5 research outputs found

    Dynamic Power Estimation of FPGA-based Wireless Communication Systems

    Get PDF
    The growing complexity of current and future wireless communication systems makes power estimation a challenging task for designers. Nowadays, it is required to estimate power very fast in order to explore and validate design choices as soon as possible in the design flow. In this paper, we propose a new dynamic power estimation methodology for FPGA-based systems. Our methodology aims to provide accurate and fast power estimations of an entire system prior to any implementation. It also aims at making design space exploration easier. We introduce a scenario-level in order to facilitate the comparison of domain-specific algorithms. This methodology relies on an IP power characterisation phase and a behavioural simulation of the modeled system using SystemC. We show the effectiveness of our approach on typical wireless communication systems which leads to a maximum absolute error lower than 6% compared to classic estimations

    High-level power optimisation for Digital Signal Processing in Recon gurable Logic

    No full text
    This thesis is concerned with the optimisation of Digital Signal Processing (DSP) algorithm implementations on recon gurable hardware via the selection of appropriate word-lengths for the signals in these algorithms, in order to minimise system power consumption. Whilst existing word-length optimisation work has concentrated on the minimisation of the area of algorithm implementations, this work introduces the rst set of power consumption models that can be evaluated quickly enough to be used within the search of the enormous design space of multiple word-length optimisation problems. These models achieve their speed by estimating both the power consumed within the arithmetic components of an algorithm and the power in the routing wires that connect these components, using only a high-level description of the algorithm itself. Trading o a small reduction in power model accuracy for a large increase in speed is one of the major contributions of this thesis. In addition to the work on power consumption modelling, this thesis also develops a new technique for selecting the appropriate word-lengths for an algorithm implementation in order to minimise its cost in terms of power (or some other metric for which models are available). The method developed is able to provide tight lower and upper bounds on the optimal cost that can be obtained for a particular word-length optimisation problem and can, as a result, nd provably near-optimal solutions to word-length optimisation problems without resorting to an NP-hard search of the design space. Finally the costs of systems optimised via the proposed technique are compared to those obtainable by word-length optimisation for minimisation of other metrics (such as logic area) and the results compared, providing greater insight into the nature of wordlength optimisation problems and the extent of the improvements obtainable by them

    Pond: A Robust, scalable, massively parallel computer architecture

    Get PDF
    A new computer architecture, intended for implementation in late and post silicon technologies, is proposed. The architecture is a fine-grained, inherently parallel system consisting of a large grid of thousands or millions of simple atomic processors (APs) employing a simple instruction set. Each AP is configured as either a program instruction or data storage element. These elements are organized into logical entities, analogous to traditional programming functions/methods and data structures. Programming work is underway to compile and run programs from traditional sequential code where parallelism is automatically discovered at the high level on both instruction level and function level, and integrated into the object code that is then sent to the processor. The result is a massively parallel architecture that fully exploits instruction and thread-level parallelism. The architecture design is presented, in-progress work involving conversion of existing code is discussed, and examples are shown to indicate the speedup potential that exists in this new architecture when compared to current architectures

    Modelling macromodules for high-level dynamic power estimation of FPGA-based digital designs

    No full text
    corecore