
Negotiated Resource Brokering for Quality of
Service Provision of Grid Applications

by

Richard Edward Kavanagh

Submitted in accordance with the requirements
for the degree of Doctor of Philosophy.

The University of Leeds
School of Computing

April 2013

The candidate confirms that the work submitted is his/her own, except where work
which has formed part of jointly authored publications has been included. The

contribution of the candidate and the other authors to this work has been explicitly
indicated within the declaration section of this thesis. The candidate confirms that
appropriate credit has been given within the thesis where reference has been made

to the work of others.

This copy has been supplied on the understanding that it is copyright material and
that no quotation from the thesis may be published without proper

acknowledgement.

c©2013 The University of Leeds and Richard Kavanagh

Abstract
Grid Computing is a distributed computing paradigm where many computers often

formed from different organisations work together so that their computing power may be
aggregated. Grids are often heterogeneous and resources vary significantly in CPU power,
available RAM, disk space, OS, architecture and installed software etc. Added to this lack
of uniformity is that best effort services are usually offered, as opposed to services that
offer guarantees upon completion time via the use of Service Level Agreements (SLAs).
The lack of guarantees means the uptake of Grids is stifled. The challenge tackled here
is to add such guarantees, thus ensuring users are more willing to use the Grid given an
obvious reluctance to pay or contribute, if the quality of the services returned lacks any
guarantees.

Grids resources are also finite in nature, hence priorities need establishing in order
to best meet any guarantees placed upon the limited resources available. An economic
approach is hence adopted to ensure end users reveal their true priorities for jobs, whilst
also adding incentive for provisioning services, via a service charge.

An economically oriented model is therefore proposed that provides SLAs with bi-
criteria constraints upon time and cost. This model is tested via discrete event simulation
and a simulator is presented that is capable of testing the model. An architecture is then
established that was developed to utilise the economic model for negotiating SLAs. Fi-
nally experimentation is reported upon from the use of the software developed when it
was deployed upon a testbed, including admission control and steering of jobs within the
Grid. Results are presented that show the interactions and relationship between the time
and cost constraints within the model, including transitions between the dominance of
one constraint over the other and other things such as the effects of rescheduling upon the
market.

i

Acknowledgements
I would like to thank my supervisor Karim Djemame for his guidance during my

studies at Leeds University and similarly my secondary supervisor Natasha Shakhlevich.
Karim has been a great help during my studies imparting a great deal of knowledge and
advice, regardless of his busy schedule, while Natasha has shown me aspects of operations
research and how it reflects upon my work. I would like to acknowledge the guidance and
help that Django Armstrong gave during the setting up of the experimental testbed, which
was most appreciated, as part of his role as its administrator. I would also like to thank
Oliver Waldrich for his assistance via email during the early stages of my usage of WS-
Agreement for Java, which was an essential software component of my work.

Technical issues aside a PhD is an emotional experience I would therefore like to thank
the members of the Distributed Systems and Services Research group for their much val-
ued companionship and discussions during my course. In particular I would specifically
like to mention the coffee group from my office who were some of my closest friends
during my time at Leeds: Django Armstrong, Silvana De Gyves, Mariam Kiran and Asif
Sangrasi. We often ventured across to the coffee shop the Opposite, for much needed
socialising and relaxation.

I would like to show my gratitude and appreciation for my family, for their tireless
support throughout my life, my parents Stuart and Denise Kavanagh and my brother and
sister Christopher and Michelle. I would also like to thank my girlfriend Beth Williams
for her steadfast support during my studies. She has tirelessly driven to Leeds from my
home town to be with me and has been there for me when I have needed her the most.

I would also like to thank the Engineering and Physical Science Research Council
for funding the Intelligent Scheduling for Quality of Service (ISQoS) research project
(EPSRC: Reference EP/G054304/1) which has allowed this work to be made possible.

ii

Declarations
Some parts of the work presented in this thesis have been published in the following
articles:

Journal Articles:

R. Kavanagh and K. Djemame. An Economic Market for the Brokering of Time and Bud-
get Guarantees. Concurrency Computation Practice and Experience, (submitted).

Contributing to Chapter 6.

Conference and Workshop Papers:

R. Kavanagh and K. Djemame. A state based grid. In 26th UK Performance Engineering
Workshop, page 8, Warwick, 2010. The University of Warwick.

Contributing to Chapter 4.

R. Kavanagh and K. Djemame. A grid broker pricing mechanism for temporal and bud-
get guarantees. In Nigel. Thomas (editor), 8th European Performance Engineering
Workshop (EPEW 2011), Lecture Notes in Computer Science, vol. 6977, Borrow-
dale, The Lake District, UK, 2011. Springer.

Contributing to Chapters 3 and 4.

R. Kavanagh and K. Djemame. Negotiated economic grid brokering for quality of ser-
vice. In Yeo S, Pan Y, Lee YS, Chang HB (editors) Computer Science and its
Applications, pp.87-96. 2012.

Contributing to Chapter 5.

R. Kavanagh; K. Djemame. The ISQoS Grid Broker for Temporal and Budget Guaran-
tees. In Vanmechelen K, Altmann J, Rana O (editors) Lecture Notes in Computer
Science, vol. 7714, pp.76-90. Springer Berlin Heidelberg. 2012.

Contributing to Chapter 6.

All material in these articles is the candidate’s own work, under the supervision of the
co-author Karim Djemame.

iii

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 1
1.3 Research Context . 5
1.4 Aim and Objectives . 5
1.5 Methodology . 6
1.6 Contributions . 7
1.7 Thesis Overview . 9

2 Background 10
2.1 Introduction . 10
2.2 Grid Computing . 10

2.2.1 What is the Grid? . 10
2.2.2 History of the Grid . 12

2.2.2.1 First Generation: Coupling Super Computers Together . 12
2.2.2.2 Second Generation: Rise of Middleware 12
2.2.2.3 Third Generation: Start of Standardization and Inter-

operability - Meta-Data, Self* and Automation 13
2.2.2.4 Fourth Generation: Common Middleware Standards . . 14
2.2.2.5 Fourth Generation: Quality of Service Provision 14
2.2.2.6 Fourth Generation: Economics and User Orientation . . 15

2.3 Quality of Service . 16
2.3.1 What is Quality of Service . 16
2.3.2 What effects Quality of Service 16

2.3.2.1 Task Heterogeneity 16
2.3.2.2 Resource Heterogeneity 18
2.3.2.3 Network Heterogeneity 19
2.3.2.4 Scheduling Requirements 19

iv

2.3.3 QoS Provision Mechanisms . 20
2.3.3.1 Advance Reservation 20
2.3.3.2 Check Pointing and Replication 21
2.3.3.3 Modelling Grids . 23
2.3.3.4 Scheduling . 23
2.3.3.5 Admission Control . 24

2.4 Service Level Agreements . 24
2.4.1 SLAs in Grids . 25
2.4.2 WS-Agreement . 26

2.4.2.1 Flow of Actions in an Agreement 28
2.4.2.2 Agreement States . 29
2.4.2.3 Service Term States 30
2.4.2.4 Guarantee Term States 31
2.4.2.5 Negotiation States . 32

2.4.3 Requirements for Negotiation 33
2.4.3.1 Negotiation Initiator 33
2.4.3.2 Negotiation Responder 34
2.4.3.3 Negotiation Terms . 34
2.4.3.4 Negotiation Requirements due to Economics 34

2.5 Grid Economics . 35
2.5.1 Overview of Grid Economy . 35
2.5.2 Economic Concepts . 37
2.5.3 Economic Approaches . 40

2.5.3.1 Auctions . 40
2.5.3.2 Commodity Markets 43
2.5.3.3 Bargaining Model . 45
2.5.3.4 Tender Contract . 45
2.5.3.5 Catallexy . 46

2.6 Scheduling in Grids . 47
2.6.1 Aspects of Scheduling in Grids 47
2.6.2 Schedule Fragmentation . 48
2.6.3 Information Availability and Dynamics of the Grid 49
2.6.4 Network Oriented Scheduling 49
2.6.5 Data Storage . 52
2.6.6 Bag of Tasks, Workflows and Divisible Load 52
2.6.7 Batch vs Online Scheduling . 54

v

2.7 Summary . 55

3 Pricing Policy 56
3.1 Introduction . 56

3.1.1 Aims and Objectives . 57
3.2 Related Work . 57

3.2.1 First Price . 57
3.2.2 First Reward & Risk Reward . 58
3.2.3 First Profit, First Opportunity & First Opportunity Rate 59
3.2.4 LibraSLA . 60
3.2.5 Aggregate Utility . 61

3.3 Pricing of the Broker’s Job Execution Service 62
3.3.1 Input Parameters . 62
3.3.2 Overview of the Model’s Sequence of Events 65
3.3.3 Calculating the Service Price . 66
3.3.4 Overall Effect of the Market . 68

3.4 The Simulator . 69
3.4.1 Simulators . 69

3.4.1.1 Primary Candidates 70
3.4.1.2 Other Simulators . 73
3.4.1.3 Summary of Simulators 74

3.4.2 ISQoS Pricing Simulator . 75
3.4.2.1 Discrete Event Simulation 75
3.4.2.2 Parameter Study Mode 76
3.4.2.3 Discrete Event Simulation Mode 77

3.5 Experimental: Parameter Variation Study 80
3.5.1 Resource and Service Market 80
3.5.2 Service Market . 82

3.6 Experimental: Discrete Event Simulation 90
3.6.1 Experimental Method . 90
3.6.2 Configuration . 91
3.6.3 Results . 92

3.6.3.1 Job Acceptance and Slack 92
3.6.3.2 The Effects of Gradient Based Deadlines 96

3.7 Comparison Study . 99
3.8 Summary . 100

vi

4 ISQoS Broker 102
4.1 Introduction . 102
4.2 Related Work . 103

4.2.1 Best Effort . 103
4.2.1.1 Condor & Condor/G 103
4.2.1.2 Portable Batch System (PBS) 103
4.2.1.3 Oracle Grid Engine 104
4.2.1.4 Globus . 104

4.2.2 Quality of Service . 104
4.2.2.1 OpenCCS (Paderborn Center for Parallel Computing) . 105
4.2.2.2 GridWay Metascheduler 105

4.2.3 Economic . 106
4.2.3.1 Nimrod/G . 106
4.2.3.2 GridBus + Aneka . 106
4.2.3.3 GEMSS . 107
4.2.3.4 Resource Aware Policy Administrator 107
4.2.3.5 GridEcon . 108

4.3 Requirements Analysis . 109
4.3.1 Requirements . 109
4.3.2 Development Choice . 109

4.4 Architecture . 111
4.4.1 Overall Architecture . 111
4.4.2 Agreement Structure . 113
4.4.3 Data Representations . 115
4.4.4 Grid State Representation . 117
4.4.5 Offer Generation . 119
4.4.6 Scheduling Algorithms . 122
4.4.7 Offer Ranking and Selection . 126

4.4.7.1 Offer Sorting Mechanisms 127
4.4.7.2 Offer Filtering Mechanisms 128

4.4.8 Pricing Mechanisms . 130
4.4.8.1 The Available Pricing Mechanisms 130
4.4.8.2 The Effects of Dynamic Pricing Mechanisms 131

4.5 Feature Comparison . 133
4.5.1 Cost & Time Guarantees . 133
4.5.2 Advance Reservation Support 134

vii

4.5.3 Queuing vs Scheduling . 134
4.5.4 Negotiated Job Submission . 135
4.5.5 Monitoring, Adaptation and Rescheduling 136
4.5.6 Advanced Discovery, Scheduling API & Flexible Pricing 136
4.5.7 User vs System Centric Scheduling 137
4.5.8 Open Standards . 137
4.5.9 Comparison Study . 137

4.6 Summary . 140

5 Job Admission and Profit 142
5.1 Introduction . 142
5.2 Experimental Research Objectives . 143
5.3 Experimental Setup . 143

5.3.1 Experimental Method . 143
5.3.2 Experimental Configuration . 146

5.4 Results . 147
5.5 Summary . 151

6 Dynamic Pricing And Offer Prioritisation 152
6.1 Introduction . 152
6.2 Experimental Research Objective . 153
6.3 Experimental Setup . 153

6.3.1 Experimental Method . 153
6.3.2 Experimental Configuration . 154

6.4 Results . 155
6.4.1 Transition to Economic Constraints Dominance 155
6.4.2 Rescheduling . 161
6.4.3 Causes of Price Instability . 163
6.4.4 Price Stability . 164

6.5 Discussion upon Price Stability . 176
6.5.1 Maintaining Selection Pressure 177
6.5.2 Effectors of Price Stability . 177

6.6 Recommendations for Countering Price Instability 179
6.7 Time and Cost Constraints Compared 180
6.8 Summary . 182

viii

7 Conclusion 183
7.1 Summary . 183
7.2 Contributions . 185
7.3 Future Work . 186

7.3.1 Cloud Computing Deployment 186
7.3.2 Economics . 187

Bibliography 189

ix

List of Figures

1.1 An Overview of the Grid . 2

2.1 Overview of WS-Agreement Structure [141] 27
2.2 Overview of WS-Agreement Negotiation Structure [144] 28
2.3 Agreement States in WS-Agreement [141] 29
2.4 Service Term States [141] . 30
2.5 Guarantee Term States [141] . 31
2.6 Negotiation States [144] . 32
2.7 Scheduling in Grids from a Broker’s Perspective [107] 48

3.1 Aggregate Utility’s Function For Rewarding The Completion Of A Set Of
Tasks . 62

3.2 The Resource Cost in Relation to the Pricing Model 63
3.3 Overview of the Model’s Sequence of Events 65
3.4 Charging of the Guaranteed Time Service 66
3.5 Charging of the Guaranteed Time Service - Temporal Aspects 68
3.6 The Service Market - An overview of Temporal and Budgetary Aspects . 68
3.7 An Overview of Discrete Event Simulation 75
3.8 An Overview of the Simulator . 78
3.9 An Overview of the Resource and Service Market Interaction 81
3.10 Broker’s Profit - Varying Deadline and Markup (completion time = 15,000) 82
3.11 Broker’s Profit Shown as a Surface - Varying Deadline and Markup (com-

pletion time = 15,000) . 84
3.12 Penalty Fee Exploration Shown as a Surface - Varying Due Date, Dead-

line and Penalty Fee . 84
3.13 Penalty Fee Exploration at 25% Mark-up Varying Penalty Fee, (Due Date

= 15,000, Deadline = 18,000 . 85
3.14 Resource Cost Exploration: Fixed Penalty Fee at 0 Varying Resource

Cost, Markup and Due Date . 87

x

3.15 Resource Cost & Penalty Fee Cap Exploration: Varying Penalty Fee, Re-
source Cost, Markup and Due Date . 89

3.16 The Effects of Slack upon Job Acceptance with Varying a) Markup, b)
Arrival Rate, c) Task Count, d) Task Size and e) Reference Machine Speed 93

3.17 The Effect of Slack and Deadlines on Job Acceptance 97
3.18 The Effects of Intelligent Filtering . 98

4.1 Overview of the ISQoS System . 111
4.2 ISQoS SLA Structure . 114
4.3 Job, Task and Action’s Internal Representations within an ISQoS Provider 115
4.4 Resources . 117
4.5 State . 117
4.6 The Elements of the Scheduling System 119
4.7 The Flow of Events in the Offer Maker and Committer Component 120

5.1 Average Slack . 147
5.2 Average Number of Jobs Accepted . 148
5.3 Overall Broker Profit . 148
5.4 Average Start Delay . 150
5.5 Completion Time Trace - Run 1 - Highest Profit Based Selection 150

6.1 Transition to Budget Prioritisation - With Round Robin Scheduling 156
6.2 All Constraint Violations - With Round Robin Scheduling 157
6.3 Constraint Violations with a Budget of 12,000 only - With Round Robin

Scheduling . 157
6.4 Constraint Violations with a Budget of 15,000 only - With Round Robin

Scheduling . 158
6.5 Start Delay - With Round Robin Scheduling - For All Due Dates 159
6.6 Start Delay - With Round Robin Scheduling - For Due Dates 18, 20 and 24 159
6.7 Start Delay - With Round Robin Scheduling - Shown By Due Date 161
6.8 All Constraint Violations - With Rescheduling 162
6.9 Effect upon Service Price of Rescheduling (Due Date = 20, Average of all

Runs) . 162
6.10 Instability Demonstration - Round Robin 163
6.11 Instability Demonstration - Rescheduling 164
6.12 Average Time Between Billing Events for each Given Due Date) 165

xi

6.13 Standard Deviation for the Time between Billing Events for each Given
Due Date) . 165

6.14 Average Time Between Billing Events for Due Date = 24) 166
6.15 Average Time Between Billing Events for Due Date = 8) 167
6.16 Average Time Between Billing Events for Due Date = 16) 167
6.17 Average Service Price (For Each Due Date) 168
6.18 Standard Deviation of the Average Service Price (as shown in Figure 6.17) 169
6.19 Standard Deviation as Multiple of Smallest Deviation Value 169
6.20 Service Price over Time (Due Date = 24) 171
6.21 Final Overall Revenue . 171
6.22 Constraint Violations - Re-Priced (All Budgets) 172
6.23 Job Acceptance and Budget Selection Preference for re-pricing 173
6.24 Job Acceptance and Budget Selection Preference for Rescheduling 173
6.25 Rescheduling - Job Completion Time 174
6.26 Round Robin - Job Completion Time . 174
6.27 Rescheduling Re-priced - Job Completion Time 175
6.28 Job Acceptance . 176
6.29 Price and Schedule Dependence . 176

xii

List of Tables

3.1 EBNF Used in description of user input 66
3.2 The Machine Cost Pairs used in the Resource and Service Market Example 81
3.3 Parameters for Figures 3.10 and 3.11 . 83
3.4 Parameters for Figures 3.12 and 3.13 . 85
3.5 Parameters for Figure 3.14 . 88
3.6 Parameters for Figure 3.15 . 90
3.7 The Minimum and Maximum Tasks per Job 92
3.8 The Relative Speed Difference Between the Reference Machine and the

Slowest machine . 95
3.9 Comparison of Related Pricing Models 100

4.1 Queuing vs Scheduling [18] . 135
4.2 Feature Comparison Study - Best Effort 138
4.3 Feature Comparison Study - QoS . 139
4.4 Feature Comparison Study - Economic 140

6.1 Summary of Standard Deviation of Service Price 170
6.2 Summary of Standard Deviation of Service Price Ignoring Due Date 20

and 24 . 170
6.3 Cost and Time Constraints Compared 181

xiii

List of Algorithms

1 Nimrod/G’s Cost Optimize . 123
2 Nimrod/G’s Time Optimize . 123
3 Nimrod/G’s Cost Time Optimize . 124
4 Cost Roulette Wheel . 125
5 Round Robin Rescheduling . 126
6 ISQoS Hybrid Offer Filter . 128

xiv

List of Abbreviations

API Application Programmers Interface

BEinGrid Business Experiments in GRID

BOT-R Bag of Tasks Rescheduling

BREIN Business objective-driven REliable and Intelligent grids for real busiNess

CCR Communication-to-Computation Ratio

CPU Central Processing Unit

CVS Concurrent Versioning System

DAG Directed Acyclic Graph

DiffServ Differentiated Services

distributed hash tables DHT

DRMAA Distributed Resource Management Application API

EBNF Extended Backus Noar Form

EGI European Grid Initiative

EGI-InSPIRE Integrated Sustainable Pan-European Infrastructure for Researchers in Eu-
rope

EMI European Middleware Initiative

FAFNER Factoring via Network-Enabled Recursion

FCFS First Come First Serve

FIFO First in First Out

xv

G-QoSM Grid Quality of Service Management

GARA General-Purpose Architecture for Reservation and Allocation

GB GigaBytes

GEMSS Grid-Enabled Medical Simulation Services

GES Grid Economic Simulator

GLUE Grid Laboratory Uniform Environment

GNB Grid Network Broker

GNRB Grid Network-aware Resource Broker

GPU Graphical Processor Unit

GRACE GRid Architecture for Computational Economy

GT4 Globus Toolkit 4

HECIOS The High End Computing I/O Simulator

HPC4U Highly Predictable Cluster for Internet-Grids

IaaS Infrastructure as a Service

ISQoS Intelligent Scheduling for Quality of Service

JSDL Job Submission Description Language

JSS Job Submission Service

LJF Longest Job First

LL Load Leveller

MB MegaBytes

MHz MegaHertz

Middleware for Activating the Global Open Grid MaGoG

MPI Message Passing Interface

NASA National Aeronautical and Space Administration

xvi

NQS Network Queueing System

NRSE Network Resource Scheduling Entity

OGE Oracle Grid Engine

OGSA Open Grid Service Architecture

OGSI Open Grid Service Infrastructure

PaaS Platform as a Service

PBS Portable Batch System

QoS Quality of Service

RAM Random Access Memory

RAPA Resource Aware Policy Administrator

RSL Resource Specification Language

SaaS Software as a Service

SETI Search for ExtraTerrestrial Intelligence

SJF Shortest Job First

SLA Service Level Agreement

SLO Service Level Objectives

SORMA Self-Organizing ICT Resource Management

Time to Live TTL

VM Virtual Machine

VO Virtual Organisation

WQR Work Queue with Replication

WQR-FT Work Queue Replication - Fault Tolerant

WS-Agreement WS Agreement

WSAG4J WS-Agreement for Java

xvii

WSLA Web Service Level Agreement

WSRF Web Service Resource Framework

XML eXtensible Markup Language

xviii

Chapter 1

Introduction

1.1 Introduction

This is the introductory chapter to the thesis. It starts by expressing the motivational
scenarios for this work in Section 1.2 and places this motivation within the context of the
Intelligent Scheduling for Quality of Service (ISQoS) project in Section 1.3. From the
motivational scenarios the aims and objectives for the thesis are derived (see Section 1.4).
The discussion then focuses upon how the research was conducted in the methodology
(Section 1.5) and then onto the contributions of the research in Section 1.6. This chapter
then finishes with an overview of the thesis’ structure in Section 1.7.

