, in which the user has to identify the acoustic situation and choose the adequate amplification program has been found to be very uncomfortable. The second approach requires to include an automatic program selection within the hearing aid. This latter approach is deemed very useful by most hearing aid users, even if its performance is not completely perfect. Although the necessity of the aforementioned sound classification system seems to be clear, its implementation is a very difficult matter. The development of an automatic sound classification system in a digital hearing aid is a challenging goal because of the inherent limitations of the Digital Signal Processor (DSP) the hearing aid is based on. The underlying reason is that most digital hearing aids have very strong constraints in terms of computational capacity, memory and battery, which seriously limit the implementation of advanced algorithms in them. With this in mind, this thesis focuses on the design and implementation of a prototype for a digital hearing aid able to automatically classify the acoustic environments hearing aid users daily face on and select the amplification program that is best adapted to such environment aiming at enhancing the speech intelligibility perceived by the user. The most important contribution of this thesis is the implementation of a prototype for a digital hearing aid that automatically classifies the acoustic environment surrounding its user and selects the most appropriate amplification program for such environment, aiming at enhancing the sound quality perceived by the user. The battery life of this hearing aid is 140 hours, which has been found to be very similar to that of hearing aids in the market, and what is of key importance, there is still about 30% of the DSP resources available for implementing other algorithms

    Complex-valued Adaptive Digital Signal Enhancement For Applications In Wireless Communication Systems

    Get PDF
    In recent decades, the wireless communication industry has attracted a great deal of research efforts to satisfy rigorous performance requirements and preserve high spectral efficiency. Along with this trend, I/Q modulation is frequently applied in modern wireless communications to develop high performance and high data rate systems. This has necessitated the need for applying efficient complex-valued signal processing techniques to highly-integrated, multi-standard receiver devices. In this dissertation, novel techniques for complex-valued digital signal enhancement are presented and analyzed for various applications in wireless communications. The first technique is a unified block processing approach to generate the complex-valued conjugate gradient Least Mean Square (LMS) techniques with optimal adaptations. The proposed algorithms exploit the concept of the complex conjugate gradients to find the orthogonal directions for updating the adaptive filter coefficients at each iteration. Along each orthogonal direction, the presented algorithms employ the complex Taylor series expansion to calculate time-varying convergence factors tailored for the adaptive filter coefficients. The performance of the developed technique is tested in the applications of channel estimation, channel equalization, and adaptive array beamforming. Comparing with the state of the art methods, the proposed techniques demonstrate improved performance and exhibit desirable characteristics for practical use. The second complex-valued signal processing technique is a novel Optimal Block Adaptive algorithm based on Circularity, OBA-C. The proposed OBA-C method compensates for a complex imbalanced signal by restoring its circularity. In addition, by utilizing the complex iv Taylor series expansion, the OBA-C method optimally updates the adaptive filter coefficients at each iteration. This algorithm can be applied to mitigate the frequency-dependent I/Q mismatch effects in analog front-end. Simulation results indicate that comparing with the existing methods, OBA-C exhibits superior convergence speed while maintaining excellent accuracy. The third technique is regarding interference rejection in communication systems. The research on both LMS and Independent Component Analysis (ICA) based techniques continues to receive significant attention in the area of interference cancellation. The performance of the LMS and ICA based approaches is studied for signals with different probabilistic distributions. Our research indicates that the ICA-based approach works better for super-Gaussian signals, while the LMS-based method is preferable for sub-Gaussian signals. Therefore, an appropriate choice of interference suppression algorithms can be made to satisfy the ever-increasing demand for better performance in modern receiver design

    ContribuiçÔes à modelagem estocåstica de algoritmos adaptativos normalizados

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro TecnolĂłgico, Programa de PĂłs-Graduação em Engenharia ElĂ©trica, FlorianĂłpolis, 2015.Este trabalho de pesquisa trata da modelagem estocĂĄstica de trĂȘs algoritmos adaptativos bem conhecidos da literatura, a saber: o algoritmo NLMS (normalized least-mean-square), o algoritmo IAF PNLMS (individual-activation-factor proportionate NLMS) e o algoritmo TDLMS (transform-domain least-mean-square). Particularmente para o algoritmo NLMS, um modelo estocĂĄstico analĂ­tico Ă© obtido levando em conta um ambiente nĂŁo estacionĂĄrio e sinais de entrada gaussianos complexos. Baseado nas expressĂ”es de modelo, o impacto dos parĂąmetros do algoritmo sobre o seu desempenho Ă© discutido, evidenciando algumas das caracterĂ­sticas de rastreamento do algoritmo NLMS frente ao ambiente nĂŁo estacionĂĄrio considerado. Para o algoritmo IAF-PNLMS, assumindo um ambiente estacionĂĄrio, um modelo estocĂĄstico mais preciso do que os atĂ© entĂŁo disponĂ­veis na literatura Ă© apresentado, considerando sinais de entrada gaussianos correlacionados tanto complexos quanto reais. Com respeito ao algoritmo TDLMS, um modelo estocĂĄstico melhorado Ă© derivado focando em um ambiente nĂŁo estacionĂĄrio e sinais de entrada gaussianos correlacionados reais. A partir das expressĂ”es de modelo obtidas, o impacto dos parĂąmetros do algoritmo TDLMS sobre o seu desempenho Ă© discutido. Resultados de simulação para diferentes cenĂĄrios de operação sĂŁo mostrados, confirmando a precisĂŁo dos modelos estocĂĄsticos propostos tanto na fase transitĂłria quanto em regime permanente.Abstract : This research work focuses on the stochastic modeling of three well-known adaptive algorithms from the literature, namely: the normalized least-mean-square (NLMS) algorithm, the individual-activation-factor proportionate NLMS (IAF-PNLMS) algorithm, and the transform-domain least-mean-square (TDLMS) algorithm. Particularly for the NLMS algorithm, an analytical stochastic model is obtained taking into account a nonstationary environment and complex-valued Gaussian input data. Based on the obtained model expressions, the impact of the algorithm parameters on its performance is discussed, clarifying some of the tracking properties of the NLMS algorithm vis-Ă -vis the nonstationary environment considered. For the IAF-PNLMS algorithm, assuming a stationary environment, a more accurate stochastic model than those available so far in the literature is presented considering both complex- and real-valued Gaussian correlated input data. Regarding the TDLMS algorithm, an improved stochastic model is derived focusing on a nonstationary environment and real-valued Gaussian correlated input data. From the obtained model expressions, the impact of the TDLMS algorithm parameters on its performance is discussed. Simulation results for different operating scenarios are shown, confirming the accuracy of the proposed stochastic models for both transient and steady-state phases
    corecore