5,629 research outputs found

    A Meta-Logic of Inference Rules: Syntax

    Get PDF
    This work was intended to be an attempt to introduce the meta-language for working with multiple-conclusion inference rules that admit asserted propositions along with the rejected propositions. The presence of rejected propositions, and especially the presence of the rule of reverse substitution, requires certain change the definition of structurality

    On the Syntax of Logic and Set Theory

    Full text link
    We introduce an extension of the propositional calculus to include abstracts of predicates and quantifiers, employing a single rule along with a novel comprehension schema and a principle of extensionality, which are substituted for the Bernays postulates for quantifiers and the comprehension schemata of ZF and other set theories. We prove that it is consistent in any finite Boolean subset lattice. We investigate the antinomies of Russell, Cantor, Burali-Forti, and others, and discuss the relationship of the system to other set theoretic systems ZF, NBG, and NF. We discuss two methods of axiomatizing higher order quantification and abstraction, and then very briefly discuss the application of one of these methods to areas of mathematics outside of logic.Comment: 34 pages, accepted, to appear in the Review of Symbolic Logi

    Potential infinity, abstraction principles and arithmetic (Leniewski Style)

    Get PDF
    This paper starts with an explanation of how the logicist research program can be approached within the framework of Leśniewski’s systems. One nice feature of the system is that Hume’s Principle is derivable in it from an explicit definition of natural numbers. I generalize this result to show that all predicative abstraction principles corresponding to second-level relations, which are provably equivalence relations, are provable. However, the system fails, despite being much neater than the construction of Principia Mathematica (PM). One of the key reasons is that, just as in the case of the system of PM, without the assumption that infinitely many objects exist, (renderings of) most of the standard axioms of Peano Arithmetic are not derivable in the system. I prove that introducing modal quantifiers meant to capture the intuitions behind potential infinity results in the (renderings of) axioms of Peano Arithmetic (PA) being valid in all relational models (i.e. Kripke-style models, to be defined later on) of the extended language. The second, historical part of the paper contains a user-friendly description of Leśniewski’s own arithmetic and a brief investigation into its properties

    A Fixpoint Semantics of Event Systems with and without Fairness Assumptions

    Full text link
    We present a fixpoint semantics of event systems. The semantics is presented in a general framework without concerns of fairness. Soundness and completeness of rules for deriving "leads-to" properties are proved in this general framework. The general framework is instantiated to minimal progress and weak fairness assumptions and similar results are obtained. We show the power of these results by deriving sufficient conditions for "leads-to" under minimal progress proving soundness of proof obligations without reasoning over state-traces

    The logic and topology of Kant's temporal continuum

    Get PDF
    In this article we provide a mathematical model of Kant?s temporal continuum that satisfies the (not obviously consistent) synthetic a priori principles for time that Kant lists in the Critique of pure Reason (CPR), the Metaphysical Foundations of Natural Science (MFNS), the Opus Postumum and the notes and frag- ments published after his death. The continuum so obtained has some affinities with the Brouwerian continuum, but it also has ‘infinitesimal intervals’ consisting of nilpotent infinitesimals, which capture Kant’s theory of rest and motion in MFNS. While constructing the model, we establish a concordance between the informal notions of Kant?s theory of the temporal continuum, and formal correlates to these notions in the mathematical theory. Our mathematical reconstruction of Kant?s theory of time allows us to understand what ?faculties and functions? must be in place for time to satisfy all the synthetic a priori principles for time mentioned. We have presented here a mathematically precise account of Kant?s transcendental argument for time in the CPR and of the rela- tion between the categories, the synthetic a priori principles for time, and the unity of apperception; the most precise account of this relation to date. We focus our exposition on a mathematical analysis of Kant’s informal terminology, but for reasons of space, most theorems are explained but not formally proven; formal proofs are available in (Pinosio, 2017). The analysis presented in this paper is related to the more general project of developing a formalization of Kant’s critical philosophy (Achourioti & van Lambalgen, 2011). A formal approach can shed light on the most controversial concepts of Kant’s theoretical philosophy, and is a valuable exegetical tool in its own right. However, we wish to make clear that mathematical formalization cannot displace traditional exegetical methods, but that it is rather an exegetical tool in its own right, which works best when it is coupled with a keen awareness of the subtleties involved in understanding the philosophical issues at hand. In this case, a virtuous ?hermeneutic circle? between mathematical formalization and philosophical discourse arises

    Keynes’s missing axioms

    Get PDF
    Between Keynes’s verbalized theory and its formal basis persists a lacuna. The conceptual groundwork is too small and not general. The quest for a comprehensive formal basis is guided by the question: what is the minimum set of foundational propositions for a consistent reconstruction of the money economy? We start with three structural axioms. The claim of generality entails that it should be possible to prove that Keynes’s formalism is a subset of the structural axiom set. The axioms are applied to a central part of the General Theory in order to achieve consistency and generality

    Dual-Context Calculi for Modal Logic

    Get PDF
    We present natural deduction systems and associated modal lambda calculi for the necessity fragments of the normal modal logics K, T, K4, GL and S4. These systems are in the dual-context style: they feature two distinct zones of assumptions, one of which can be thought as modal, and the other as intuitionistic. We show that these calculi have their roots in in sequent calculi. We then investigate their metatheory, equip them with a confluent and strongly normalizing notion of reduction, and show that they coincide with the usual Hilbert systems up to provability. Finally, we investigate a categorical semantics which interprets the modality as a product-preserving functor.Comment: Full version of article previously presented at LICS 2017 (see arXiv:1602.04860v4 or doi: 10.1109/LICS.2017.8005089
    • …
    corecore