1.2 Motivation

Grids [76] link a large set of computers together for the execution of jobs in a coordi-
nated manner. Thus they enable the execution of applications in a distributed fashion
using many computers. Their focus is upon sharing ”direct access to computers, soft-
ware, data and other resources, as is required by a range of collaborative problem-solving
and resource brokering strategies emerging in industry, science and engineering.” [79].

To enhance the understanding of the Grid the following flow of actions in a standard
Grid job submission are described. This description that is given has an intermediary
broker that steers jobs in the Grid to local schedulers, which is the case in the majority of

1

Chapter 1 2 Introduction

centralized Grid environments [117].

Figure 1.1: An Overview of the Grid

A Grid broker would be used to contact several resource providers, across a network
infrastructure, as illustrated in Figure 1.1. Each of these resource providers makes avail-
able to the broker a set of compute resources, that provide both storage and compute
facilities. A user utilises the broker to submit work to the providers. The broker takes
the job of the user and selects the best provider to perform the execution of the job and
submits it to that provider. A resource provider is required to execute any job it is given
by the broker. This may either be via queuing the job for execution or by performing
scheduling. Jobs comprise of several tasks, that have to be executed. These tasks require
that data be transferred to the provider, which may also include the executable to be run.
The Grid application is then run on the provider’s resources, after which a set of results
are generated. At the end of execution the resource provider then sends the computed
results back to the end user, over the network.

A brokered scenario is not the only one possible. It is also possible that a client would
submit jobs directly to a given provider. It therefore means there is a need for the broker
to offer added benefit in order to justify its existence within the Grid environment. This
may be as simple as the knitting together of different environments such as Condor with
Condor/G [178], but in later years others such as AssessGrid [18] offered assessments in
regards to trust and offered the provider most likely to fulfil the SLA. AssessGrid achieved
its brokerage in one of two ways either acting as a full intermediary in which it acts as a

Chapter 1 3 Introduction

virtual provider and subcontracting to the best provider available or acting merely as an
advisory service pointing users onto the best provider.

In Grids it is common that applications are served in a best effort approach only, with
no guarantees placed upon the service quality. This is primarily due to the system centric
nature of existing production Grids. The emphasis being upon the queuing of jobs ready
for computation, with the sole intent of maintaining high resource utilisation, rather than
user satisfaction. User-centric behaviour [54, 99] on the other hand is oriented toward
providing the greatest utility to the end user by providing guarantees upon performance
and are usually aided by a system of rewards and penalties [37]. It has also been known
for some time that guaranteed provision of reliable, transparent and quality of service
(QoS) oriented resources is the next important step for Grid systems [18, 90, 106, 111,
124, 130, 134].

In many commercial and scientific settings, guarantees that computation is going to
be completed on time are required. It is therefore important to establish during the sub-
mission of a job the requirements of the users in terms of completion time and the priority
they hold for the work.

The motivation for this work in providing time and cost guarantees can be illustrated
in the following three scenarios:

• The first is a commercial scenario, such as animation, where frames may be com-
puted overnight before the animation team arrives the next day, as with any overnight
batch jobs partial completion of the work delays or stops the team from starting
the next day’s work [17]. This scenario presents a commercialisation of the Grid,
where the use of best effort services, which have no attached guarantees limits the
economic importance of Grids. This is due to users reluctance to pay, directly or
indirectly (e.g., by contributing resources to the Grid), for the service they receive,
if there are no guarantees on performance particularly when computed results are
needed for a commercial process [111]. A further problem in this scenario is that
current Grid markets are system centric selling physical resources, i.e. CPU hours.
This however, is not relevant to enterprise customers who have deadlines to meet
and have limited ideas about how many physical resources are required to meet
such a deadline [130], thus a more user centric approach must be realised.

• The second scenario is in an academic environment where it is common before con-
ferences for Grids to become overloaded [95]. This requires on an academic Grid
for jobs associated with the conference to be prioritised and the results obtained in
a timely manner before it becomes too late to submit to the conference. The empha-

Chapter 1 4 Introduction

sis in this scenario is upon the limited availability of resources and the requirement
to prioritise work, to ensure the most valuable jobs are completed first. In existing
infrastructure jobs are queued and results are returned as and when they are ready.
If the Grid becomes overloaded jobs that are of a high priority get delayed by jobs
that could otherwise have waited. In order to determine priority however users need
to be incentivised to reduce their priority, over others. An economic approach is a
means to achieve this [37], as value-oriented approaches are not sufficient, as all
participants have to be willing to report their priorities and values honestly [130].

• The third scenario is taken from the field of Urgent Computing. The aim of Urgent
Computing is to aid decision making in events [127] e.g. earthquake prediction
[80]. In such cases it is not useful to waste time waiting for jobs to complete in
a queue, as is the case in the best effort approach. This is principally because
Urgent Computing jobs are computationally demanding jobs which are started with
a low level of predictability and which need to be completed before a given deadline
[127]. In this scenario the time criticality is key. If deadlines are missed then the
value of the results gained by computation is negligible. Thus further emphasis can
be brought upon ensuring time guarantees.

To further focus our work and enhance its relevance the types of application running
upon the Grid was considered. The types of tasks to be considered was narrowed to Bag
of Task based applications, which are the predominate form of workload in Grids [95].
In this form of application a collection of similar tasks are submitted, which are wholly
independent and do not need communications between tasks belonging to the same job
[122].

Given the finite Grid resources available (including the end user’s budget), it is wise to
prioritise jobs based upon the importance to the end user. In order that this prioritisation
is provided correctly an economic approach is used to ensure end users give more truthful
indications of their priorities [37, 118]. The adding of the cost requirement means the
planned broker has to deal with the bi-criteria problem of ensuring both the budget and
completion time are met and that its justification for participating within the Grid is that
guarantees can be placed upon such criteria.

In delivering these time and cost requirements, it presents the added advantage that
Grids can be moved away from the best-effort service which limits their importance, as
users would be more willing to pay or contribute resources if results are returned on time,
as late results are of limited use [111].

Chapter 1 5 Introduction

1.3 Research Context

The work discussed in this thesis was part of the ISQoS project (2009-2013). This project
was funded by the Engineering and Physical Science Research Council (EPRSC). It was
multidisciplinary in nature, with the aim of producing collaborative work between the
Grid and Operations Research communities. The focus of the project was to improve QoS
provision in Grids via advanced scheduling techniques. The focus of the development
work was therefore directed towards methodologies that could foster this possibility and
hence introduced its own requirements, while also focusing the project towards the area
of scheduling.

The aim of the ISQoS project in particular was to develop a resource broker that
combines the features of both system-centric and user-centric brokers [161]. It was to
transparently meet users’ requirements, whilst also optimising the usage of Grid resources
for multiple resource providers. This was to be achieved by scheduling while ensuring
the runtime for users’ jobs and resource usage cost was balanced.

1.4 Aim and Objectives

The aims and objectives of the work presented in this thesis are to:

• provide a brokering architecture that can be used to support QoS in terms of time
and cost constraints.

This architecture should also support:

– Reservation Based Allocation: This is a central requirement of planning using
techniques used in operational research. In meeting this requirement it allows
domain experts in the field of scheduling to contribute to the Grid community.

– Service Level Agreements (SLAs): SLAs can be used to offer guarantees on
QoS, it is proposed that this can be based upon a plan of action created by a
scheduling phase.

– Negotiation: so that QoS may be achieved while respecting the current en-
vironment’s ability to provide such service levels. This should hence respect
both user and service provider’s needs.

• provide a market model for job submission that distinguishes between jobs in terms
of QoS levels. The market should be tested via simulation and via an experimental
testbed.

Chapter 1 6 Introduction

• ensure that the market model is constructed to allow multiple providers to compete
for jobs and to manage the steering of jobs between providers.

• provide a platform so that experimentation may be performed using the proposed
brokering architecture as an exploration of the possibility of taking expertise from
operations research into Grids.

1.5 Methodology

In order to perform an investigation that meets the aims and objectives of this work, the
following methodology was applied.

The first stage was to assess existing economic models against the envisaged ISQoS
requirements, which were derived from the motivating scenario. After this assessment
was performed the pricing model was designed, ensuring it binds cost and time factors
and generally meets the requirements specification.

After an initial model was designed it was required to be tested. There are three
principle ways this might be achieved, of which two methods were chosen. They are
described as follows:

Simulation: This requires the model to be represented in a simulator and for experimen-
tation to be performed. In this respect it is reliable in that conditions within the
simulated Grid are likely to be reproducible. It can also be performed quite quickly
and is responsive to changes should they be required. The simulation alone however
requires further verification, to ensure that the simulation matches reality. Examples
of the simulation approach been taken include [35, 42, 49, 94, 125].

Direct Experiment - on a Grid: This method of testing the model is the most accurate
should the conditions match that of a typical infrastructure. It is however very re-
source intensive to prepare requiring substantial preparations. It also requires inter-
fering with a working Grid infrastructure. A more reasonable and related approach
is to use a testbed, that is a scaled down version of such a Grid infrastructure. In
doing so there is no interference with existing infrastructure and greater control can
be granted over the testbed’s infrastructure. Examples of such an approach been
taken include [32, 150, 184, 185, 191].

Mathematical Modelling: This requires the construction of a precise mathematical model
that must match the real environment as closely as possible. This proves difficult

Chapter 1 7 Introduction

in the Grid situation which is subject to randomness caused by the distributed na-
ture of the Grid and underlying non-Grid workloads. Examples of mathematical
modelling being used include [26, 102, 153, 183].

The approach taken was therefore to test the model via simulation and by direct ex-
periment upon a testbed.

In order to ensure the model was correctly implemented when testing via simulation,
a discrete event simulator was constructed. In doing this it ensured the model was im-
plemented without taking into consideration any shortcomings of other simulators due to
the simulator’s authors own assumptions and research focus, such as auctions in Grid-
Sim [42].

The initial investigation of the proposed model was performed using simulation. This
was done to ensure viability. Discrete event simulation also acted as a way of providing
fine grain control of the test environment, while also ensuring the development risk was
low, by not committing to building an experimental prototype based upon an untested
model.

Finally an experimental prototype was constructed and used to perform experimenta-
tion upon a testbed. A testbed within the school was chosen for this purpose, due to both
its availability and capacity to configure the test environment, particularly in regards to
that of the broker and internals of the resource providers.

The experimentation was performed in stages initially without dynamic pricing or
rescheduling. Dynamic pricing and other advanced features were finally added, thus test-
ing the model with all the complexities that it allows.

1.6 Contributions

This thesis has the following major contributions:

• An Architecture, for the ISQoS Broker. This is a broker and middleware that estab-
lishes a tender market by which service providers may bid for jobs to perform. It
incorporates a negotiation mechanism that is used to define quality of service con-
straints upon the services for both completion time and cost. This contribution can
be found in Chapter 4.

• An Economic Model: The Pricing Model is the central part of the broker, it binds
the price to the end user with the quality of service provided by the service provider.
It ensures that if the SLA obligations are not met that the broker is incentivised by

Chapter 1 8 Introduction

losing money. In order to ensure the broker remains profitable it must perform
only the admission of jobs that are likely to have their SLAs met, hence admission
control also features as part of the economic models contribution. This contribution
can be found in Chapter 3 and has been implemented within the broker, aspects of
the models behaviour can be seen in the next three contributions.

• A Simulation Study of the Pricing Mechanism of the Offers/Job Service Market:
A simulation was performed with the main aim of establishing a repeatable experi-
ment that tests the viability of the brokering mechanism, ensuring that it may be de-
signed to have budget balance and remain incentive compatible [155]. In achieving
this a viable broker for a job execution service can be established. This contribution
can be found in Chapter 3.

• Recommendations on Selection Strategies: From the experimentation performed
both with a testbed and by simulation, recommendations are presented on selection
strategies that may be used by any person wishing to implement a similar econom-
ically orientated Grid. This contribution can be found in Chapter 5, as part of the
experimentation performed.

• Recommendations in Regards to System Stability: The experimentation performed
will show how economic stability can be achieved within a Grid market given vari-
ous factors such as rescheduling. The impacts upon the market will be demonstrated
and recommendations on structuring the pricing mechanisms will be made to en-
sure overall system and price stability. This contribution can be found in Chapter 6
as part of the experimentations performed.

Chapter 1 9 Introduction

1.7 Thesis Overview

The remaining part of the thesis is laid out as follows:

• Chapter 2 will establish the background and introduce the current state of the art in
Grids. It will indicate the current trends in Grid research towards QoS and outline
where this thesis fits within this trend.

• In Chapter 3 the pricing mechanism within the brokering system will be introduced.
This model drives the decision making within the broker and ensures that the quality
of service parameters of time and cost can assessed by the broker.

• The broker is then introduced in Chapter 4. This chapter discusses the architecture
in detail and discusses recommendations on economically oriented Grid brokers.

• Chapters 5 and 6 discuss experiments using the broker. Chapter 5 focuses upon
static pricing and what can be learned while Chapter 6 focuses upon dynamic pric-
ing and rescheduling.

• Finally Chapter 7 concludes this thesis and suggests areas for future work.

Chapter 2

Background

2.1 Introduction

In this chapter the background to the work presented in the thesis is discussed. This starts
with the topic of Grid computing followed by a history of the Grid, which places the
thesis work in the context of developments within the Grid community. The next stage
is to discuss Quality of Service (QoS) provision and to discuss in particular what has an
effect on QoS and how these issues might be mitigated. The next area discussed is that
of Service Level Agreements (SLAs), this covers their usage in Grid and also the Open
Grid Forum standard called WS-Agreement [141], after this is discussed the concept of
the Grid Economy is covered. An overview of Grid economics is given first, detailing the
benefits that it offers. Then key requirements for Grid economics to work are discussed,
followed by a discussion of the possible approaches that may be taken. Finally scheduling
within Grids is discussed.

2.2 Grid Computing

2.2.1 What is the Grid?

The Grid [76] is a form of distributed computing in which resources are shared. The
resources are used for computationally difficult and/or data intensive jobs that require

10

Chapter 2 11 Background

multiple resources in order that the job is completed. There are fundamental requirements
for a distributed system to be considered a Grid. These requirements are to [76]:

1. ”co-ordinates resources that are not subject to centralized control”

2. use ”standard, open, general purpose protocols and interfaces”

3. ”deliver non-trivial qualities of service”

In order to explore the meaning of the Grid these points are discussed further:
Point 1 declares there to be no centralized control. In Grids this comes about from

the notion of sharing resources, where multiple institutions may collaborate together to
form a Grid. There is therefore a strong emphasis on sharing resources, between multiple
different groups and on collaboration. This requirement to coordinate resource sharing
and problem solving across multiple organisations is hence fundamental to the Grid prob-
lem [79].

Virtual organizations (VOs) are a concept in Grids that captures this concept clearly.
VOs are collections of individuals, institutions and resources that have been brought to-
gether to meet a common goal. VOs in Grids are therefore aimed at supporting the Grid’s
goal of cooperation by enabling the sharing of resources. This might include access to
applications, compute cycles and storage facilities etc. and that this sharing is non-trivial
in nature [79]:

”The sharing that we are concerned with is not primarily file exchange but
rather direct access to computers, software, data, and other resources, as is
required by a range of collaborative problem-solving and resource brokering
strategies emerging in industry, science, and engineering.”

This requirement for collaboration as previously discussed tends to detract from the
technical aspects as being fundamental to the definition of the Grid. This may be argued
because the collaboration of multiple organisations gives rise to point’s 1 and 2 of Foster
et al.’s original definition. Organisations could not be expected to change their entire
infrastructure so centralised control of resources cannot easily be considered. Further
to this, questions such as, ”who should be given control of the Grid?” are difficult in
collaborative ventures.

The second point relates to the Grids complexity. Due to the Grid size in order that
it be established abstractions are required, in order to make the task simple and practical
enough to be undertaken, common and open standards are a means to make this happen.

Chapter 2 12 Background

Kesselman and Foster [108] wrote about a computational Grid that it ”is a hardware
and software infrastructure that provides dependable, consistent, pervasive, and inexpen-
sive access to high-end computational capabilities.” This definition at first sight discusses
more infrastructure issues in the Grid. It shows however the need for dependable and
consistent resources and ”high-end computational capabilities” which both give a leaning
towards computational capacity in that Grids should be large but also to a need for quality
of service. This is in keeping with point 3, which requires non-trivial qualities of service
for example job completion time and cost.

2.2.2 History of the Grid

2.2.2.1 First Generation: Coupling Super Computers Together

The Grid concept started in the early to mid-1990s as a series of efforts to link super-
computing centres together [57]. This resulted in the linking of a number of US national
supercomputing centres together. Typically, the objective of these early projects was to
provide computational resources to a range of high performance applications [57]. Two
representative projects of this was [57]: FAFNER [57] and I-WAY [57, 59]. FAFNER
acted as the forerunner of desktop computing projects such as SETI@home [112] and
I-WAY middleware was a forerunner of Globus Toolkit [77, 181].

2.2.2.2 Second Generation: Rise of Middleware

In the next generation of Grids, the middleware became prominent as a mechanism to deal
with the complexity of Grids. It allowed Grids to become more ubiquitous than merely a
few specialised data centres coupled together [57], examples of such middleware include
Globus, Unicore [154] and NorduGrid/Arc [166].

The main issues the middleware was required to handle was:

• Heterogeneity: of the resources, they had to be made uniformly accessible, even if
they were vastly different in terms of their capabilities.

• Scalability: The Grid had to scale, the principle aims of Grids as a means of collab-
oration required that many computers would be used together concurrently. Scala-
bility hence became a fundamental element of the Grid.

• Adaptability: The scale of Grids meant failures could be expected, given the quan-
tity of resources used, it was most probable that at least one would fail.

