2 research outputs found

    Distributed Simulation of High-Level Algebraic Petri Nets

    Get PDF
    In the field of Petri nets, simulation is an essential tool to validate and evaluate models. Conventional simulation techniques, designed for their use in sequential computers, are too slow if the system to simulate is large or complex. The aim of this work is to search for techniques to accelerate simulations exploiting the parallelism available in current, commercial multicomputers, and to use these techniques to study a class of Petri nets called high-level algebraic nets. These nets exploit the rich theory of algebraic specifications for high-level Petri nets: Petri nets gain a great deal of modelling power by representing dynamically changing items as structured tokens whereas algebraic specifications turned out to be an adequate and flexible instrument for handling structured items. In this work we focus on ECATNets (Extended Concurrent Algebraic Term Nets) whose most distinctive feature is their semantics which is defined in terms of rewriting logic. Nevertheless, ECATNets have two drawbacks: the occultation of the aspect of time and a bad exploitation of the parallelism inherent in the models. Three distributed simulation techniques have been considered: asynchronous conservative, asynchronous optimistic and synchronous. These algorithms have been implemented in a multicomputer environment: a network of workstations. The influence that factors such as the characteristics of the simulated models, the organisation of the simulators and the characteristics of the target multicomputer have in the performance of the simulations have been measured and characterised. It is concluded that synchronous distributed simulation techniques are not suitable for the considered kind of models, although they may provide good performance in other environments. Conservative and optimistic distributed simulation techniques perform well, specially if the model to simulate is complex or large - precisely the worst case for traditional, sequential simulators. This way, studies previously considered as unrealisable, due to their exceedingly high computational cost, can be performed in reasonable times. Additionally, the spectrum of possibilities of using multicomputers can be broadened to execute more than numeric applications

    Negotiated resource brokering for quality of service provision of grid applications

    Get PDF
    Grid Computing is a distributed computing paradigm where many computers often formed from different organisations work together so that their computing power may be aggregated. Grids are often heterogeneous and resources vary significantly in CPU power, available RAM, disk space, OS, architecture and installed software etc. Added to this lack of uniformity is that best effort services are usually offered, as opposed to services that offer guarantees upon completion time via the use of Service Level Agreements (SLAs). The lack of guarantees means the uptake of Grids is stifled. The challenge tackled here is to add such guarantees, thus ensuring users are more willing to use the Grid given an obvious reluctance to pay or contribute, if the quality of the services returned lacks any guarantees. Grids resources are also finite in nature, hence priorities need establishing in order to best meet any guarantees placed upon the limited resources available. An economic approach is hence adopted to ensure end users reveal their true priorities for jobs, whilst also adding incentive for provisioning services, via a service charge. An economically oriented model is therefore proposed that provides SLAs with bicriteria constraints upon time and cost. This model is tested via discrete event simulation and a simulator is presented that is capable of testing the model. An architecture is then established that was developed to utilise the economic model for negotiating SLAs. Finally experimentation is reported upon from the use of the software developed when it was deployed upon a testbed, including admission control and steering of jobs within the Grid. Results are presented that show the interactions and relationship between the time and cost constraints within the model, including transitions between the dominance of one constraint over the other and other things such as the effects of rescheduling upon the market
    corecore