246 research outputs found

    PAPR Analysis in OFDM-IQ-IM Systems

    Get PDF
    One of the key disadvantages of OFDM system, implemented already in 4G and 5G is high PAPR. For this reason, it is very important to evaluate the PAPR performance of any potential multiplexing technique candidate for upcoming generations. Due to the superior performance over OFDM considering BER performance, spectral efficiency, energy efficiency, OFDM-IQ-IM is one of the promising multiplexing techniques for upcoming generations of wireless technology. Therefore, the PAPR performance of OFDM-IQ-IM system has been analysed here. In deterministic approach, subcarriers are considered to be modulated by symbols with highest power and the upper limit of the PAPR of OFDM-IQ-IM system has been formulated. Using statistical distribution, a probabilistic approach has been taken to determine the PAPR performance of the OFDM-IQ-IM and OFDM-IM systems. The distribution of PAPR of OFDM-IQ-IM and OFDM-IM systems has been evaluated considering the discrete time baseband signals for both in-phase and quadrature components as independent Gaussian random variables. A comparative analysis of the PAPR of OFDM, OFDM-IM and OFDM-IQ-IM systems has been made in both deterministic and probabilistic approach. Thus improved PAPR performance has been noticed in OFDM-IQ-IM system compared to OFDM-IM and OFDM systems for same spectral efficiency

    Resource management in QoS-aware wireless cellular networks

    Get PDF
    2011 Summer.Includes bibliographical references.Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study two types of resource allocation problems in QoS-aware wireless cellular networks. First, we develop a rigorous framework to study opportunistic scheduling in multiuser OFDM systems. We derive optimal opportunistic scheduling policies under three common QoS/fairness constraints for multiuser OFDM systems--temporal fairness, utilitarian fairness, and minimum-performance guarantees. To implement these optimal policies efficiently, we provide a modified Hungarian algorithm and a simple suboptimal algorithm. We then propose a generalized opportunistic scheduling framework that incorporates multiple mixed QoS/fairness constraints, including providing both lower and upper bound constraints. Next, taking input queues and channel memory into consideration, we reformulate the transmission scheduling problem as a new class of Markov decision processes (MDPs) with fairness constraints. We investigate the throughput maximization and the delay minimization problems in this context. We study two categories of fairness constraints, namely temporal fairness and utilitarian fairness. We consider two criteria: infinite horizon expected total discounted reward and expected average reward. We derive and prove explicit dynamic programming equations for the above constrained MDPs, and characterize optimal scheduling policies based on those equations. An attractive feature of our proposed schemes is that they can easily be extended to fit different objective functions and other fairness measures. Although we only focus on uplink scheduling, the scheme is equally applicable to the downlink case. Furthermore, we develop an efficient approximation method--temporal fair rollout--to reduce the computational cost

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Exploring the Synergy: A Review of Dual-Functional Radar Communication Systems

    Full text link
    This review paper examines the concept and advancements in the evolving landscape of Dual-functional Radar Communication (DFRC) systems. Traditionally, radar and communication systems have functioned independently, but current research is actively investigating the integration of these functionalities into a unified platform. This paper discusses the motivations behind the development of DFRC systems, the challenges involved, and the potential benefits they offer. A discussion on the performance bounds for DFRC systems is also presented. The paper encompasses a comprehensive analysis of various techniques, architectures, and technologies used in the design and optimization of DFRC systems, along with their performance and trade-offs. Additionally, we explore potential application scenarios for these joint communication and sensing systems, offering a comprehensive perspective on the multifaceted landscape of DFRC technology.Comment: 17 pages, 7 figure

    Investigation of non-binary trellis codes designed for impulsive noise environments

    Get PDF
    PhD ThesisIt is well known that binary codes with iterative decoders can achieve near Shannon limit performance on the additive white Gaussian noise (AWGN) channel, but their performance on more realistic wired or wireless channels can become degraded due to the presence of burst errors or impulsive noise. In such extreme environments, error correction alone cannot combat the serious e ect of the channel and must be combined with the signal processing techniques such as channel estimation, channel equalisation and orthogonal frequency division multiplexing (OFDM). However, even after the received signal has been processed, it can still contain burst errors, or the noise present in the signal maybe non Gaussian. In these cases, popular binary coding schemes such as Low-Density Parity-Check (LDPC) or turbo codes may not perform optimally, resulting in the degradation of performance. Nevertheless, there is still scope for the design of new non-binary codes that are more suitable for these environments, allowing us to achieve further gains in performance. In this thesis, an investigation into good non-binary trellis error-correcting codes and advanced noise reduction techniques has been carried out with the aim of enhancing the performance of wired and wireless communication networks in di erent extreme environments. These environments include, urban, indoor, pedestrian, underwater, and powerline communication (PLC). This work includes an examination of the performance of non-binary trellis codes in harsh scenarios such as underwater communications when the noise channel is additive S S noise. Similar work was also conducted for single input single output (SISO) power line communication systems for single carrier (SC) and multi carrier (MC) over realistic multi-path frequency selective channels. A further examination of multi-input multi-output (MIMO) wired and wireless systems on Middleton class A noise channel was carried out. The main focus of the project was non-binary coding schemes as it is well-known that they outperform their binary counterparts when the channel is bursty. However, few studies have investigated non-binary codes for other environments. The major novelty of this work is the comparison of the performance of non-binary trellis codes with binary trellis codes in various scenarios, leading to the conclusion that non-binary codes are, in most cases, superior in performance to binary codes. Furthermore, the theoretical bounds of SISO and MIMO binary and non-binary convolutional coded OFDM-PLC systems have been investigated for the rst time. In order to validate our results, the implementation of simulated and theoretical results have been obtained for di erent values of noise parameters and on di erent PLC channels. The results show a strong agreement between the simulated and theoretical analysis for all cases.University of Thi-Qar for choosing me for their PhD scholarship and the Iraqi Ministry of Higher Education and Scienti c Research (MOHESR) for granting me the funds to study in UK. In addition, there was ample support towards my stay in the UK from the Iraqi Cultural Attach e in Londo

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • …
    corecore