Chapter 2 13 Background

To look at early efforts at resource scheduling such as: Condor/G [178] PBS [31]
and OGE [177] their primary focus is batching and resource scheduling and that they
principally started life as systems for managing jobs or tasks on cluster platforms i.e.
locally distributed computing platforms. This can be seen in cases such as Condor, with
the use of Condor/G as a means to couple together local Condor pools. This factor of
being adapted to suit the Grid is important in the later development efforts.

2.2.2.3 Third Generation: Start of Standardization and Interoperability - Meta-
Data, Self* and Automation

In order to build upon prior successes it became desirable to be able to reuse existing
components and assemble them in a flexible manner. This meant there was an increasing
adoption of a service-oriented models [57].

The use of Web Services principally starts with the Open Grid Service Architecture
(OGSA) [140] as proposed in [78] and the Open Grid Services Infrastructure (OGSI). In
the Globus toolkit this is shown in v3 (GT3).

OGSI was then refactored [182] to create Web Service Resource Framework (WSRF)
[92, 114, 136] and in doing so WSRF more or less replaced the old OGSI [159]. In the
Globus toolkit this is shown in v4 (GT4). This move to web services can however, be
seen as not being entirely successful. Globus Toolkit Version 5 dropped the use of Web
service components that had existed in GT4 [159]. In what has been classed here as the
fourth generation of Grids, this standardisation effort continues.

De Roure, et al. also indicate that there is a strong sense of automation in the third
generation systems [57]. This is principally down to the complexity becoming too difficult
to handle, in regards to the scale and heterogeneity. The concept of the virtual organisation
[79] also becomes more prominent in how organisations can collaborate together, in a
distributed fashion [57].

The fourth generation has been split into several themes. The first of these themes
is the improving of integration and common standards between the initial variations of
middleware. The second is the adding of additional services and involves the making
of the software more commercially robust, in considering risk, trust, general quality of
service provision and economics. Economics given the ISQoS project’s nature is divided
into its own section for a more in depth discussion of related Grid projects.

Chapter 2 14 Background

2.2.2.4 Fourth Generation: Common Middleware Standards

This section discusses further the on going efforts for common standards in middleware
and the driver towards this requirements. The fact that there was several different main-
stream middlewares with their own specific interfaces affected the ability to collaborate.
This is because incompatible middlewares limited accessibility of resources as well as
application portability.

In terms of accessibility once a particular Grid infrastructure has been committed to,
it limits users to using resources controlled by that distribution, thus limiting the ability
to collaborate, to which the Grid was intended, by construction islands of incompatible
middleware. This damages the portability of applications in that each Grid specifies its
own unique interfaces, causing applications to become distribution specific [10].

Adapters in some cases could be written to provide partial solutions and breakdown of
some of these islands. This is particularly common in meta-schedulers such as GridWay
[92, 93], however the requirements for multiple adaptors scale poorly, since if there are N

different kinds of middlewares, O(N2) different adapters are needed [10].
Standards however take time to develop and sometimes have limited but common

capabilities, in comparison to legacy interfaces. After development it also takes time
to retrofit Grid middlewares, with the emerging standards. This includes notable stan-
dardisation efforts such as the KnowARC project (2006-2009) [14, 165] where the ARC
middleware was redeveloped so that the newer standards could be followed. This includes
a surveying efforts of existing standards and their adoption which can be found in [110].

The main standardisation effort in Europe came from the European Middleware Ini-
tiative (EMI) [68]. The principle aim of this was from existing middleware, namely
UNICORE [154], ARC [166] and gLite [63] to create a single common middleware
for Europe. The general theme of increasingly following standards is one of integra-
tion and collaboration. The integration in Europe of middleware included the rise of the
European Grid Initiative (EGI) [64] where the integration of resources from providers
around Europe into a seamless and secure e-infrastructure could be coordinated. This in-
cludes the EGI-InSPIRE project (Integrated Sustainable Pan-European Infrastructure for
Researchers in Europe) which started on 1 May 2010, which has the aim of establishing
a sustainable Europe wide Grid infrastructure.

2.2.2.5 Fourth Generation: Quality of Service Provision

Another significant enhancement made to Grids is in regards to Quality of Service pro-
vision. It became more apparent to further the uptake of Grids that Quality of Service

Chapter 2 15 Background

provision would be required and that only the guaranteed provision of reliable, transpar-
ent and quality of service (QoS) oriented resources would be useful, in the step towards
successful commercial use of Grid systems [18, 106, 124, 149]. Given that businesses
would require guarantees regarding the technology.

The concept of quality of service would take many forms including the resilience of
the resources in the HPC4U [90] project and additional features such as risk analysis as
performed by AssessGrid [18]. The enhancing of Grids also followed economics which
is discussed in the next section.

2.2.2.6 Fourth Generation: Economics and User Orientation

The use of economics in Grids derives from the drive towards self-management, quality
of service provision and the commercialisation of Grids. This is because concepts in
economics were particularly well suited to the distributed nature of the Grids, towards
its commercialisation and quantification of QoS, or lack thereof, in terms of rewards and
penalties.

Grids without economics have largely been restricted to the context of academia and
in order to expand the use of the technology commercialisation has been seen to be key
[90, 106, 111, 130, 134]. The discussion on economics is expanded further in Section 2.5,
the discussion here limits itself to a discussion of European projects that have introduced
economics into Grids.

In Europe this drive towards economics came from projects such as GridEcon [8, 9]
and SORMA (Self-Organizing ICT Resource Management) [130] as well as commercial
exploitation from the BEinGrid project [24].

GridEcon [8,9] aimed to define a model for managing complex market-based service
oriented Grids, introducing new stakeholders such as risk brokers, SLA monitors and
price modellers [127], which provided value added services such as capacity planning
and insurance contracts [9].

SORMA [131, 133] was a project that aimed to create an Open Grid Market, based
upon a set of use cases. The primary focus was to develop methods and tools for the
efficient market-based allocation of resources in Grids. SORMA features concepts from
autonomic computing, for the self-organisation in the resource management system, en-
suring it was both automatic and autonomous.

BEinGrid (Business Experiments in GRID) was a project aiming to facilitate business
applications such as: business process modelling, financial modelling and forecasting via
the use of Grid technologies [151]. This was therefore aiming to commercialise the Grid
and ensure it had higher commercial uptake.

Chapter 2 16 Background

2.3 Quality of Service

In this section the concept of Quality of Service on the Grid is discussed. The discussion
first covers what could be meant by QoS and then goes on to what can affect QoS and
then how it can be provided for.

2.3.1 What is Quality of Service

Quality of Service (QoS) is the notion of how good a service is and that of its fitness for
task. It is therefore difficult and most likely impossible to express QoS as a single scalar
value. This is largely because the ”goodness” of a service is a matter of perspective and
is context specific. It may cover many different areas such as Performance, Dependabil-
ity, Reliability, Scalability, Capacity, Robustness, Manageability, Exception Handling,
Accuracy, Integrity, Accessibility, Availability, Interoperability, Security, Confidentiality,
Traceability, Accountability [89, 101].

QoS is very context oriented for example data transfers in networks may consider
things such as maximum latency, minimum bandwidth and the continuous data transfer
rate available. In the example of data transfers the context matters greatly, such as real-
time data communications need a minimum continuously available amount of bandwidth
whereas a file transfer might not be as fussy [27].

Given this variation the focus of the discussion upon QoS will be within the context
of the project. Quality of service will therefore take the meaning of anything that delays
tasks completion time or makes them cost more. This may include things such as data
transfers, which can cause variations to the expected completion time of a task, due to the
transfer of data to and from the resources that perform computation in the Grid.

2.3.2 What effects Quality of Service

In Grids there are many things that effect the performance of an application and hence the
quality of service that can be offered. This can effect either the computation, communi-
cation or data storage requirements of an application. A listing of factors that influence
the provision of services is listed in the next sections:

2.3.2.1 Task Heterogeneity

Tasks have varying properties that once placed on the Grid greatly influence the overall
performance obtained. Factors that are directly affected by variations in the tasks are
discussed below:

Chapter 2 17 Background

Task File Sharing The degree to how much tasks share the same input files is important.
If tasks use the same data then they can be allocated to either the same resources
or to resources close together, hence allowing input files to be reused. Input file
affinity is a measure that quantifies this degree of sharing of input files among tasks
belonging to a job [163]. A key benefit claimed of using such a metric is that
applications scale better, as it ensures the network is less likely to become overtaxed
thus preventing it acting as a bottleneck.

Data Locality The locality of data is important, files may be very large and hence cannot
easily be moved [37]. In situations where languages such as Java are used the
common runtime environment presents the ability for the application to be moved
towards the data [57]. In cases where this is not applicable, applications may be
compiled for a particular operating system and CPU instruction set which places
constraints upon the resources selection. Files may also become over utilized when
multiple tasks require the same dataset simultaneously, which causes a bottleneck
in the system [37]. The files therefore may be replicated but this brings issues of
keeping the copies synchronised.

Communication-to-Computation Ratio (CCR) This is the ratio between how much an
task performs data transfers as compared to computation [22] and is an aspect of
a tasks heterogeneity. This is important because high communication costs results
in data locality issues and increased effort in data transfers. Schedulers such as
one presented in Liu and Baskiyar [124] makes uses this ratio during the sorting of
task queues. This is done by sorting by an applications priority value then by the
CCR ratio and finally by a deadline. The aim of this is to ensure that the most jobs
complete in time. This sorting however creates a bias towards the highest priority
jobs that involve only computation and are closest to the deadline and hence the
applications fairness could be questioned, though it remains a good demonstration
of the ratios importance.

Communication Patterns It is important to understand both when and how much data
is going to be transferred in order to maintain QoS. This is because if this is not
understood transfers critical to the completion time of a job may be delayed. Sub-
stantial effort has been undertaken to perform analysis on traces taken from Grids.
This has shown that batch submissions accounted for up to 96% of the CPU time
consumed and that 75% of these batch jobs that were parameter sweeps [96]. This
means most jobs involve a transfer at the start followed by execution and then a
transfer back, with no communication during execution.

Chapter 2 18 Background

Task Parallelisability Tasks depending upon how the application is written can have
varying degrees of parallelisability. If the task is written to use multiple threads
concurrently it can benefit from having available to it multiple cores. This there-
fore means some tasks will benefit more from resources that can provide access to
multiple cores.

2.3.2.2 Resource Heterogeneity

Resources are variable in their nature and this is required to be managed. Factors that are
directly affected by variations in the resources are discussed below:

Reliability Resources in Grids are subject to failures and given the scale, failures are
the rule rather than the exception [57]. They fail at different rates and being able
to determine which resources are the most reliable becomes of great use, as is the
recovering from failures when they happen.

Library Availability/Runtime Environment The selection of suitable resources in re-
gards to the runtime environment, e.g. Java, or the presence of library X,Y or Z
and runs on Solaris etc, with 2GB free disk-space has its issues. Different environ-
mental configurations causes heterogeneity in the resources which varies demand
for them. In doing so it complicates the allocation problem. It requires an initial
resource filtering mechanism [157] such as Condor Class Ad’s [178].

CPU Speed, Count and Architecture Optimisations Tasks can be optimized for cer-
tain instruction sets (i.e. SSE, CUDA) and may only be able to run on specific ar-
chitectures (i.e. x86, x86-64, ARM), issues extend with variations such as number
of cores, hyper-threading and access to GPU based computing. This is especially
the case when runtime environments such as Java or other virtualisation technolo-
gies are not in use. The main issue with CPU architecture optimizations is that it
can give rise to further execution time variations between resources and that such
variations are heavily task dependant [7]. It also means that the selection process
if it utilises these optimisations can be made more efficient, while causing demand
variations based upon CPU type.

Existing Workloads Resources will have background processes which may slow current
working Grid tasks. Tasks can also be either allocated to a single resource exclu-
sively, or many tasks can be concurrently run on the same resource [72].

Chapter 2 19 Background

2.3.2.3 Network Heterogeneity

The passing of data needs bandwidth; this means it needs to be controlled as it both
takes time to transfer data and is a limited commodity. Factors that are directly linked to
network issues are discussed below:

Reservability Bandwidth may be reserved so that the transfer of data occurs [45]. It must
also be noted that common protocols such as TCP/IP are not QoS aware [27, 48]
and that data is sent on at a best effort attempt, where redundancy is key and not
timely and predictable arrival. It can therefore be seen that it may not be possible to
give complete reservations of network capacity when the exact capacity available
to the Grid may fluctuate.

Traffic Predictability & None Grid Traffic It is not always possible that the Grid is
solely responsible and in control of all of the network traffic, as there is often none
Grid processes which compete for the available bandwidth [44, 45]. This is partic-
ularly prevalent in cases involving multiple sites that require the use of wide area
networks. The time taken to transfer data is often unreliable and various techniques
are needed such as Differentiated Services [30], traffic shaping [111] and reserva-
tions in order to meet these issues [1–3, 5, 6, 27, 44, 45, 75].

Real-time Requirements Some tasks need real-time data communications, which means
a minimum amount of bandwidth that is continuously available needs reserving
[27]. An example of this would be a conference call in which breaks in the amount
of data transmitted cannot be tolerated.

Reliability This is much like the case for resources, not only can resources prove unreli-
able but network connections can also fail or otherwise under perform.

2.3.2.4 Scheduling Requirements

Scheduling is a key requirement for quality of service, not only does it have to take into
account the variations in tasks, resources and the network capacity, it has its own issues.
Factors that are linked to scheduling are listed below:

Task Duration Estimation Advance reservation requires estimates upon how long a task
is going to run for, it is quite common for these predictions to be poor [72,98,167].
This can lead to reservations lasting for insufficient time for the task to complete or
for reservations to last for too long.

Chapter 2 20 Background

Preemption Tasks may have the possibility of being paused or moved to a different re-
source midway through execution. This allows for the possibility of re-optimising
the schedule without necessarily losing the work currently having been achieved. It
also means the Grid may recover from errors without loss of substantial amounts of
processing via checkpointing. This however mean files would need to be moved in
order to continue the process on another resource and the correct trade off needs to
be determined.

Schedule Fragmentation It has been shown that when advance reservations are in use
the overall throughput of a Grid can drop [50, 71, 72]. This is caused by the frag-
mentation of the schedule where tasks cannot fill the gaps between reservations
causing the space to go unused.

2.3.3 QoS Provision Mechanisms

In this section discussion focuses on the various techniques that can be used to provide
reliable Grids that are resilient to failures and can provide computed results on time.

2.3.3.1 Advance Reservation

Advance Reservation is the process by which resources may be booked in advance for
tasks to complete their work. These bookings ensure resources are reserved for execution
and in doing so QoS parameters such as a tasks runtime can be projected in advance.

Advance Reservation is a key technique for offering guarantees upon the response
time of submitted tasks and has been described as been expensive in terms of perfor-
mance in a system that does not support advance resource reservation to offer such guar-
antees [98]. There is however a trade-off between QoS guarantees and performance, as the
stronger the QoS guarantees that are made the lower the overall system performance [98].
This is largely because gaps form between the reservations that cannot be utilised lowering
efficiency. Several authors have proposed scheduling algorithms that consider such work-
load fragmentation, with the aim of mitigating its negative effects [44,45,50,71,72,184].

A substantial requirement of advance reservations is that it tends to rely upon, user-
estimated execution times. These estimates are often error prone and execution times for
applications may vary from one run to another [72, 98, 167]. This leads to under use due
to over estimation of execution time or overrun if under estimated [169].

Chapter 2 21 Background

2.3.3.2 Check Pointing and Replication

Checkpointing is a process by which the state of the Grid can be saved into stable stor-
age so that when failure occurs the saved state may be restored [4]. The main aim of
checkpointing is therefore to increase reliability. In large scale systems this is important
because the rate of failure increases with the system size [33]. Checkpoint can also be
used to assist task migration between machines with the use of virtualisation, with the
benefit of preserving work already computed [11,19,20]. The virtual machines (VM) are
used in such a situation to provide a homogeneous environment capable of supporting
such whole-scale migration of task [19, 20].

Replication is a simple process to increase the reliability of a task submitted to the
Grid. Tasks ran in duplicate, can be stopped once at least one of the replicas completes.
This mechanism is of course wasteful of resources but ensures high priority tasks get
completed.

In distributed systems that involves messages passing, checkpoints are required upon
several machines, in order to record fully an applications state. This creates the need for
a recovery line which is a set of checkpoints that provide a consistent application state
across all processes [4]. They are two main forms of checkpointing in distributed systems
coordinated and uncoordinated, which are described as follows:

Uncoordinated Checkpointing: means processes autonomously take checkpoints, with-
out regard for other processes. The can lead to checkpoints being wasted if mes-
sages are passed between programs because there is no guarantee of consistency
with the other processes’ checkpoints. This means multiple checkpoints have to
be maintained by each process because the latest checkpoint for any given process
may not be consistent with other processes’ checkpoints. When restoring the sys-
tems state it is then required to roll-back to a consistent copy of the system state,
thus potentially losing work already computed [113].

Coordinated Checkpointing: means all processes collectively record a consistent global
state/snapshot together thus no checkpoint. This has become the preferred way
of checkpointing by the high performance massively parallel systems community
[113]. It however be difficult to coordinate this effort efficiently.

In [4] they concluded that checkpointing algorithms should exhibit little rollback prop-
agation (i.e. avoid wasting of checkpoints) and that piggybacking of control information
on every message, as these were the sources of the highest overhead. Coordinated check-
pointing protocols, were seen to be better than checkpointing induced by messages as

Chapter 2 22 Background

they satisfied these conditions. They also stated that the protocols behaviour was highly
sensitive to conditions like error rate, checkpoint time length etc so there was no perfect
checkpointing protocol.

There exists two main strategies for implementing checkpointing, these are sequential
and forked checkpointing. In sequential checkpointing the process suspends normal ac-
tivity in order to save the current state, while in forked checkpointing, the process forks
and one fork carries on while the other records the current process state [4]. The strategy
chosen affects the overall impact upon the Grid application. Forking allows the running
program to run continuously thus reducing downtime, but can led to applications slow-
down and is more complicated to implement compared to sequential checkpointing.

Checkpointing and replication always adds overhead to the Grid so there is a trade
off between the effort lost due to the strategy used and the benefit gained. Checkpointing
for example when ran sequentially adds delays to the completion time of a task, due to
the pauses needed for checkpointing, but should the task crash some computational effort
will be saved and will not need to be recomputed. Replication ensures resources are more
heavily utilised so this means resources will get wasted.

A selection work covering both checkpointing and replication is presented below:

Highly Predictable Cluster for Internet-Grids (HPC4U) [90]: This project was aimed
at providing a resource management system that provided checkpointing facilities.
This followed the principle that if the underlying local resource management soft-
ware did not support QoS then nor could the Grid, following the argument that
focusing only on Grid middleware was not enough. HPC4U was then used to sup-
port SLA-aware Grid middleware, such as AssessGrid [18].

Work Queue with Replication (WQR) [162]: uses replication as a means to both in-
crease the chance that one of the replicas completes and to increase the chance
of placing work upon a fast compute resource, where no information about CPU
speed is known. This presents a trade off between wasted cycles and the chance of
finishing quickly given no information about the resources.

Work Queue Replication - Fault Tolerant (WQR-FT) [13]: is a similar algorithm where
tasks are replicated and checkpoints are made to ensure that if a replica crashes that
its work is not lost and in [11] WQR-FT is extended so that checkpoints are used
to make sure that replicas do not have to commence work from the beginning of a
task every time a new replica instance is created.

Chapter 2 23 Background

2.3.3.3 Modelling Grids

In some Quality of Service literature modelling has been used to make predictions about
the future environment. Nou et al. for example describes modelling as mandatory. ”To
prevent inadequate QoS, resource managers must be able to predict the system perfor-
mance for a given resource allocation and workload distribution” [134]. The modelling
of Grids has also been shown in an economic context and modelling of future workload
profiles has been performed in order to accurately predict cost [160]. This can be useful
in future markets where access to resources may be sold well in advance of their actual
use (further details may be seen later in Section 2.5.3.2).

