1,296 research outputs found

    Multicriteria cruise control design considering geographic and traffic conditions

    Get PDF
    The paper presents the design of cruise control systems considering road and traffic information during the design of speed trajectories. Several factors are considered such as road inclinations, traffic lights, preceding vehicles, speed limits, engine emissions and travel times. The purpose of speed design is to reduce longitudinal energy, fuel consumption and engine emissions without a significant increase in travel time. The signals obtained from the road and traffic are handled jointly with the dynamic equations of the vehicle and built into the control design of reference speed. A robust H∞ control is designed to achieve the speed of the cruise control, guaranteeing the robustness of the system against disturbances and uncertainties

    Fuzzy cellular model for on-line traffic simulation

    Full text link
    This paper introduces a fuzzy cellular model of road traffic that was intended for on-line applications in traffic control. The presented model uses fuzzy sets theory to deal with uncertainty of both input data and simulation results. Vehicles are modelled individually, thus various classes of them can be taken into consideration. In the proposed approach, all parameters of vehicles are described by means of fuzzy numbers. The model was implemented in a simulation of vehicles queue discharge process. Changes of the queue length were analysed in this experiment and compared to the results of NaSch cellular automata model.Comment: The original publication is available at http://www.springerlink.co

    Automatic Estimation of the Exposure to Lateral Collision in Signalized Intersections using Video Sensors

    Full text link
    Intersections constitute one of the most dangerous elements in road systems. Traffic signals remain the most common way to control traffic at high-volume intersections and offer many opportunities to apply intelligent transportation systems to make traffic more efficient and safe. This paper describes an automated method to estimate the temporal exposure of road users crossing the conflict zone to lateral collision with road users originating from a different approach. This component is part of a larger system relying on video sensors to provide queue lengths and spatial occupancy that are used for real time traffic control and monitoring. The method is evaluated on data collected during a real world experiment

    The positive impacts of designing transition between traffic signal plans considering social cost

    Get PDF
    ABSTRACT: Traffic congestion generates social costs associated with additional travel time, fuel consumption and gas emissions, among others externalities. The design and implementation of policies and strategies for improving the efficiency of transport systems and mobility in cities may lead to a potential reduction of such externalities. Traffic signals plans are defined as the process of switching from one timing plan to another. The optimal implementation of the transition between signal plans is a strategy to improve the performance of signal systems. However, despite their importance, few studies have addressed it from a social approach using mathematical modelling and optimisation techniques. The purpose of this article is to evaluate the impacts of implementing the transition between signal timing plans designed from a mathematical model that minimises social costs (delays, air pollution emissions and fuel consumption). Impacts are evaluated for an arterial corridor traffic lights intersections in the city of Santander (Spain). The performance for reducing social costs of the proposed model was compared with other traditional methods. Results show that the proposed model overperforms the traditional approaches, reducing the level of externalities and social costs. Consideration of social costs when designing a transition between signal plans is a good tool to be considered by traffic planners

    Forecast based traffic signal coordination using congestion modelling and real-time data

    Get PDF
    This dissertation focusses on the implementation of a Real-Time Simulation-Based Signal Coordination module for arterial traffic, as proof of concept for the potential of integrating a new generation of advanced heuristic optimisation tools into Real-Time Traffic Management Systems. The endeavour represents an attempt to address a number of shortcomings observed in most currently marketed on-line signal setting solutions and provide better adaptive signal timings. It is unprecedented in its use of a Genetic Algorithm coupled with Continuous Dynamic Traffic Assignment as solution evaluation method, only made possible by the recently presented parallelisation strategies for the underlying algorithms. Within a fully functional traffic modelling and management framework, the optimiser is developed independently, leaving ample space for future adaptations and extensions, while relying on the best available technology to provide it fast and realistic solution evaluation based on reliable real-time supply and demand data. The optimiser can in fact operate on high quality network models that are well calibrated and always up-to-date with real-world road conditions; rely on robust, multi-source network wide traffic data, rather than being attached to single detectors; manage area coordination using an external simulation engine, rather than a na¨ıve flow propagation model that overlooks crucial traffic dynamics; and even incorporate real-time traffic forecast to account for transient phenomena in the near future to act as a feedback controller. Results clearly confirm the efficacy of the proposed method, by which it is possible to obtain relevant and consistent corridor performance improvements with respect to widely known arterial bandwidth maximisation techniques under a range of different traffic conditions. The computational efforts involved are already manageable for realistic real-world applications, and future extensions of the presented approach to more complex problems seem within reach thanks to the load distribution strategies already envisioned and prepared for in the context of this work
    corecore