These predictions generally rely upon a reasonable knowledge or best estimation of
the workload profiles for a given job. Wieczorek et al. show that the schedulers performed
better when estimates of task length are provided even when these lengths were inaccurate
[194]. There are many papers that rely upon this knowledge [43, 49, 189, 193], others
make provisions to recover from lack of knowledge [111, 134] and others are knowledge
free [13, 162].

2.3.3.4 Scheduling

Scheduling is a means to place tasks upon particular resources within the Grid. The
correct placement of jobs on resources can greatly enhance the Grids performance and
ensure that quality of service is maintained.

Scheduling can be as simple as ensuring that requirements for executing a job are
met e.g. CPU type, disk space and RAM available. Besides ensuring that the hardware
requirements are matched it can also require the right software such as OS, libraries and
other resources are available to run application. Scheduling however can also include
more subtle factors such as:

• scheduling tasks to allow for fast communication in cases where this is needed,
usually by ensuring they are placed close together.

• ensuring tasks that share the same input data are placed on the same or upon re-
sources that are close together.

• ensuing data is not overly utilised, should data be shared between tasks then it is
possible that a single copy of the data could cause bottlenecks when requests for it
are made in close succession.

• Planning the use of replicas of tasks to ensure redundancy and guaranteeing that at
least one replica finishes successfully.

Chapter 2 24 Background

• If replicas are not used then rescheduling may be used to mitigate failures. This
requires that plans be flexible to change and adds complexity to the scheduling
process.

• Ensuring that data transfers are minimized is also of high importance as in data
intensive applications it can be a significant part of the execution time of an appli-
cation on the Grid.

• Planning bandwidth usage to ensure that applications can have their data transferred
in time. This can include real-time applications that require a minimum continuous
amount of bandwidth available.

2.3.3.5 Admission Control

The process by which jobs are admitted to the Grid is a key factor upon QoS. In particular
it changes the time a job has to wait in order to get access to resources on the Grid and
hence can have a strong impact upon the completion time of jobs. In terms of economics
admission control therefore can have a strong impact upon the ability to meet a given
SLA [99, 148] and in particular can effect overall profitability [148].

2.4 Service Level Agreements

Service level agreements are a data structure and process that is used in order to create
an agreement between two or more parties. This can be augmented by negotiation as it
allows for the convergence towards an agreed set of parameters for a given service.

The agreement defines a relationship between two or more parties, with the aim of
delivering a service within a defined context. This is achieved by agreeing upon the roles,
rights and obligations of each of the parties. These obligations may include who is to
pay whom at under what circumstances and for what service the payment is made. The
agreement may include descriptions of functional requirements such as CPU and memory
needed, but also non-functional properties such as time and cost guarantees [141].

This section first of all introduces where SLAs have been used within a Grid context
and for what purpose. It then discusses the standards WS-Agreement [141] and WS-
Agreement (Negotiation) [144], which are modern standards that are the most applicable
to the negotiation context within Grids. The final part of the discussion on SLAs focuses
upon the requirements for negotiation.

Chapter 2 25 Background

2.4.1 SLAs in Grids

In this section a description of where SLA’s have been used within a Grid context is dis-
cussed. Two major implementation efforts for SLAs are WS-Agreement [141] a standard
produced by the Open Grid Forum and Web Service Level Agreement (WSLA) [105] pro-
duced by IBM. Though WSLA has not been widely adopted and seems to be superseded
by WS-Agreement to some extent now [174]. Another early implementation to note for
SLAs is SLAng [120]. A notable survey of SLAs in Grids has been performed in [174]
and is summarised here with updated discussion, on the subject.

VIOLA MetaScheduling Service (MSS) [123] This implementation is used for the
scheduling of jobs. In particular it is used for the co-allocation of jobs on a UNICORE
[154] based system. negotiation is used to find a potential start time for a job and request
reservations for both network capacity and resources [174]. WS-Agreement is therefore
focused upon the co-allocation problem rather than, specific QoS goals.

AssessGrid [18] and OpenCCS [18,20,146] is aimed at introducing risk management
and assessment into Grids. The aim of WS-Agreement is to present offers that provide a
price, risk of failure and compensation clauses for the computation of jobs [174].

ASKALON [194] is a service oriented architecture for the development and optimi-
sation of Grid applications, primarily looking at workflow based applications. The use
of WS-Agreement is for agreeing for a specified time the availability and capacity of re-
sources, including capacity such as CPUs available etc, which is achieved by the client
initiating the agreement process for resources. The aim is to maximise the resource and
client utility [174].

Community Scheduler Framework (CSF) [201] is a meta-scheduler. It primarily uses
agreements for co-scheduling across multiple resource providers and operates on a Globus
toolkit [77,181] 4.0 based infrastructure [174]. It is noted however that this though claim-
ing to implement ws-agreement the authors in [174] were not aware of an implementation
that actually did so.

AgentScape [137] is aimed at providing mobile agents access to resources. Agree-
ments are used to compare multiple providers for the services they offer. Negotiations are
used to request CPU time, communication bandwidth, memory, disk space and access to
web services including a limited count of calls to web services [174].

CATNETS [69,70] is a project to create an economic market for Grid resources, via a
catallexy i.e. a decentralized ”free market”. WS-Agreement is used to submit requests to
buy and sell resources within the computational market [174].

Job Submission Service (JSS) [66,67] is a broker aiming to minimize the total time to
delivery for jobs submitted to the Grid, working both with Globus Toolkit and the ARC

Chapter 2 26 Background

middleware [62, 166] as well as support for the Maui scheduler. JSS provides as part
of this job submission process the ability for reservations. These include as part of the
agreement process reservations for: number of CPUs, duration, earliest start time, latest
start time and a malleability flag, that indicates if the scheduler is allowed to use the range
of possible start time options. The aim of this variable start time is to diminish the loss
in resource utilisation caused by reservations. Though JSS supports such a mechanism its
underlying local schedulers were not able to, so this capacity cannot be used [174].

The SLA@SOI [53, 164, 172] project created a SLA reference architecture [172]
aimed at service-oriented infrastructures such as cloud. It also created a modelling lan-
guage SLA* [104], which allowed SLAs to be described away from the context of a
specific SLA language such as WSLA or WS-Agreement. SLA* has the advantage that it
can be used to describe multiple layers in a commercial SLA scenario such as the infras-
tructure, software and business layers [53], thus achieving a generic way to describe the
elements of an SLA.

mOSAIC [152] was aimed at building a SLA oriented cloud application for the man-
agement of security features and related user authentication and authorisation within an
Infrastructure as a Service (IaaS) cloud provider.

The Business objective-driven REliable and Intelligent grids for real busiNess (BREIN)
[65,138,176] project was aimed at making Grids more business centric, by using artificial
intelligence, multi-agent systems, and semantics. Part of the business orientation was to
use SLAs as means to negotiate QoS provision. The QoS provision was performed by
a semantically enhanced resource allocator, which used WS-Agreement and elements of
WSLA as a means of forming SLAs. It used an ontology to describe tasks and resources
as a means of assisting the resource allocation process.

2.4.2 WS-Agreement

In this section the standard WS-Agreement [141] and WS-Agreement (Negotiation) [144]
are discussed. Together they form the most relevant current standards for negotiation
within Grids.

A diagrammatic overview of the document that describes an agreement is shown in
Figure 2.1. The parts of it are described below [141]:

Context maintains the information about the parties within the agreement, the agree-
ment’s lifetime and optionally a reference to the template from which the agreement
was created.

Chapter 2 27 Background

Figure 2.1: Overview of WS-Agreement Structure [141]

Terms Agreement terms define the content of an agreement and are largely domain-
specific. Terms fall into two classes, namely service terms and guarantee terms:

Service Description Terms describe the functionality that will be delivered under the
agreement. An example of this could be a description of a task to executed, which
might therefore be written in Job Submission Description Language (JSDL) [139].

Service Properties These are definitions of values taken as measurements that can be
used to enforce/help define the guarantees made in the agreement.

Guarantee Terms Guarantee terms define the assurances made within the agreement.
They refer to the service description and in particular to the service properties and
define thresholds on acceptable values of the properties. These are known as the
service level objectives (SLO) . This might include constraints such as deadlines for
completion or response times etc. Guarantee terms may also express the business
value of an objective which indicates the importance of the SLO.

Agreement Constraints In agreement offers before the agreement is formed, constraints
may be used to describe the various options and limitations placed upon the agree-
ment. This is done by providers to ensure obviously incompatible agreements can-
not be asked for, by laying down the rules on how the agreement template should
be filled in.

Negotiation extends the agreement process by allowing convergence towards a middle

Chapter 2 28 Background

ground that is acceptable to all parties in an agreement. This is achieved using WS-
Agreement (Negotiation).

Figure 2.2: Overview of WS-Agreement Negotiation Structure [144]

The overview of its document description is given in Figure 2.2. The parts of it are
then described below [144]:

The negotiation document adds to an agreement the following extra parts, that enable
its capacity to perform negotiation:

Negotiation Id An id used to identify the negotiation offer in the negotiation process.

Negotiation Offer Context this specifies the lifetime of an negotiation offer, as well as
indicating the position the offer has in regards to the negotiation process i.e. if it is
a counter offer and to which offer it countered etc.

Negotiation Constraints These are structurally the same as agreement constraints but
may change during the lifetime of the negotiation process in response to terms
selected in the negotiation offer.

2.4.2.1 Flow of Actions in an Agreement

The first stage in an agreement process is when an agreement initiator requests a template
from an agreement responder. The initiator then fills in the agreement template and then

Chapter 2 29 Background

submits the offer to the agreement responder. The responder then can either accept or re-
ject the offer. If the offer is accepted, the agreement is formed and the service it describes
is executed.

This however is quite simple and gives only a request reply based system, the initiator
can be none the wiser for the exact reason/s the provider had to reject the offer. This
brings about the need for negotiation that brings both the initiator and responder closer to
an acceptable middle ground.

The negotiation process differs in that the agreement initiator requests a template from
an agreement responder, but limits this to negotiable offers. A negotiation offer is then
created and sent to the responder. The responder then replies with a counter-offer. If this
offer is acceptable to both sides then the initiator can accept the offer and an agreement is
formed. If it does not then the process of offer and counter-offer may carry on until either
the process is abandoned or an agreement is formed.

The agreement and its terms all have states, that indicate the progress made upon the
agreement and are discussed in the next sections.

2.4.2.2 Agreement States

Figure 2.3: Agreement States in WS-Agreement [141]

In WS-Agreement an agreement has a state indicating the place the agreement is
within its lifecycle. The possible set of states and their transitions are described in Fig-
ure 2.3. A summary of the specification’s [141] description of agreement states is given
below.

”Offer Received” is an initial transition state that is not exposed to the initiator so
is represented by the dashed lines. The initial exposed states can be either ”Pending”,

Chapter 2 30 Background

”Observed” or ”Rejected”. Each state can also be extended with one or more sub-states
for domain specific use.

Pending The offer has been made but has been neither accepted nor rejected.

Pending And Terminating The offer has been made and it has been terminated by the
agreement initiator, before been accepted or rejected.

Observed This means that an offer has been made and accepted.

Observed And Terminating The offer has been made and accepted. Furthermore, a ter-
minate operation has been issued from the agreement initiator and is being pro-
cessed by the agreement responder. It is possible for a termination request to be
rejected by the service provider.

Rejected This means that an agreement offer has been made and rejected.

Complete The offer has been received and accepted, and that all activities pertaining to
the Agreement are finished.

Terminated The offer has been terminated by the agreement initiator and that the obli-
gation no longer exists.

2.4.2.3 Service Term States

Figure 2.4: Service Term States [141]

In WS-Agreement an agreement has service terms describing the functionality that
will be delivered under the agreement. These service terms have states, indicating the
progress towards completing individual terms. The service term states and transitions are
shown in Figure 2.4. A summary of the specification’s [141] description of service term
states are given below.

Chapter 2 31 Background

Not Ready This indicates that although the agreement has been formed the service de-
noted by the service term cannot be used yet. This also acts as the default entry
state of an agreement. This could be seen for example in cases where resource
reservations have yet to be established.

Ready This means this term of the service level agreement is ready to be acted upon, it
has two sub states, idle and completed.

Processing This means this term of the agreement is actively been worked upon.

Idle This means this term of the agreement is not actively been worked upon.

Completed This means the term of the agreement has reached a stage of completion. It
does not express whether the term was successfully met but merely indicates after
all terms reach this stage that the agreement should proceed to its closing stages.

2.4.2.4 Guarantee Term States

Figure 2.5: Guarantee Term States [141]

In WS-Agreement as shown in Figure 2.5 the guaranteed terms may start in any state.
In terms of meeting deadlines this could well be expected to be ”Not Determined”. This is
because the temporal guarantees made will only be violated once the deadline has passed.

Fulfilled This will be when all tasks of the job have had their result sets returned.

Violated This will be for when the due date and deadline is passed. The penalty for
passing the due date will be expressed as part of this term.

Chapter 2 32 Background

Not Determined As the guarantee is dependent upon work completing by a set time
this will be the default state for temporal guarantees. It may eventually be the case
where milestones for certain amounts of work to be completed during the agreement
will be added, in which case these milestones could be evaluated earlier then the
completion of all work submitted.

2.4.2.5 Negotiation States

Figure 2.6: Negotiation States [144]

The negotiations also have states, these are shown in Figure 2.6.
The negotiation process is WS-Agreement (Negotiation) is non-binding so when of-

fers are made there is not necessarily a need for an agreement to form. Only at the agree-
ment formation stage are obligations to both parties conferred. The states that represent
the flow of events in a negotiation are described below [144]:

Advisory State There are offers that are yet to be able to be used to form an agreement.
They usually contain unspecified items, that have yet to be filled in, which means
further negotiation is required.

Solicited State The solicited state is used to create instigate final convergence towards an
agreement. A participant in the agreement can set an offer to this state, so that any
counter offers may be accepted as is. The possible following states are therefore the
accepted or rejected states.

Accepted State This state indicates that a participant accepts the negotiation offer. This
therefore means that the negotiation offer specified is complete and no further nego-
tiation is required. An offer in this state can be used to form an agreement, though
additional rounds are possible, as is the ending of the negotiation without an agree-
ment.

Chapter 2 33 Background

Rejected State If a participant wants to reject a negotiation offer this state is used. This
means it cannot be used to create an agreement. It can still however be used to
continue the negotiation process by addressing the reason the offer was rejected.

2.4.3 Requirements for Negotiation

In many negotiations only two parties exist within the negotiation, the initiator and the
responder. The initiator in such a case can be seen to be asking for a service while the
responder is considered to provide such a service. The requirements for such a negotiation
are therefore discussed next.

2.4.3.1 Negotiation Initiator

The initiator of a negotiation must be able to provide a mechanism to:

• construct an offer and to decide upon its requirements, which may in part be taken
from the end user.

• be able to change the requirements if the negotiation responder cannot fulfil the
request. Though the agreement responder may provide negotiation constraints or
agreement creation constraints as a guide to the initiator.

• monitor the agreement and ensure it is satisfied with compliance. This is important
as if major terms of the agreement cannot be monitored or watched over by a trusted
third party then the initiator is at the mercy of the responder.

Additional requirements may be required to be fulfilled if the initiator is using the
SLA undergoing formation, as a means so that it in turn may honour an agreement/make
an offer. The following therefore would be required:

• The aggregated offers lifetime must not last longer than the offers it relies upon to
fulfil the promises made.

• Each offer has the prospect of liability, i.e. payment out, a requirement to provide
a given service. This therefore means these needs must be at least balanced or over
provisioned.

• If the process involves multiple rounds of negotiation then the previous offer is
revoked, hence an aggregated offer may first be viable but not ideal, so having an
additional SLA negotiation round, to construct an aggregated offer may render the
aggregated offer unviable.

Chapter 2 34 Background

2.4.3.2 Negotiation Responder

Negotiation responders must be able to:

• provide a mechanism for generating offers. This may include making a plan to fulfil
the offer but not perform any work. It may however have to reserve resources to be
able to honour any offer made.

• act upon an agreement and execute the terms it has agreed to.

• monitor the agreement and to try and maintain compliance, should terms be vio-
lated/approach violation. It needs mechanisms in place to control compliance with
the terms made in any offer and to have strong influence over the properties mea-
sured to test SLA compliance.

2.4.3.3 Negotiation Terms

The elements within an agreement need to be decided upon, this means:

• The service description terms, or the description of what needs to be achieved/asked
for in the agreement needs deciding.

• The properties that are going to be monitored and used to decide if the SLA suc-
ceeds or fails needs deciding upon.

• The guarantee terms, the description of the thresholds on the properties being mon-
itored, i.e. if X < Y then term Z is broken needs deciding upon.

• These terms need to be able to be monitored sufficiency i.e. they need to be measur-
able. This is in order to detect violation of the agreement or otherwise, mitigating
action may be required to be taken if this is the case.

• If adaptation is going to take place then the set of actions available must be able to
influence the values undergoing measurement.

2.4.3.4 Negotiation Requirements due to Economics

Additional requirements are often needed given economic scenarios. This stems from
anything that deals with cost and may incur liability itself through an agreement, requires
it to follow economic principles.

• A way to resolve its liabilities:

Chapter 2 35 Background

1. if a negotiation responder agrees to something and has the chance for ex-
penses, such as compensation, then it must have a revenue stream to offset its
requirement to make payouts.

2. if a negotiation responder has to pay compensation then it needs to be able
to payout reliably, a reserve of money would be required for this in order to
generate a buffering effect or it cannot make an outright loss on a given SLA
and therefore can only offer a discount.

• Participants must have incentive to participate in the process i.e. gain a service or
gain money [130, 155].

• The mechanism must break-even at the very least, any long term deficit means the
mechanism would need an outside source to remain viable [130, 155].

2.5 Grid Economics

In this section the concept of Grid economics is introduced. It starts by giving a general
overview of this concept and discusses the benefits it provides. The discussion then goes
on to basic concepts and requirements for the Grid economy, followed finally by the
different methodologies used to implement the economy.

2.5.1 Overview of Grid Economy

Economics in Grids has been studied since the early days of the Grid, principally due to
the advantages it offers. The reasons given for economic approach are therefore discussed
next:

Using economic principles allows research to be drawn from the field of economics,
and is useful in predicting emergent behaviour from using such models [198]. The con-
cept of efficiency is also well defined in economics and although different from typical
computer performance evaluation [198].

The use of economics is intuitive and the assumptions upon which it is based give
familiarity to users, given most people understand fairly quickly that increases in resource
price will diminish demand for it [198].

It is also in keeping with the Grid, in that ”Economists describe market participants as
competing for limited resources and coordinating themselves through pursuance of their
own goals.” [131]. This is in keeping in terms of both the limited resources available
and also in that different elements act in their own interest, which gives some notion

Chapter 2 36 Background

of a dispersed nature of Grids. Turning to markets can be seen as a traditional way of
dealing with scarce resources. Buyya et al. [37] in this regards state that markets helps in
regulating the supply and demand for resources.

Grids are often on a very large scale, which gives rise for the need to manage such a
system. Economics provides a way to create self-organisation which has been described
as going hand in hand with markets [131]. In regards to self-organisation and scale mar-
kets can help in building a highly scalable system as the decision making process can be
distributed across all participants of the market [37].

Market based approaches have strong similarities with well established methods of
resource such as proportional share. Markets however offer greater flexibility in resource
allocation and can be used to limits the possibility of abuse of the system, by users con-
stantly trying to unfairly overuse the resources [118]. Simple value oriented approaches
like proportional share relies upon users indicating their priorities for jobs, but give no
incentive for users to report their needs truthfully, market mechanisms however provides
a way to achieve this [130]. The incentives for users to reduce their priority can be derived
in markets from ensuring users incurring a lower expenditure for doing so, which aids in
solving time critical problems first [37].

Markets can also be described as assisting user orientation. This is because partici-
pants can make their own decisions upon how they maximize their utility or profit, as it
provides a simple means for offering differentiated services for applications [37]. This
can assist commercialisation and wider spread adoption of Grids in that the pure selling
of physical resources, i.e. CPU hours is not relevant to enterprise customers who have
deadlines to meet and are not always sure of job resource requirements in order to meet a
given deadline [130].

Markets can also be useful for the commercialisation of Grids and their wider adop-
tion. It can offers incentives for resource owners to contribute by charging for resources
[37]. It has been argued that Grid computing has not yet been adopted in commercial set-
tings due to the lack of viable business models [130]. This also extends to the quality of
service provided as uncharacterized, unguaranteed resources have no value and even poor
QoS provided it is precisely characterized can have value [106], therefore so long as the
correct model is used to characterise resources they can gain commercial value. Kenyon
and Cheliotis [106] indicate that the building of an economically functioning market for
Grid resources/services will help diminish commercial resistance to Grids, while also
stating that best effort, or queuing priorities, are insufficient to support wide-scale com-
mercialization.

Finally it can assist in issues regarding comparison making, in particular in regard

Chapter 2 37 Background

to decision making, as it provides a common assessment mechanism for comparing con-
flicting users requirements in monetary terms. This common mechanism for comparison
extends to resources in that it offers uniform treatment of all resources, even if they have
different properties such as CPU speed, memory and storage space available [37].

2.5.2 Economic Concepts

In Chapter 3 an economic model is developed for the Grid, as part of this it is useful
to understand what properties would be desirable in such a model. This understanding
also assist generally in regards to understanding the Grid economy. A list of desirable
properties for Grid economic models are therefore listed below:

Allocative Efficiency [130, 155] A central goal of an economic model is the efficient
allocation of jobs to resources. A key part of this would be in achieving pareto
optimality. Pareto efficiency is a state that occurs when an allocation of jobs to
resources exists, where there is no other allocation, that makes at least one partici-
pant better off without making at least one other worse off. If utility is transferable
among all participants, a mechanism that maximizes the sum of individual utilities
is considered to be allocative efficient [155].

Incentive Compatibility/Truthfulness [130,155] This is a general requirement for par-
ticipants in the system to have a preference towards acting truthfully, this is espe-
cially in reference to reporting their relative worth of tasks and resources. A situ-
ation where participants have an incentive to untruthfully report their preferences
should be avoided [155] as it complicates the market mechanism. A market mech-
anism can be described as incentive compatible if it is within participants interest
to reveal private information that the process requests (e.g. such as the maximum
amount they are willing to pay), though it is not strictly necessary but it does speed
up the market mechanism [198]. An example of this can be seen in a strategic
participant in a market, which continually undervalues resources in an attempt to
lower prices, other participants would have to be resilient to such a strategy, should
this action be prevalent in the system. This concept can extend to providing poor
evaluations such as in the English Auction. English auctions tend to provide over-
estimates of the price, as bidders try to outbid each other and the bids then straggle
the actual cost so the highest bid is always overly high [198].

Individual Rationality [130, 155] This principle requires that there should be benefit
for participants to take part in the market mechanism by receiving a greater utility.

Chapter 2 38 Background

If an element of the mechanism gains no benefit, either utility or financial reward
then there is little incentive for its participation.

Budget Balance [130, 155] A computational market should ’merely’ redistributes the
payments among the participants in the market. Funds should therefore neither be
added to from outside the system, nor removed. This is because, if any one par-
ticipant continually makes a loss, it must be subsidized by some outside source,
making it infeasible in the long term. Hence the sum of all trades given all partici-
pants should sum up to zero. The principle in a non-closed system still applies and
requires participants to not require continual subsidization.

Computational Tractability [130,155] Any system that is performing the resource allo-
cation must be in itself efficient. It must therefore not be so complex that computing
which allocations that should be made takes a long time.

Perfect Competition [198] This is a situation where all participants both consumers and
produces are price takers. This generally requires that no one participant can suffi-
ciently influence the market such that the stability of prices is risked. This is impor-
tant when participants are expected to work for themselves and are inherently going
to act in a greedy fashion. The concept of ”Tragedy of the Commons” [88] shows
how scheduling decisions made to maximise individuals profit influence upon the
entire system and its efficiency and that there is a tradeoffs between individuals effi-
ciency and social welfare/global efficiency [37]. This property therefore lends itself
towards allocative efficiency.

Price Stability Stability of the price is an important requirement in terms of fairness
to users [118] and also in order to maintain the allocative efficiency/scheduling
stability of the market [198]. If a particular participant hoards currency on the Grid
and then suddenly releases a large quantity of that money then demand is likely
to rise as is the resource price. The large release of money means one user can
cause starvation effects upon others and users, which can be seen to be unfair [118].
Essentially fairness requires a user’s budgetary endowment should be translated into
a corresponding share of the infrastructure [186]. The need for fairness means if
users budgets are periodically replenished it must be sufficiently controlled. This
avoids two situations one ensures the currency retains its value and cannot be spent
frivolously thus damaging any requirement to report the true relative worth of jobs
[34], while the other is the hoarding situation where one consumer can begin to
dominate the market [118], thus losing perfect competition.

Chapter 2 39 Background

Price Equilibrium This is closely related to price stability and regards the degree to
which prices are fair. If the market is in equilibrium then the relative value of trades
on the Grid for resources is accurate. If the equilibrium cannot be reached the pric-
ing cannot be trusted [198] and the budgetary endowment of users is less likely to
be translated into a corresponding share of the infrastructure [186]. The price es-
sentially is required to track demand or otherwise not all the profit or utility possible
can be realised [118]. In regards to price equilibrium the general requirements are
summarised well by Wolski et al. as [198]:

1. ”The relative worth of a resource must be determined by its supply and de-
mand”.

2. ”The price of a given resource is its worth relative to the value of a unit called
currency”

3. ”Relative worth is accurately measure only when market equilibrium is reached.”

Structured Penalties It is common to spread the losses made between two parties when
something goes wrong. Penalties however are a form of loss where one side takes
predominately all the loss, be it in terms of utility or monetary loss [196]. Penalties
are intended to incentive participants in the market from acting against the interests
of other parties within a negotiation/agreement. They however can led to a moral
hazard, whereby one participant can impose a bad operation point on the other while
largely being insulated from the consequences. An example of this would be if the
load was purposefully underestimated for a Grid application, when the provider
would have to pay out if a deadline was met. The client therefore is required to
make a loss should they mislead the provider.

Self-Organisation It is useful to have a Grid infrastructure that determines the price and
resource allocations automatically. Economics can be used to create markets that
perform this self-organisation. In fact self-organisation and markets have been
described as going hand in hand [131]. The main characteristics of the free mar-
kets that provides this self-organization and in particular that of the participants
are [131]:

1. That they must act as utility maximizers.

2. That their strategies should subjectively weigh and choose preferred alterna-
tives in order to reach maximum income or utility.

3. That they should have access to markets in order to exchange price signals,
wrapped in supply and demand offers.

Chapter 2 40 Background

Now that key principles of Grid economics have been discussed the approaches that
may be used to establish a market will be discussed in the following section.

2.5.3 Economic Approaches

In Grids there are various different ways to establish an economic market for control of
the Grid. In this section the principle ways of performing this are listed. The first area
discussed is that of the popular [156] auctions mechanism. The second mechanism is
that of the commodity market, this usually acts as a more centralised way of determining
the market price. This is split into several different model variations: namely: flat price,
supply and demand and posted price. The final methods discussed are a bargaining model,
a tender contract model and catallexy.

2.5.3.1 Auctions

Auctions can be used in Grids to auction off resource time to users. It therefore acts as
a price setting mechanism that determines the user whom is most willing to pay for a
given resource. In doing this it achieves some notion of determining the work that is most
valued and can hence prioritise the computation of such work.

Auctions by their nature have a particular advantage in that they can be easily decen-
tralised. An important consideration when using auctions however, is in regards to the
overheads involved, such as the communications needed and if an auction type introduces
any point which acts as a bottleneck, such as a co-ordinator/auctioneer [40]. Auctions
can also be compared to commodity markets, where there can be a higher cost for fine
grain valuations [186]. Auctions can hold many different formats, with all have different
overheads. The types of auctions that are commonly used [40] are discussed below:

English Auction Bidders are expected to increase their offers price in order to exceeding
other offers. This is repeated until no bidder is willing to increase their offer any
further. The auction then ends and the highest bidder wins usage of the resources at
the highest price bided [37, 40]. These auctions suffer from holding several rounds
until the final price is reached. This therefore can led to significant computational
effort to determine the correct allocation.

Dutch Auction This acts in reverse to an English Auction. In this case the auctioneer
starts with a price and continuously lowers it until one of the bidders accepts the
price offered. A reserve price is then used to allow the auction to terminate an
auction when the price gets too low [37, 40].

Chapter 2 41 Background

Double Auction In this model ”buy orders” (bids) and ”sell orders” (asks) may be sub-
mitted at any time during a trading window. If at any time there are open bids
and asks that match or are otherwise compatible in terms of price and resource re-
quirements, a trade is executed immediately [40]. In this fashion it is similar to
the Condor ClassAds [179] mechanism, which has been considered by some to be
primitive [127], though it has also been described by some as having ”high poten-
tial for Grid computing” [40]. Double auctions are a popular type of auction, due
to their ability to handle a large amount of participants while producing a relatively
small overhead compared to other auction types [86].

The orders in this auction are ranked in the matching process, in order to generate
demand and supply profiles. From the profiles, the maximum quantity exchanged
can be determined by matching ”sell orders” (asks) (starting with cheapest and
moving to the most expensive) with ”buy orders” (starting with highest price and
moving down) [40].

First-price sealed-bid Auction In this auction each bidder submits a single bid, in a
blind fashion, i.e. without knowing the value of competing bids. The highest bidder
then wins the and pays the price of their own bid [40]. As with any auction mecha-
nism the users are price setters, however it becomes difficult for a user to make an
informed decision about defining a reasonable price to have their jobs computed, a
blind auction exacerbates this fact.

Vickrey Auction/second-price sealed-bid The Vickrey Auction [190] is similar to the
First-price sealed-bid auction however the highest bidder pays the price provided
by the second highest bidder. The reason to take the second price can be explained
as part of the Vickrey-principle, in that the payment of each winning job amounts
to the lowest willingness to pay, that would have been required to be reported in
order to still win the auction [170]. In doing this it gives a fairer price to the winner,
as the estimated values by the bidders are likely to spread across the real value,
meaning that the user is likely to overpay for any given resource. Vickrey auctions
have also been found to achieve efficient allocations as it creates an incentive for
truthful biding [156].

Auctions are a popular economic model in Grid based scheduling and most are studies
use this perspective [156]. The nature of auctions however creates interesting challenges,
which will be discussed next:

Winners Dilemma: The Winners Dilemma [180] indicates that given any auction it is

Chapter 2 42 Background

likely that the average bid will be significantly less than the value of the auctioned
resource due to bidders risk aversion and that the winning bid will exceed the true
value of the resource. It therefore means the true resource price is unlikely to be
found.

Complexity and Multi-Item Auctions: Auctions are considered to be simpler than the
commodity markets and are popular because of this simplicity. They are however
difficult to analyse globally and can arise to NP-complete problems. An example
of this is combinatorial auctions (multi-items) in which the search for the optimal
solution is NP-Complete [198].

Commercial Suitability: Auctions do not always lend themselves to commercial suit-
ability and have been described by [115] as not always being suitable for enterprise
wide Grid deployments. This claim is substantiated by indicating that auctions
would lead to competition between multiple divisions of the same organization.
The practicality of such internal competition would therefore need to be realised
and might not lead to the obtaining of the greatest added value of Grid computing
in the business.

Bidding Round Duration and User Burden: Auctions can impose significant burdens
upon on users, they can potentially suffer from the burden of frequent interactive
bidding, or given infrequent bidding suffer latency effects in the acquisition of re-
sources [119]. There can also be seen to be a trade-off between commodity markets
that price resources more generally and the finer grain pricing that auctions pro-
vide [186]. Auctions can provide the opportunity for fine-grain pricing which is
not as practical in the centralised commodity markets due to increased communi-
cations cost [186]. The greater granularity can however add burdens on users by
adding more complexity into the market.

Price Determination and Fairness: If users are asked to make bids, then this needs to
be guided. They will need an understanding of the current market prices and what is
reasonable. This therefore requires infrastructure to advise them of current market
conditions i.e. by publish summaries of recent contracts, should there be a suffi-
cient volume of similar auctions [99]. The effect of users having to determine the
correct price may be seen in the early stages of creating an auction market, before
price stabilisation [186]. The auction market also has to adjust again during sudden
changes to the market though remains comparable with commodity markets [186].

Chapter 2 43 Background

Price Stability and Market Equilibrium: In Wolski et al. it is stated that ”auctioneer-
ing is attractive from an implementation point of view but that it does not produce
stable pricing or market equilibrium, and that a commodity market performs better
from the standpoint of a Grid as a whole” [198]. Though a following study [186]
shows that price stability can be achieved, in their study of Vickrey auctions and
commodity markets, with them indicating that using fairly simple bidding logic to
obtain stable average prices that track supply and demand. A difference that Van-
mechelen et al. highlight as a potential cause of this difference is that their study
did not need to co-allocate disk and CPU resources as had been the case in Wolski
et al. Achieving the correct price is important and thus the correct type of auc-
tion needs to be used, for example first price auctions favour the providers, while
Vickrey auctions favour the users and double auctions favour neither [84]. Vickrey
auctions however create incentive for truthful biding [156], which simplifies the
bidding process.

2.5.3.2 Commodity Markets

Commodity markets may act for the sale of goods (such as time on a compute resource)
for either immediate or later use. They hence can be broken down into two types of mar-
ket, the spot price and the futures market:

Spot Price Market This market is characterised by the sale of goods, both perishable
and non-perishable with little time passing between the original sale and the use of
the resource [9]. In this respect they can be used to fulfil the need for the immedi-
ate provisioning of resources [187]. They are also known as the ”cash market” or
”physical markets” as purchases are often settled in cash at the current price on the
market, as opposed to the price at the time of delivery of the goods/resources [9].
They are often used for resources that are perishable or not easily storable such as
electricity [9].

Futures Market These markets however trade in resources that may be delivered some
time after they are bought. It allows consumers to avoid the bidding exposure and
price risk (of fluctuation), that is associated with a spot market and can be used to
complements the spot market [9, 187]. The futures are contractual obligations by
buyers and sellers to make a transaction in the future for a particular resource at an
agreed price [9]. Delivery of the resource therefore occurs sometime after the sale
is made. A centralised broker can be used to provide such a market. Such a broker

Chapter 2 44 Background

would pairs requests for resources with declarations of resource availability at set
intervals [187], thus it cannot be used for resources that are needed immediately.

Buyya et al. [40] indicate commodity markets to be where resource providers act as
price setters, publishing their prices ready for consumers. Consumers then select the most
appropriate price for their resource requirements, hence acting as price takers. This differs
slightly from the purely economic oriented view presented in [9], in that it focuses more
upon the communication patterns of the underlying Grid infrastructure. The commonality
is in the centralised nature (as per [198, 199]) of how prices are determined and the aim
of optimising the market environment as whole, as opposed to a single auction.

In [118] commodity markets are placed into two categories either: flat price or dy-
namic supply and demand models as part of an argument towards dynamic pricing where
suppliers must monitor demand and react to in relative to the available resources, in order
to avoid unrealised profit or utility. In addition to this a posted price model [40] is also
listed here as part of the commodity market, due to its similarities. The different variations
of commodity market models are therefore discussed next:

Flat Price Model The flat price model presents a single price to the market for resource
usage that does not adapt to usage patterns. In [118] such a model is criticised as it
does not lead to sufficient control. The lack of price fluctuation means the effects
of a true market are not realised and can lead to either:

Unrealized Utility: A situation where resources are idle as they are overpriced.

Unrealized Profit: A situation where resources are under priced so hence do not
make as much profit as is possible.

Supply and Demand Model This is a variation where the suppliers dynamically alter
the price in response demand, as a means of controlling it. The aim of this is to
change the price to achieve equilibrium between the supply and demand. There are
several ways at which such a market could be achieved, two of which are listed
below:

• Buyya et al. [40] suggest a Walrasian Auction [186], though this requires
perfect competition [198]. This ensures resource providers are not going to
either undervalue or overvalue resources, which in turn can lead to unrealised
profit or utility [118, 130].

• K-Pricing [23, 156, 196] K-pricing is to determine the price based upon the
difference between the resource providers price and the amount the buyer is

Chapter 2 45 Background

willing to pay. It requires for a given amount of utility the buyer expressing
their maximum willingness to pay and the service provider expressing for a
given amount of utility their minimum sale price. The difference is then split,
based upon a factor (commonly shown as 50:50).

Posted Price Model The posted price model is a variation upon the supply and demand
model. It differs in that it allows for special offers to be issued by suppliers. The
primary reason given for this by [40] is to attract new customers and to increase
market share, by motivating users by offering cheaper resource time slots. Such
offers may be used to smooth demand and the market price for resources e.g. by
ensuring deals are linked to periods of lower demand. It is hence classified here as
a commodity market due to its similarity and that it acts in part trading with units
of resource-time that are potentially distant from the time of sale i.e. a primitive
futures contract.

2.5.3.3 Bargaining Model

In the bargaining model [40] consumers are not just price takers, they are allowed to
perform bargaining with suppliers. Bargaining for consumers may mean an attempt to ac-
quire lower resource prices or longer usage durations, while providers may offer resource
time slots at periods with lower demand. This method is generally employed when market
supply and demand as well as service prices are not clearly established [40]. It is however
no very economically efficient and produces high communications overhead [86].

2.5.3.4 Tender Contract

In this model otherwise known as Contract Net Protocol [40, 86], resource consumers
place their job requirements out to tender. Resource providers then make offers on the
available work at which point the consumer selects the winning bidder. This can be
viewed as an auction in reverse, hence the key differences with auctions are listed be-
low:

• consumers are price acceptors (in auctions they set the price),

• resource providers are price setters (in auctions they are acceptors),

• bids are for work (in auctions resources are what is bid for)

Chapter 2 46 Background

2.5.3.5 Catallexy

The aim of a Catallexy is to have a decentralized environment in order to create a ”free
market” uses economic mechanisms for self-organisation. Prices are expected to evolve
dynamically over time, from the actions of economically self-interested agents participat-
ing in the system [34, 69]. The core principles of such a market are therefore [34, 69]:

• Agents work for their own self-interest and attempt to optimize their own profit.

• Agents do not have global knowledge; they can only act on information that they
current have access to and hence can only make estimates about the possible alter-
natives actions available to them to maximise their income/utility.

• Changes in price will indicate if an agent looks for alternative source for a resource.

Examples of the Catallexy based approach may be found in projects such as: Cat-
Nets [69, 70] and CatNet [15] and the Middleware for Activating the Global Open Grid
(MaGoG) [56].

There are several key areas to consider when considering a Catallexy based model
[69]:

Service Discovery Mechanism The aim of a catallexy is to be distributed, therefore
there is an aim to have no centralised components. This extends to centralised
registries where buyers and sellers, could register themselves. The service discov-
ery therefore has to be established differently and is restricted to two mechanisms
for distributed discovery of resources:

unstructured discovery In unstructured discovery a search request is forwarded
from a node to all of its neighbours with a given Time to Live (TTL) for the
request.

structured discovery In structured discovery the search does not rely upon ran-
dom query propagation, but instead calculates the closest known node to the
requested service instance. This mechanism however relies upon distributed
hash tables (DHT), which have been claimed to lack scalability in dynamic
networks, as state changes lead to high overhead.

Bargaining Protocol/Price Convergence Strategy The bargaining protocol in catallaxy
can be likened to that of auctions. Auctions provide a wide set of variations and care
must be taken when considering the type of auction to use, as they have varying

Chapter 2 47 Background

communication patterns that can cause scalability issues [37] as well as different
economic properties, such as time efficiency, price stability and ability to maintain
market equilibrium [86].

Combinatorial Auctions In order to gain multiple resources it may be required to have
auctions for multiple resources at once. Eymann et al. [69] shows that solving the
resource allocation problem in this case is an instance of a complex multi-attribute
allocation problem, which has been shown to be NP-complete. This situation is
particularly apparent because of interrelations of several markets, such as storage
and compute i.e. to use one requires the other market [34]. Vanmechelen et al. [186]
however state from a usage model point of view that combinatorial auctions, is one
of the most attractive models available for the Grid problem.

2.6 Scheduling in Grids

In this section scheduling in Grids is discussed. This first of all covers aspects of schedul-
ing and then discusses work in scheduling based upon set themes. This includes: the
fragmentation of resource availability due to reservations, information availability in a
distributed system, the attempts to create network based reservations for data transfers,
taking advantage of shared storage, job composition and structure and finally how the
scheduling is performed in terms of being either batch oriented or performed continu-
ously.

2.6.1 Aspects of Scheduling in Grids

Scheduling in Grids tends to start with brokering and usually within a two tired hierarchy
of brokers and local schedulers [117]. To illustrate aspects of scheduling in respect to
brokerage Figure 2.7 is presented and demonstrates some of the design considerations of
a broker. The aspects illustrated in this figure are then discussed next.

The architecture that is being used can either be under control of a centralised sched-
uler, that lends itself to classical scheduling techniques or distributed and thus requires
peer to peer techniques such as used by CATNETS [69, 70]. Schedulers may also be
assembled into hierarchies [117, 200] to assist with scalability issues.

Scheduling requires the matching of jobs to resources, this can either use static data,
or dynamic [107]. The user at broker level may be asked to select a provider, this is a user
led strategy for brokering. The decision process may also be guided by historical data.

Chapter 2 48 Background

Figure 2.7: Scheduling in Grids from a Broker’s Perspective [107]

Dynamic approaches use the most current information available and can take one of two
strategies, either just-in-time allocations or prediction [134, 135, 169] based approaches.

The aims of the scheduling algorithm should also be considered, the objective function
of a scheduling algorithm can be either user or system centric. In Figure 2.7 and [107] a
third option of being oriented towards the Grid, is given with a general concept of load
balancing. This can however be considered to be merely an aspect of system centric
scheduling. The User’s focus is often towards guarantees upon execution time, cost, or
other factors such as reliability and security. This is contrasted by provider’s aims which
largely focus upon system centric measures such as a wish to maximise the utilisation
of their resources and gain as much revenue as possible, from the provisioning of their
resources to end users.

Scheduling in Grids often is very simple, but efforts focusing on scheduling often
reflects aspects of the Grid problem, as presented by its dynamic and distributed nature.
Efforts within Grids for scheduling are thus discussed next with a particular reflection
upon what aspects of Grids is trying to be resolved. For general background however in
scheduling and in particular queueing theory by Kleinrock [109] and by Harchol-Balter
[87] can be recommended.

2.6.2 Schedule Fragmentation

Schedule Fragmentation can occur if advance reservations are used, it can lead to lower
utilisation of the resources. Several authors aim to mitigate this issue [44, 45, 50, 184].

Chapter 2 49 Background

The focus in during scheduling becomes less upon the reservations but more upon the
gaps between the reservations and the attempt to minimise small unutilisable fragments
within the schedule.

Fragmentation can especially be seen when a job is scheduled in an idle period, be-
tween two existing jobs. It will create at most two new idle periods [51]: A leading idle
period before the jobs starts and a trailing idle period at the end of the new job, but before
the existing scheduled job is due to start. Scheduling strategies therefore exist to minimise
both the leading (Min-LIP Min-leading idle period) and trailing (Min-TIP Min-trailing
idle period) idle periods. Other strategies [51] exist such as best-fit, which minimizes the
sum of the leading and trailing idle periods, as well as first-fit, which inserts tasks into the
earliest feasible idle period, regardless of the sizes of the leading and trailing idle periods.
These algorithms produce various different overall system behaviours such as first-fit of-
fering relatively low delays to starting jobs, but at the cost of overall system utilisation
in comparison to the other techniques mentioned. There is therefore a trade-off between
system centric and user centric behaviour when considering this type of scheduling.

2.6.3 Information Availability and Dynamics of the Grid

It is not always possible to be able to collect good quality information about Grid re-
sources, given the nature of large distributed environments [122, 162]. This can lead to
not having information about the nature of the available resources, this can include in-
formation upon the CPU speed. Several algorithms aim to negate this issue and work
without detailed knowledge. This can be achieved by running pilot jobs [121, 122] of a
known size, or by running replicas of a given task and cancelling replicas once at least
one copy of the results have been returned [11–13, 162].

In Grids failures are the rule rather than the exception [57], in that given the Grids
scale and complexity there is likely to be a failing resource somewhere. It therefore
means there needs to be strategies to counteract these failures. This can be dealt with by
detecting errors and slowdown and then rescheduling [93,200] or by using replication and
check pointing techniques [4, 11, 19, 20, 90, 113].

2.6.4 Network Oriented Scheduling

Data transfers in Grids must be managed, as the transferring of data within the Grid can
cause substantial issues. In terms of guarantees made on completion time the transfers
can account for a large proportion of the time allocated for the results of the application
to be returned. It is also not always sufficient for schedulers or brokers to assume that

Chapter 2 50 Background

the network capacity for scheduled work is always available. It has however been noted
that designs of broker and schedulers can omit any mechanisms to deal with situations
where network capacity is not available [27]. The reasons given for this behaviour is
that applications tend to be run on a single-site and high-speed local area networks can
negate much of this issue. The fact that distributed applications can also be expected to
cope with asynchronous communication and that many applications do not require large
amounts of data to be transferred across wide-area networks also assists [27]. In regards
to QoS provision however it is useful to known the time it is going to take to complete
a data transfer. The scheduling and the planning of network traffic can greatly enhance
the performance of the Grid particularly in regard to timeliness. Various mechanisms are
available to do this, such as hardware support for quality of service with differentiated
services (DiffServ) [30] or flow-aware [47, 48] or traffic shaping [111] techniques.

Flow-aware techniques perform quality of service provision at the flow level instead
of at the packet level [47, 48]. Instead of tagging packets and prioritising them as with
DiffServ, packet headers are observed and a stream of packets with the same header at-
tributes is managed using various prioritisation techniques. Traffic shaping can include
techniques like leaky bucket that can be used in Grids [111] to ensure that a constant
stream off data can be sent across the network by creating a bucket of data packets that
are released at a constant rate. This ensures data transfers are more predictable and lim-
its usage spikes, should too much data be attempted to be transferred packets are simply
dropped and then resent at a later time. There are a variety of work from the literature that
handle such networking issues which is discussed next:

General-Purpose Architecture for Reservation and Allocation (GARA) [3, 75] pro-
vides a uniform mechanisms for making QoS reservations for different types of resources,
including computers, networks and disks [6, 27, 45] providing a guarantee that an appli-
cation initiating a reservation will receive a specific QoS from the Resource Manager [6].

The network QoS in GARA is however limited and only works with a specific router,
the Cisco 7507, as it requires usage of Cisco’s Modular QoS Command-line interface
to configure routers, as part of its establishment of differentiated services capability [6]
though this constrain is common to any system that requires underlying hardware support
for control of network resources.

GARA’s network problems extend further to scalability when performing reservations
across different domains, as GARA must exist in all the traversed domains [6, 45], which
is unlikely.

Network Resource Scheduling Entity (NRSE) [27] acts as a network booking facility.
An instance is placed in each network domain. The NRSE in each domain is responsible

Chapter 2 51 Background

for receiving user service-requests, checking if the request can be honoured site to site and
then issuing configuring instructions to the local network elements in order to provide the
requested QoS. These QoS requests are sent in the form of a local service level agree-
ments. NRSEs then perform a booking of the request in both domains. NRSEs in each
domain then issue local instructions to enforce the requested QoS within the network,
followed by monitoring the network QoS.

Grid Quality of Service Management (G-QoSM) [5,6] is a framework to support QoS
management in Open Grid Service Architecture (OGSA) based computational Grids. It
is a generic modular system that, conceptually, supports various types of resource QoS,
such as computation, network and disk storage [45].

G-QoSM aims to provide support for: resource and service discovery based upon
QoS properties; QoS guarantees at application, middleware and network levels and the
establishment of service level agreements SLAs to enforce QoS.

The Quality of service is offered in a tiered system with three different levels of pro-
visioned QoS: namely guaranteed, controlled load and best effort and supports adaptation
strategies to share resource capacity between these three user QoS categories [45].

G-QoSM has three main components [5]:

• Application QoS Manager: negotiates SLAs with clients and passes SLA parame-
ters to resource managers as well as performing SLA conformance checking.

• A Resource Manager: This is for example Globus toolkit and a registry service that
is capable of recording QoS values.

• A Network Resource Manager: controls network SLAs so acts as a bandwidth bro-
ker. It also controls inter-domain communication and coordinates SLAs across do-
main boundaries. The NRM can also monitor the network to determine both its
current activity and the correct network configuration.

Grid Network-aware Resource Broker (GNRB) [1,2] acts as an intermediary between
the network and the Grid environment and aims at providing network resource manage-
ment and network information retrieval facilities [1].

It provides facilities to aid scheduling in terms of network topology discovery allowing
the networks topology to be discovered with network link information such as available
bandwidth, delay, etc. This also includes a weighted topology service that provides the
best path information as well. This information therefore allows for QoS provisioning.
This QoS can be provisioned into categories such as: Premium services defining the peak
rate, burst size and maximum latency available and better than best-effort service where

Chapter 2 52 Background

a mean rate, burst size and mean latency can be specified [1]. This broker has however
been criticised as been overly centralised within a given domain, hence offering a potential
bottleneck to the system [45, 48].

Grid Network Broker (GNB) [44,45] is a network aware Grid meta-scheduler. It aims
at providing network QoS in both a single administrative domain and cross domains. It
is claimed that GNB is the only broker that considers the network when performing the
scheduling of jobs to computing resources [45]. The focus on the network within the
broker stems from the fact that only paying attention to the load of the computing resource
is not sufficient and that a powerful unloaded computing resource with an overloaded
network could be chosen to run jobs, which decreases the performance received by users,
especially when the job requires a high network I/O [45].

GNB has some obvious limitations given the limits of what is possible without total
control of the Grids environment. It restricted in that only traffic generated in the network
as a result of Grid jobs is considered [45]. GNB in been network aware also needs to have
a global knowledge of the network’s topology. It therefore needs providing with routing
tables of all the routes within the same domain [44].

The VIOLA project is a testbed that has be used for various projects, one of which
established a meta-scheduling service that provides co-allocation support for both compu-
tational and network resources. This is achieved through negotiations with local schedul-
ing systems to reserve resources [45, 192]. This meta-scheduling service has been imple-
mented using the UNICORE middleware for job submission, monitoring and control [45].
Like in many systems however it is not always possible to reserve network resources if
the network is under ownership of a different administrator [45].

2.6.5 Data Storage

The way data is stored on the Grid and can be accessed effects its efficiency. In Grids
there is the potential to have shared storage. This can be reflected in the scheduling
algorithms implemented. If they can take advantage of shared storage then related work
that shares the same files can be transferred to resources that can access the shared storage,
X-Suffrage [49] and Q-Sufferage [193] are examples of algorithms aiming to obtain such
a benefit.

2.6.6 Bag of Tasks, Workflows and Divisible Load

In Grid scheduling tasks within a job can either be completely independent of each other
and hence form bag of task applications [122], or they can have dependencies upon one

Chapter 2 53 Background

another in which case they form workflows. The workflows [29,58,195,203] hence needs
specialised algorithms that consider these interdependencies in order to arrange them as
efficiently as possible.

Workflows are first built from templates that describe the flow of services to be called
within an overall Grid job. This can then have specific service instances attached to realise
the workflow, hence creating a workflow instance [58].

The workflow representations can hold distinct structural differences. This effects
how the scheduling of the workflow can be perceived. They can be either [175]:

• Functional and Data-Driven, or Dataflow: where services that execute tasks are
viewed as functions and their composition is specified by data dependencies be-
tween services i.e. the input of one is derived from the input of another.

• Imperative and Control-Based: in which a workflow is designed with services that
act as primitive execution blocks and service composition is achieved using control
primitives such as: sequences, conditional branching such as ”if statements” and
loops such as ”for” and ”while”.

Workflows can be classed into two distinct types of models regarding how they handle
data [195]:

• Task oriented - The workflow is represented as a graph. Tasks are represented as
nodes and data transfers and control preconditions are represented as edges.

• Task and data transfer oriented - Where both tasks and data transfers are represented
as graph nodes. This is important as this demonstrates the importance of dataflows
within the workflow and ignoring this limits the ability to managed QoS in regards
to completion time.

There are three distinct techniques used when scheduling workflows in Grids [29]:

• List scheduling - In this case each node of the graph receives a priority level. While
there are unscheduled tasks, the highest-priority task that is ready is selected and
scheduled .

• Clustering - In this class of workflow scheduling a clustering phase, occurs where
all tasks are arranged into groups, aiming to reducing communication costs between
tasks. In a second phase, these groups of tasks are then mapped to the available
resources.

Chapter 2 54 Background

• Task duplication - The last strategy used is where tasks are duplicated, as a means
to improve dependability, and the instance which finishes first sends the result to
successor tasks in the workflow.

These techniques are further complicated when scheduling multiple workflows as the
workflows create gaps in the schedule, such techniques are as follows [29]:

• Schedule each job independently, one after another, placing tasks into the schedule.
This can include searching for gaps between tasks in the existing schedule, when
placing tasks.

• Schedule the jobs in turns, interleaving parts of each job being scheduled, with the
parts of other jobs in the schedule.

• Schedule multiple jobs together by merging the jobs into a single big one and sched-
ule.

Not all jobs form workflows and form independent tasks. They may however have
additional properties. Divisible Load [26, 102, 153] considers the way the work to be
scheduled on the Grid can be divided and can lead to scheduling algorithms that can take
advantage of the separability of the applications data. The most common form of load in
Grids is indivisible [26] in which independent, tasks of different sizes, are submitted for
execution without any possibility of dividing. Such tasks therefore have to be processed
in their entirety upon a single resource. Such tasks have no precedence relations and give
rise to bin-packing problems which are known to be NP-complete. Load in some special
case jobs may however be divisible. This can either be modularly divisible [26] or arbi-

trarily divisible [26]. Modularly divisible means that it is a priori subdivided into smaller
modules based on some characteristics of the current load or other system properties. Ar-
bitrarily divisible means it can be divided up as required, as all elements in the data to
be processed require an identical type of processing. These tasks may or may not have
precedence relations, that have to be handled.

2.6.7 Batch vs Online Scheduling

Scheduling can either be performed as a continuous exercises as and when jobs arrive
or it may be performed in batches with jobs arriving and waiting to be scheduled. Both
strategies have their advantages and drawbacks. If scheduling is performed online then a
near immediate response can be given, while scheduled in batches the jobs have to wait
for the next round of scheduling. The benefit of batch scheduling resides in the fact that

Chapter 2 55 Background

the scheduler can then make better allocations based upon total information about the
jobs within that scheduling epoch, whereas online scheduling means a job may arrive
soon after that cannot be served as well due to previous decisions made [200]. The batch
scheduling strategy is also effected by the rate at which scheduling epochs are performed
and a trade-off exists between waiting and then scheduling a larger set of jobs better and
a more responsive but less efficient shorter time between scheduling epochs.

2.7 Summary

In this chapter the background to the work presented within the thesis has been given.
Initially this starts with a definition of the Grid (in Section 2.2.1) and explorers its his-
tory (in Section 2.2.2). This includes a trend towards quality of service provision. This
QoS provision is explored by discussing what effects QoS and how it can be provisioned
for. The background then moves on to service level agreements, which is a mechanism
for agreeing to a defined level of provision for a given service. In particular the Open
Grid forum standard of WS-Agreement is discussed (in Section 2.4.2), followed by a dis-
cussion of the components required within an architecture to bring about negotiation (in
Section 2.4.3). The concept of economics in Grids is introduced as another trend within
the history of Grids. This trend aiming towards self-adaptive systems through market
mechanisms. Economics is discussed initially as an overview (in Section 2.5.1 and then
key concepts are introduced (in Section 2.5.2 and a discussion of the main approaches
taken to implement economics in Grids (in Section 2.5.3). Mainly in terms of auctions,
commodity markets, bargaining models, tender contract and catallexy. The last topic dis-
cussed in the background chapter is the scheduling that occurs in Grids (in Section 2.6
focusing upon the different problems the scheduling has focused upon.

Chapter 3

Pricing Policy

3.1 Introduction

In this chapter the broker’s pricing policy that drives the process of obtaining time and
cost guarantees for jobs is discussed. This policy is aimed towards providing an economic
based system that distinguishes between jobs in terms of QoS which was discussed in the
aims and objectives of the thesis in Section 1.4.

These aims and objectives are reiterated in Section 3.1.1, after which a review of
related pricing models that focus upon cost and time of jobs in distributed computing is
performed in Section 3.2.

The is then followed by the discussion of the ISQoS model in Section 3.3 and how it
was designed to cope with the specific aims of the ISQoS pricing model.

The concept of simulation is then introduced (Section 3.4) and existing simulators are
surveyed (Section 3.4.1). This is followed by the introduction of the ISQoS simulator
in Section 3.4.2. The ISQoS simulator is a tool that was designed and built to help test
the model. The simulator was initially validated via sweeping through parameter vari-
ations (see Section 3.5) in a static study. This parameter study also helped explore the
model and brought about recommendations upon its usage. After the parameter study ad-
ditional experimentation was performed by using discrete event simulation (see Section
3.6). Finally this chapter is finished with a comparison study between the ISQoS model
and related work in Section 3.7. The chapter is then summarised in Section 3.8.

56

Chapter 3 57 Pricing Policy

3.1.1 Aims and Objectives

The principle aims of the pricing model are listed below, they are derived from the moti-
vating scenarios in Section 1.2, recalling the focus on high demand, time critical scenarios
on a Grid with limited resources. The model that achieves these aims and objectives is
tested in in this chapter in Sections 3.5 and 3.6 and also in Chapters 5 and 6 by experiment
with the ISQoS Broker.

• Establish a service price for completing work on time.

• Provide a model that incentivises QoS provision in regards to both time and cost
constraints i.e. bind economic and temporal factors together, so that if delays occur
then less profit is made.

• Provide a mechanism to prioritise work, as it is expected that not all work can be
accepted.

• To make the job submission process more user centric, avoiding resource centric
approaches in the job submission process.

3.2 Related Work

In this section a survey of existing Grid pricing mechanisms that focus upon time con-
straints of scheduling is performed. We therefore list each pricing mechanism in turn and
then summarise the models discussed at the end of the related works section.

3.2.1 First Price

First Price [54] considers pricing upon clusters, but remains highly related to Grids. The
jobs maximum price is first set, by using a first-price sealed-bid auction [40], where each
bidder submits one bid without knowing the others’ bids. The highest bidder then wins
and pays the service price indicated in their bid on successful job completion.

This service price has the potential to drop based upon the concept of slowdown.
The slowdown being a comparison to what the completion time would have been if the
cluster had been dedicated to the job. This therefore has significant deficits in meeting the
objectives of ISQoS. Firstly user preference in terms of completion time is not captured
well. It is only expressed in terms of resource cost and degree of acceptable slowdown.
They use an immediacy concept to capture the users acceptable delay in multiples of
the original runtime estimate. However, this assumes that the user will want the work

Chapter 3 58 Pricing Policy

completing as fast as possible and that the service price should diminish due to any delays
caused by non-exclusive access to resources. It is therefore very system centric and does
not express the user’s preference for completion of the work.

This pricing model has a strong requirement for a reference system by which a no-
tion of slowdown can be derived. This is difficult in a Grid as different providers will
have different reference systems. It therefore makes the comparison between providers
unrealistic.

Currency is provided to the bidders at periodic intervals into accounts that have a finite
limit, as a control mechanism to ensure arbitrarily large bids are not made. In [118] the
problems with users hoarding money is discussed along with predictability and issues
such as starvation, which is reasonable justification for using a control mechanism that
has upper limits on the account size.

3.2.2 First Reward & Risk Reward

The First Reward [99] and Risk Reward [99] pricing functions like First Price focus upon
the minimum runtime and upon slowdown, so holds similar drawbacks. In [99] focus
of the winning bidder is found via the use of a Vickrey auction [40], though this is not
discussed further. This has the benefit over first-price sealed-bid auction as the highest
bidder pays the price provided by the second highest bidder which is more likely to reveal
the true price of the service. The recycling/replenishment of currency in the system, is
also not discussed in detail. Given the areas that do and do not have focus in [99] the
principal concern must be merely with slowdown.

In First Reward and Risk Reward once the minimum runtime is reached the job’s price
decays at a set rate, hence this is similar to First Price, but uses a rate factor instead to
diminish the service price. The decay in the service price is determined for the ith job
as Pricei = MaxValuei (delayi× decayi). This is system centric and sets the meaning of
a job being on time as meeting its runtime estimate. There is therefore no focus upon
a user’s preference for completion time and as different providers could have resources
of different speeds, the inter-provider estimates are unlikely to hold much meaning. The
decay rate is also not user friendly in that a rate of decay is asked for instead of a final
time by which the work is no longer useful to compute. In asking for a rate of decay it
simply makes algorithmic details open to the end user and detracts from its usability.

The loss that is generated by the decay in the service price is also not required to be
bound. This unlimited penalty is problematic in that pricing mechanisms should have
properties such as budget balance and individual rationality [155, 156]. SLAs can also be

Chapter 3 59 Pricing Policy

seen as contracts and unlimited liability is impractical in a commercial sense [196].
The definitions are provided below [155, 156]:

Budget Balance: Mechanisms have to ensure their budgets balance. Long term deficits
must be subsidised making them infeasible. In cases where penalties are without
limit budget balance could never be guaranteed and is at severe risk.

Individual Rationality: The utility caused by participation in the Grid market has to
increase. Hence in cases where penalties are without restriction in can severely
damage this rationality. Risk Reward extends the First Reward pricing mechanism
by adding the concept of present value.

Risk Reward uses a concept called present value as an assessment mechanism for jobs
of different durations in relation to how they might delay future jobs. i.e. present value for
the ith job equals: pricei / (1 + (discount rate × remaining processing timei). Risk Re-
ward in doing this considers that shorter jobs are less likely to delay more valuable/urgent
task that may arrive in the future. It therefore can be used to favour smaller jobs, without
altering the service price paid by the end user. This is a notable feature albeit not part of
the pricing mechanism, in ISQoS as it will later be shown, it is considered to be an offer
selection mechanism rather than an issue with establishing a service price.

3.2.3 First Profit, First Opportunity & First Opportunity Rate

In each of these models [148], jobs are given a utility function where the service price de-
cays at a set rate until a fixed penalty bound is reached. In the experimentation performed
in [148] decays start immediately at submission time, hence this essentially relates to
slowdown with larger jobs been penalised more than smaller jobs.

Initially admission control is performed which tests if the broker’s profit is likely to
decrease, if this is the case then the job is rejected otherwise it is accepted. After accep-
tance jobs are required to be completed regardless of cost, i.e. there is no cancellation fee
as in Aggregate Utility [17]. This therefore risks the broker expending large amounts of
resources, rather than potentially cancelling a job.

Popovici et al. [148] uses resource providers that are separate from the brokering
mechanism, hence multi-site Grid situations can be realised. Providers however offer pre-
dictions of the number of resources that are going to be available in the future, their prices
and a probability distribution that this resource profile will actually occur in practice. A
tuple of the form <start time, duration, resources, price> is hence used to represent this
availability. The policy of sending a broker so much information seems misguided. A

Chapter 3 60 Pricing Policy

policy of having providers merely respond to offers for completing work and not express-
ing their resource availability to the broker, seems wiser, as it hides how the underlying
service works. This is the direction the ISQoS model described in Section 3.3 takes.

In [148] the focus is on MPI applications, though this is not in terms of the model a
concern and the work remains close to ISQoS. They also explicitly rule out pre-emption
in their experiments due to the difficulty of implementing when gang-scheduling.

In their experimentation First Profit and First Opportunity are compared with Longest
Job First, Shortest Job First, a modification of First Price and First Reward. The modifi-
cations are associated with ”reshaping” a job where a trade-off of using more processors
is used in order to improve the completion time of a task. The focus on reshaping derives
from gang scheduling/MPI jobs and the changing the amount of CPUs available to a job.

First Profit: It’s definition is not immediately clear; it appears to be aimed at ”max-
imising the per-job profit for each job independently” by sorting against profit. It
appears it maximises the profit by changing the shape/location of threads in the job.

First Opportunity and First Opportunity Rate are extensions of First Profit and consider
the jobs collectively, by optimising a global goodness factor.

First Opportunity: Examines the effect of running a job upon other jobs in the queue. It
builds a new schedule for the entire workload by trying each possible job in turn and
selecting the most profitable standalone shape. First Profit is then used to generate
a schedule for the remaining jobs, as it selects the job from the queue that generates
the schedule with the highest total profit.

First Opportunity Rate: is a variation of First Opportunity, it however selects the job
from the queue that would produce the highest aggregate profit / the total schedule
length.

3.2.4 LibraSLA

In a similar fashion to First Reward & Risk Reward LibraSLA [52] has the concept of
a penalty rate. In this case the job given a deadline that is distinct from the runtime.
This ensures the work is more oriented towards Grids and no longer requires a ”standard”
reference speed machine, to determine slowdown. The highest acceptable delay is again
potentially unlimited, so risks system viability in regards to budget balance and individual
rationality [155, 156].

Chapter 3 61 Pricing Policy

LibraSLA has two types of deadline hard and soft. In hard deadlines the job is stopped
once the deadline is reached, while in the soft deadline case the penalty slope is used to
define compensation for delays in the completion of the work.

In LibraSLA a budget is established that indicates the maximum the user is willing
to pay. The user is required to pay this should the job complete on time and the service
price is again calculated in the same way as FirstPrice + FirstReward i.e. Pricei = Budgeti
(delayi × decayi) as budget and max price are equivalent in this regard. This seems not
always to be rational as should the load be particularly low the user may well overestimate
the price of the Job.

As the budget does not differ from the service price before a soft deadline/due date,
LibraSLA can be considered to lacks the economic competition that is normally associ-
ated with market based approaches. This is because payment is not linked to resource
availability and informed competition between users. The budget/willingness to pay can
conceivably be adjusted by the end user dependent upon market conditions, such as how
many auctions they are losing, though there is not clear guided advice about the market
conditions.

3.2.5 Aggregate Utility

Aggregate Utility [17] like LibraSLA considers a deadline and explicitly considers the
notion of start-delay tolerance. This is advantageous in that users want jobs to complete
by a given time which is not necessarily equal to the system centric notion of the job’s
runtime.

The service price is again set as a gradient that is determined by a set rate of decay,
which does not seem user friendly. The penalty unlike others has a maximum bound that
also serves as a cancellation penalty after the service provider has accepted a given job.

The pricing function is on a per task basis and jobs are simply treated as an overarching
service contract. An aggregate utility function is then used to assess the benefit of all
tasks completing as opposed to a proportion of them. This aggregate utility function adds
a bonus for completing all of the tasks that belong to a given job on time. This aggregate
utility function is described as been able to take any shape, but the form agg utili = α×β

is used.
α is used to describe the potential benefit to the service provider for providing the

service and β describes the client’s sensitivity to the aggregate metric. Hence in the case
of α = 1.4 and β = 1 as marked on Figure 3.1 the client is offering a 40% bonus for
completing all tasks that belong to the job.

Chapter 3 62 Pricing Policy

Figure 3.1: Aggregate Utility’s Function For Rewarding The Completion Of A Set Of
Tasks

3.3 Pricing of the Broker’s Job Execution Service

In the previous section the aims of the model was established and given these requirements
the models formulation is discussed next.

3.3.1 Input Parameters

One of the main roles of the broker’s pricing model is to determine the service price

the user will pay to a broker for computing jobs. The model will establish a service for
computing jobs on time and on budget from underlying resources. Resource providers
are going to have costs associated with their resources, so the service price will be based
upon this resource cost. In doing this a two tied market will form, one tier will be a
service market for job execution and the second a resource market. This two tier strategy
is quite common in Grid based economics e.g. [16, 69, 130, 148], including work in the
SORMA [130] and CATNETS [69] projects.

The model is first expected to work with fixed resource costs (as tested in Chapter 5).
In such a market it could be envisaged that faster resources would be likely to command a
higher price. It will then be expected to adapt to a dynamic resource pricing that reflects
load (as tested in Chapter 6). Thus the model should be flexible enough to be largely
independent of how the original resource cost was derived.

The user will provide a budget to a job which is an upper limit to how much can be

Chapter 3 63 Pricing Policy

paid for its completion. They will also provide their time requirements by giving a due

date and deadline. The due date is the date by which the job should complete by and
the deadline is the date by which the work would no longer be useful. In doing this a
notion of priority can be achieved, for the job in terms of cost and completion time. The
notion of a due date and deadline in Grid scheduling is fairly unique, many pricing models
use gradients but do not derive this from two unique reference points i.e. a due date and
deadline (see the related work in Section 3.2). The benefit of gradient based approaches
is that it provides the opportunity for heuristic methods, unlike hard deadlines, which give
systems little guidance on how to proceed if no feasible schedule exists for meeting the
user’s constraints [99].

Given due date, deadline and budget information coupled with job requirements it
will be possible for a set of schedules to be generated, either by a single provider or by
multiple providers. The various offers will generate a cost trade off curve that shows the
cost to perform a given task in a given time frame. An earliest completion time may also
be calculated at this time which indicates the minimum time by which a job may complete
(see: Figure 3.2).

Figure 3.2: The Resource Cost in Relation to the Pricing Model

A major aim of this model is to provide guaranteed timing for a given price. This
therefore means the service price is required to drop if due date is passed i.e. completion
time exceeds the due date. This is because it creates an incentive for the broker to select
providers that have a schedule that will make the job complete before the due date and
deadline.

The broker needs an incentive to participate in the market i.e. individual rationality
[155, 156]. It will therefore need to charge an additional amount over the resource cost
for its usage. The user will therefore be charged a service price that will be a percentage

Chapter 3 64 Pricing Policy

mark-up of the actual cost for resources e.g. +25% of the actual cost of the resources. An
alternative charging mechanism would be to have a fixed mark-up from the resource cost.
This however, presents an issue in that the lengths of jobs can vary and estimates on task
length are also inaccurate [98]. A fixed fee as a percentage of the overall work would be
liable to fluctuate. The likelihood of this occurring in Grids means the broker may have
reduced incentive to participate in the Grid marketplace.

If the service price drops below the resource cost then there is an additional require-
ment for an incentive to participate. This requirement arrives from the need to achieve
budget balance [155,156] where the broker must not need any supplementary funds in or-
der for it to continue working. A cap upon the penalty fee is therefore introduced in order
to control the maximum extent to which the broker may make a loss upon any single job.

The mark-up may either be decided upon by the broker or chosen by the user from
a set of choices provided by the broker. The mark-up in affecting the broker’s profit can
therefore be seen as a mechanism to denote job priority. Mark-up offers the opportunity
for tiered pricing where the user can give a priority that is attached to a numeric value
of mark-up. This means a value range with low mark-up, a mid range with a medium
mark-up and a premium range with high mark-up can be established, in order to prioritise
work. This is useful as mark-up affects both profitability and the acceptability of a job.
This is because it is a component part of the broker’s ability to reschedule a job i.e. if the
broker has spare budget and/or the service price is further from the resource cost then it
has a greater degree of money available to create such resilience.

In summary the broker presents a service with added value, in that it will guarantee
times for a given job or compensate accordingly. The due date and deadline will modify
how much of the service charge is paid by the user, in accordance with the mark-up and
the budget allocated to the job.

Chapter 3 65 Pricing Policy

3.3.2 Overview of the Model’s Sequence of Events

Figure 3.3: Overview of the Model’s Sequence of Events

In this section the flow of events in the model is described. A diagrammatic overview
is given in in Figure 3.3. The sequence of events is described below and the structure of
messages passed is expressed in Extended Backus Noar Form (EBNF) . The definitions
of the elements in EBNF can be found in Table 3.1. The sequence of events is therefore
as follows:

1. The user sends their job requirements in the form:

<Job Request> ::= <Task>+<Due Date><Deadline><Mark Up>
<Budget>{Cap On Penalty Fee}

<Task> ::= <System Requirements><Input Data Size>
<Output Data Size><Compute Length Estimate>

2. The broker contacts the resource provider and requests quotes for each job, the
resource providers essentially compete in a tender market.

The providers return offers after the broker requests a quote they are formatted in
the form:

<offer> ::= <Jobs Request><Provider><Resource Cost><Completion Time>

3. The broker with the offer information and the user requirements may then formulate
the service price for each offer, which is introduced in Figure 4.

Chapter 3 66 Pricing Policy

4. The user then accepts or rejects a service offer by the broker. In the event of accep-
tance the broker submits the work for completion and monitors the work in case of
failure or slowdown and rescheduling occurs if required.

5. The job completes, the results are sent back to end user and payment is made.

Table 3.1: EBNF Used in description of user input

Symbol Meaning

* 0 or more
+ 1 or more

< ... > Required non-terminal
{...} Optional non-terminal
(...) Grouping
| Or

::= Defines the non-terminal to the left in terms of the expression to the right.

3.3.3 Calculating the Service Price

Figure 3.4: Charging of the Guaranteed Time Service

Figure 3.4 represents how the price changes in the service market. The service price
is based upon the job completion time and is affected by the user’s due date and deadline.
Once the due date is reached the service price drops linearly until the deadline is reached,
at which point any potential loss gets no greater. This is because the deadline is considered
to be the point at which the job no longer has any use to the client so the job may be
stopped and the service charge/penalty may then be settled.

Chapter 3 67 Pricing Policy

The service price is decided upon by the broker by selecting an offer that represents a
point on the resource cost curve from Figure 3.2. Taking the offer’s resource cost it then
applies its mark-up e.g. +20%. This provides the position of the service price between the
earliest completion time and the due date. The cap on the penalty fee then provides the
lowest possible point at which the z-curve pricing function may drop to, which is when
the deadline is reached.

The resource cost is derived from the offers from the resource market and when the
service price and resource cost meet indicates the breakeven point. If the service price is
below the resource cost then a loss is incurred by the broker.

The difference between the service price and user’s budget provide a measure called
budget slack, which is important to consider when accepting a schedule.

The difference between the service price and resource cost gives the broker’s profit

margin. It may make sense in certain cases to reduce the amount of profit made in order
to ensure the job completes hence avoiding loss. A further value of budget resilience can
also be given as the difference between the resource cost and the budget, as the broker
could notionally sacrifice its profit during rescheduling in order to save the job. This
therefore means the profit margin can be seen as the minimum amount money available if
the broker is forced to reschedule due to resource failure or slowdown.

An accepted job’s worth to the provider may be derived as the difference between the
service cost charged and the maximum penalty. This is because liabilities are reduced
when an accepted job is completed, (especially if it has a non-zero penalty cap). In order
for the broker to minimise its losses the difference between the actual cost of resources and
the cap on the penalty fee must be considered. This will be important when rescheduling
or deciding upon which jobs should be considered to be dropped from a schedule.

In Figure 3.5 three important measures of how vulnerable a schedule is shown. They
may be derived from the difference between the selected schedule’s completion time and
the following three points:

• due date

• breakeven point

• deadline

These temporal slack measures will hence act as metrics on job offer quality, along
with the budgetary resilience and budget slack that was previously discussed, along with
more obvious measures such as completion time, service price and broker profit.

Chapter 3 68 Pricing Policy

Figure 3.5: Charging of the Guaranteed Time Service - Temporal Aspects

3.3.4 Overall Effect of the Market

Figure 3.6: The Service Market - An overview of Temporal and Budgetary Aspects

In Figure 3.6 the effect of the temporal and budgetary constraints in the pricing model
are demonstrated. Firstly the due date and deadline are represented on the x-axis as the
two boundaries placed upon completion time. The budget is placed on the y-axis as the
upper boundary of the service price.

Given these initial values the mark-up can be used to derive other useful aspects. The

Chapter 3 69 Pricing Policy

maximum resource cost possible where budget slack equals zero can be derived. This
leaves the mark-up indicating the minimum amount of budgetary resilience without the
broker immediately incurring lost profit. There is also a point in between the due date and
deadline where the service price becomes equal to the resource cost and the broker merely
breaks even. This therefore completes a border around an offer defining the acceptable
service quality. The position of the breakeven point is derived from how much mark-up
the broker is making, it will be shown later in Section 3.5.2 (Figures 3.14 and 3.14), the
exact properties of this border and in particular that it can maintain a fixed position based
upon mark-up regardless of the resource cost.

3.4 The Simulator

In order to test the model that was developed a simulator was needed. The ISQoS pricing
simulator was developed to be able to test the economic mechanisms that were used in the
project. In the next section existing simulators are discussed then the ISQoS simulator is
introduced.

3.4.1 Simulators

Simulation is often used in Grids research to cope with limitations of large testbeds.
Testbeds are often not readily available and that experiments performed on them are often
completed without exclusivity to the resources. This is because Grids often continue their
day to day operations, which makes results less repeatable. Simulation therefore offers
a first opportunity to test theories before deploying them in practice. In our case it also
makes it possible to implement the pricing model without having to deploy it to a live
Grid, which would create significant interference, during the deployment as the ISQoS
Grid middleware developed in Chapter 4.

In order to decide if an existing simulator should be used a selection of simulators was
tested and existing literature was studied. Sulistio et al. [171] presents a taxonomy of sim-
ulators for computer based simulations with a focus upon parallel distributed systems. In
their survey they discuss Bricks [173], GridSim [42], MicroGrid [168] and SimGrid [94].
The review is however dated and the Bricks and MicroGrid simulators have subsequently
become obsolete. Simulators are often short lived, past the authors initial use of the prod-
uct and do not always establish an active and broad community to support them. If a
simulator is to be used during experimentation then it must be easily usable with reason-
able support, otherwise the cost of using the software is outweighed by writing a simple

Chapter 3 70 Pricing Policy

bespoke simulator.
Quetier and Cappello [150] the authors of SimGrid describe several tools for perform-

ing experiments in Grid computing. These tools are placed in three separate categories:
simulators, emulators and testbeds. The simulators they discuss are Bricks, SimGrid,
GridSim, GangSim [61] and OptorSim [25]. The two emulators are also discussed Micro-
Grid and Grid eXplorer [150] and finally the last category is that of experimental testbeds.
Quetier and Cappello [150] focus their discussion upon several key issues, which are
namely:

• the original motivation behind the simulator

• the suitability in regards to which research area is of interest.

• the principles behind how each simulator works (i.e. their implementations)

• the validation of simulators and of their results.

The consideration of the ”original motivation” and suitability for a given experiment
is one that is of critical importance. It was also the ultimate reasons for the writing of
the ISQoS simulator. Many simulators focused on particular aspects of the overall Grid
environment e.g. the network or upon auction based economics. This made many simply
impractical to use as part of the experimentation.

A recent notable implementation is that of the Grid Economic Simulator (GES) [35,
125] in which scalability of various simulators is studied. In [125] the simulators: GES,
SimGrid and GridSim are evaluated, thus comparing their own work to SimGrid and
GridSim which have established large user bases and remained active. The testing of an
implementation with a scalability study, makes it seem more plausible that the developers
have performed some level of validation of the simulator, which is another criteria point
for selecting a simulator.

The simulators found from the literature are briefly discussed below, with the simula-
tors which were considered less relevant merely listed at the end for completeness.

3.4.1.1 Primary Candidates

GridSim [42]
Project homepage: http://www.buyya.com/gridsim/
Status: Active

Chapter 3 71 Pricing Policy

GridSim remains an active project and has spawned several variations such as a cloud
oriented version called CloudSim (http://www.cloudbus.org/cloudsim/). In assessing the
simulators codebase it was decided to be not of the highest quality, with key principle
classes being very verbose, but it remains a simple starting point for any simulation. It
primarily links to auctions and the research of Rajkumar Buyya, which was away from
the original intent of the ISQoS pricing model.

GSSim [116]
Project homepage: http://www.gssim.org/
Status: Active

GSSim was introduced in the paper [116] and built on top of GridSim, it was intended
to make the simulator easier to use. At the time of building the ISQoS Simulator it was
still a work in progress and the documentation was not clear upon how GSSim could be
made to work. The paper by Kurowski et al. [117] also uses GSSim in its experiments
but the product has largely been used only by its authors. In [117] they focus upon a
two-level hierarchical Grid where a Grid broker makes scheduling decisions at a global
level which then allocates jobs to Grid nodes where jobs are then placed in a schedule by
local schedulers at site level, which was similar to the ISQoS Simulator.

Grid Economic Simulator [35, 125]
Project homepage: None
Status: Active (available only on request)

This simulator from the papers [35, 125] performed well under the scalability study
that the original authors performed. The source is only however available on request
hence a community has not built up around the simulator meaning support would be lim-
ited. At the time of development of the ISQoS Simulator it was undergoing significant
development changes.

SimGrid [94]
Project homepage: http://gforge.inria.fr/projects/simgrid/
Status: Active

This is an active project written in C and developed by the French National Institute
for Research in Computer Science and Control. This simulator during testing was difficult

Chapter 3 72 Pricing Policy

to setup, it was compiled successfully, yet it was not clear upon its exact usage.

OptorSim
Project homepage: http://cern.ch/edg-wp2/optimization/optorsim.html
http://sourceforge.net/projects/optorsim/
Status: Obsolete

This simulator was written in Java and was published to sourceforge in late on the 24th
October 2006 and appears to have subsequently ceased to be used. The documentation
was seen to be of a good standard, so it is expected that it could still be used. It was writ-
ten as part of the EU DataGrid project and was aimed at testing replication algorithms, so
the focus towards replication algorithms was therefore seen as a concern. The project’s
homepage indicated that they had been working on economic mechanisms, but that this
was not complete. The documentation provided with the simulator seemed to support
this, stating that features such as job budgets were to be added. Essentially users were
described as price takers and providers are price setters, so users could not influence how
much they were going to pay. This means with the focus of the simulator being towards
replication and the lack of economic mechanisms it would be of limited. It also used large
configuration files to change parameters of the experiment, which were difficult to read
and hence prone to error.

CATNETS Simulator
Project homepage: http://www.catnets.uni-bayreuth.de/index.php?id=11
Status: Execution errors, EU project ended

The OptorSim simulator was extended to build the CATNETS simulator, which is
based upon the market concept called catallaxy. The projects documentation provides
a good assessment of existing simulators in [205]. The simulator failed under testing
against examples provided within the source code with a file not found exception, the
files the exception referred to were not evident in the download of the simulator provided
by the Catnets project. This underlies one of the problems with using existing code, if
there are insufficient high quality examples and in general documentation then such a
simulator cannot live past its initial intended usage.

Chapter 3 73 Pricing Policy

3.4.1.2 Other Simulators

BeoSim
Project homepage: http://www.parl.clemson.edu/ wjones/research/
Status: Not Released

This project seemed active at the time of the review but the software was not made
available and other related simulation software was listed, in its stead.

HECIOS
Project homepage: http://www.parl.clemson.edu/hecios/
Status: Obsolete

The High End Computing I/O Simulator (HECIOS) is a C++ based simulator, that
focuses upon MPI and IO based simulation. It is developed at the same organisation as
BeoSim. It is based upon the OMNeT++ 4.0 C++ simulation library, which can be found
at: http://www.omnetpp.org/models.

MicroGrid [168]
Project homepage: http://www-csag.ucsd.edu/projects/grid/microgrid.html
Status: Obsolete

This project is out of development, the last release of MicroGrid was version 2.4.6 in
December/2004 and aimed to support a range of peer-to-peer and distributed applications.

Agent Grid
Project homepage: http://sourceforge.net/projects/agentgridrepast/
Status: Obsolete

Agent Grid was placed on sourceforge in 2007 and is no longer developed. The last
CVS commit was on 16th February 2007. The simulator was based on the Repast Simula-
tor which remains active. Repast may be found at: http://sourceforge.net/projects/repast/
or http://repast.sourceforge.net/.

Bricks [173]
Project homepage: http://ninf.apgrid.org/bricks/
Status: Obsolete

Chapter 3 74 Pricing Policy

This project is no longer active and upon its homepage the download link is struck
through with some related works listed: http://ninf.apgrid.org/bricks/related work.shtml

GangSim [61]
Project homepage: http://people.cs.uchicago.edu/ cldumitr/GangSim/
Status: Obsolete

This is a simulator that focuses on Service level agreements, though seems to have
fallen into disuse. One key part of the simulation work to be performed is on the eco-
nomic model and job submission, so the focus on SLAs would not be of great use.

The Delft Grid Simulator (DGSim)
Project homepage: http://www.pds.ewi.tudelft.nl/ iosup/dgsim.php
Status: Obsolete

The homepage lists a set of papers by the original authors which used the simulator.
The code was also unavailable, making use of the simulator impractical.

3.4.1.3 Summary of Simulators

In terms of decent candidates for use in the simulation based experiments, GridSim, GES
and SimGrid seemed most practical.

GridSim was tested and worked reasonably well. It was particularly orientated to-
wards auctions and economic models. Its underlying representations were poor for ISQoS
needs, which made things difficult. An extension to GridSim called GSSim was seen to
be useful, though at the time the simulator was needed GSSim was described as being in
beta and the documentation/project wiki seem in a state of flux.

Grid Economic Simulator GES was a very promising candidate and after the authors
had been contacted it was found they were performing re-factoring of major parts of the
codebase and was only available via the authors so wasn’t seen as useful at the time.

SimGrid was compiled and installed via configuration scripts and make, but it wasn’t
clear in regards to documentation on how the simulator could be used.

The final solution was therefore to quickly develop a simulator from scratch, due to
the likelihood that this would be the line of least resistance. This simulator is hence
introduced in the next section.

Chapter 3 75 Pricing Policy

3.4.2 ISQoS Pricing Simulator

This simulator has two distinct modes of operation. The first mode is used to sweep
through ranges of parameters. This means it can be used to examine the models perfor-
mance for a single job across the entire range of possibilities. It also allows for verification
that the simulator is correctly representing the model, as well as showing complete trends
in the models output. Results from this mode are reported in Section 3.5. The second
mode is used to perform discrete event simulation, which can be used to test the perfor-
mance of the model in a running situation. The results of this are reported in Section
3.6.

3.4.2.1 Discrete Event Simulation

Figure 3.7: An Overview of Discrete Event Simulation

The simulator is shown in Figure 3.7 and is used as an example of discrete event sim-
ulation. Discrete event simulation relies upon the notion of independent events arriving
over time. The events are then processed and results are gathered. The experimentation
ends either after a given amount of simulated time or after a sufficient amount events have
been processed.

In the case of the simulator presented here, a bucket of jobs is created before the
simulation starts. The jobs are then taken randomly from the bucket and placed into the
simulator, until the bucket is empty. The simulation starts with a job arrival event, this

Chapter 3 76 Pricing Policy

event takes a job from the bucket and generates a new arrival event. This new arrival event
is placed into a priority queue of events to process (earliest task first). Upon a job arrival
it can either be accepted or rejected. If it is accepted then a start job event is generated.
This indicates the time when the job starts on the Grid. If the job is dropped without
scheduling then no further processing of the event is required. The earliest/next job in the
priority queue is then taken. If it is an arrival event a similar process occurs to before,
otherwise if it is a start job event the end of job event is generated. The clock then moves
on in a similar fashion until the end of the simulation. Finally if a job finished event is
processed, the effects of billing the job are logged.

3.4.2.2 Parameter Study Mode

In the parameter study mode the aim is to generate a set of jobs with a particular range
of properties. The jobs are randomly generated, but fitted to a uniform distribution. This
mode can be used to determine what the outcome would be if the jobs were submitted to
a Grid following the proposed economic model. This therefore allows the model to be
examined and ensures the model is accurately being followed by the simulator. To assist
in the verification process static code analysis1 and JUnit testing was also used to ensure
the simulator was working correctly. The various parameters and the range of possible
values the simulator takes is discussed next.

The first major setting indicates how many jobs should be generated (Jobs to Generate).
The other settings then indicate either the range or the specific value a parameter in the
model should take. There is also the possibility to indicate if the budget, due date, dead-
line and penalty fee should be placed within a fixed range or bound to another appropriate
value i.e. the penalty fee could be given as a percentage of the service price, the details is
discussed next.

The completion time is given as an upper Comp Time Upper and a lower Comp Time Lower

value with an interval Comp Time Interval. This however changes if the cost and speed
of each resource as specified, the tasks then need a Task Work value assigning to them to
specify their size.

The due date is specified as a percentage of the completion time and is shown as
a range of due dates by a minimum value Due Date Min Perc and a maximum value
Due Date Max Perc and an interval value Due Date Interval.

The deadline is then shown as a percentage of the due date in a similar fashion Dead-

line Interval, Deadline Max Perc, Deadline Min Perc. It takes its value as a percentage

1http://findbugs.sourceforge.net/

Chapter 3 77 Pricing Policy

increase from the due date as practically the deadline must be a greater or equal to the due
date.

The resource cost is set by the triple Res Cost Interval, Res Cost Lower, Res Cost Upper

unless specific resource speed cost pairs are specified, where in this case resources are
then emulated.

The budget for a job is shown as the triple Budget Interval,Budget Max Perc, Bud-

get Min Perc. It is shown as a percentage of the resource cost, unless is Budget Fixed

is set to true where it then sets the value of the budget to be within the range specified,
without reference to the resource cost.

The broker’s markup is taken as a percentage increase on the resource cost, this
markup is shown as the triple Markup Lower, Markup Upper, Markup Interval.

The penalty fee is given as a percentage of the service price unless it is set to a fixed
mode when literal values between the ranges specified are used instead. The triple used to
describe the penalty fee is Penalty Fee Max Perc, Penalty Fee Min Perc, Penalty Fee Interval.

The final element in the configuration file is the ability to change the name of the
output file Filename For Output.

The output of the simulation gives a set of jobs with a completion time, due date,
deadline, breakeven point, resource cost, actual service price, max service price, budget,
markup, cap on penalty fee and broker profit indicated. This however does not show
the effects of a limited amount of resources and each job is as if it had been allocated
sufficient resources to complete each task separately.

3.4.2.3 Discrete Event Simulation Mode

The discrete event simulation mode allows for the testing of the model, by first generating
a bucket of jobs in a similar way to the parameter study. The bucket is however setup to
follow distributions for each of the parameters from values found in the literature. The
jobs in this bucket are selected randomly and then released one by one into a discrete
event simulator and the outcome is then recorded.

An overview of the simulator is presented in Figure 3.8. The main component of the
simulator is a ISQoSDiscreteEventSimulator class. Its role is to:

• maintains a copy of the simulators event queue

• create and hold the bucket of jobs following the predefined distribution

• determine the rate at which jobs arrive and are sent to the broker for processing

• decide upon the simulators stop conditions (time and or jobs submitted)

Chapter 3 78 Pricing Policy

Figure 3.8: An Overview of the Simulator

The discrete event simulator then delegates the main work to the simulated broker. The
broker’s role is to:

• record the results of the simulation.

• controls the flow of execution,

• pass events to a broker selection mechanism called the ”broker scheduler”

The simulated broker uses an interface to perform scheduling/brokering, so it can act
as either a single ”local scheduler” or have a brokering mechanism/scheduler with a set of
”local schedulers”. This is achieved as there is no difference between contacting multiple
local schedulers and a single scheduler from the interfaces perspective. This abstraction
enables the simulator to be used to investigate a scheduling algorithm on either a single
provider or upon multiple providers.

The scheduler in use can hence be either a ”broker scheduler” that simply creates and
manages a set of local schedulers or it can be a single local scheduler that performs the
allocation of tasks to individual resources.

The simulator finally has a set of comparators for used for either the broker’s schedul-
ing mechanism or the local scheduler, these are for the Resources (”named Machines in
the simulator”), Offers and Tasks and are listed below:

Offers (Sorting): The available offer sort orders, used in ranking offers which are similar
to the broker and are discussed in more detail in Section 4.4.7.

• Cheapest: offers are sorted by the cheapest offer first.

• Earliest: offers are sorted by the earliest offer first.

• Profit: offers are sorted by the offer that makes the most profit for the broker
first.

Chapter 3 79 Pricing Policy

• Profit Rate: offers are sorted so the offer making the most profit per second
is first. The ordering derives from the calculation: profit / (completion time -
submission time)

• Profit then Latest: offers are sorted by highest profit first then a second order
sort on completion time, with the latest been given preference.

• Profit then Earliest: offers are sorted by highest profit first then a second order
sort on completion time, with the earliest been given preference.

• Budgetary Resilience: offers are sorted by the calculation: offers budget -
resource cost, with the smallest value first.

Offers (Filtering): The available offer filtering mechanisms, used in selecting offers are
similar to the broker and are given in more detail in Section 4.4.7.

• Topmost Offer: this selects the topmost offer in the sorted list

• Topmost Profitable Offer: this selects the topmost offer in the sorted list that
makes a profit for the broker if such an offer exists, otherwise all offers are
rejected.

• Minimum Profitability: this selects the topmost offer in the sorted list, that
meets a user defined minimum level of profit, if not is found all offers are
rejected.

• Minimum Profitable Rate: this selects the topmost offer in the sorted list that
makes a minimum amount of profit per second.

• Near Going Rate: This calculates a rate: Profit / (Completion Time - Job
Start Time). It then uses a history of accepted jobs to decide if the offer is
acceptable. It returns the topmost offer that meets the current going rate with
some pre-specified margin of acceptance i.e. a threshold below this current
rate to which an offer could still be accepted.

• Hybrid Offer Filter: This advances upon the previous mechanism in that an
offer is immediately accepted should neither the budgetary or time constraints
of a job be in conflict. The current rate is then used to resolve jobs that are just
past the due date or just eating into the mark-up the broker makes for itself.

Machines/Resources: The available machine sort orders, used in scheduling algorithms.

• Cost: The machines are sorted by resource cost, cheapest first.

Chapter 3 80 Pricing Policy

• Cost then Speed: The machines are sorted by resource cost, cheapest first and
then with a second order sort of speed, slowest first.

• Speed: This sorts the machines by the fastest first.

• Speed Cost Ratio: This sorts machines by the ratio between

• Speed then Cost: This sorts machines by the slowest machine first, then sorts
by resource cost, cheapest first.

• Current Workload: This sums up the amount of work belonging to each task
assigned to a given machine. It then sorts by the least loaded machine first.

• Completion Time of the Last Task: This sorts machines by the time at which
their queues will become empty.

Tasks: The available Task sort orders, used in scheduling algorithms.

• Completion Time: This sorts tasks by their expected completion time, earliest
first.

• Size: This sorts tasks by the amount of work that is associated with the task,
smallest first.

3.5 Experimental: Parameter Variation Study

In this section the work relates to the mode of the simulator described in Section 3.4.2.2.
This allows for ranges of inputs into the model to be examined, thus checking to see if the
model is both correctly implemented and that outputs of the model are useful. In Section
3.5.1 both the service market and resource market, are illustrated. This means individual
resource costs are specified. After this the resource cost is fixed and the results are shown
only for the service market, which is shown in Section 3.5.2.

3.5.1 Resource and Service Market

In this section a study of the properties of the proposed broker pricing model is presented.
Figure 3.9 is used as an illustration of the resource and service markets interacting. A
set of 18 offers are shown on the graph. The resource cost as given by the provider/s is
shown. The parameters given by the user of due date, deadline and budget are also shown
as straight lines on the graph. The service price is shown as two separate values, the actual
service price and the service price should the price not have dropped due to the due date
to deadline period.

Chapter 3 81 Pricing Policy

Figure 3.9: An Overview of the Resource and Service Market Interaction

The parameters of the demonstration are as follows, the due date was set to 15,000 and
the deadline was set to 30,000. The mark-up was set to +50% and the budget to 300,000.
The cap on the penalty fee was set to 0. The task size was fixed to 300,000. Finally a
set of machines with speed and cost pairs was introduced, in order to calculate the cost of
each task and its completion time. These pairs are shown in Table 3.2.

Table 3.2: The Machine Cost Pairs used in the Resource and Service Market Example

speed cost speed cost
25 18 16 7
24 14 15 6
23 12 14 5
22 11 13 4
21 10 12 3.5
20 9.8 11 3.2
19 8.5 10 3
18 8 8 2.5
17 7.5 6 2

Due Date and Deadline: The service price can be seen to diminish in comparison to the
maximum service price possible, between the due date to deadline period. The
maximum being derived from if the due date and deadline did not exist.

Penalty Fee Cap: The maximum loss to the broker is at the deadline and notionally after
it. This is limited to the resource cost as the cap on the penalty fee equal zero.

Chapter 3 82 Pricing Policy

Budget: The budget can be seen on the left most point restricting the maximum service
price. The candidate schedule produced remains viable; however, as the budget has
been surpassed the brokers would have to absorb any loss due to rescheduling.

Viable Schedules: The points 2-5 (left to right for the service price) are all considered to
be acceptable schedules with varying amounts of budgetary resilience and temporal
slack. The 6th point although viable it is equal to the due date and it is dominated by
5th point (the 5th point is better in both resource cost and completion time parame-
ters). It should therefore be removed from the candidate set that a broker would use
to recommend a single schedule.

Breakeven Point: The 11th point is at the breakeven point and indicates the last viable
schedule to the broker, where it will continue to make a profit from participating in
the Grid.

3.5.2 Service Market

Figure 3.10: Broker’s Profit - Varying Deadline and Markup (completion time = 15,000)

The study in this section will focus on the service market. In Figure 3.10 the deadline
of jobs is set to 18,000, 21,000 or 24,000 (+20, 40 and 60% of the completion time). The
completion time is fixed to 15,000. The due date is then altered in order to change how

Chapter 3 83 Pricing Policy

much slack is available i.e. where the completion time lies relative to the due date and
deadline. The due date ranges as a percentage of the completion time from 50% to 120%
at intervals of 2.5%.

In Figure 3.10 three variations which have 0% mark-up have been highlighted. It can
be seen that those with the smaller deadline have lower profit for the same due date. This
demonstrates the increased risk to a broker’s profit margin to accept jobs with a smaller
gap between the due date and deadline. The mark-up is shown to affect the initial profit
and the point at where the broker breaks even, which will be explored in detail later.

A summary of Figure 3.10 and 3.11’s parameters may be seen in Table 3.3.

Table 3.3: Parameters for Figures 3.10 and 3.11

Parameter Fixed/Varying Sweep Characteristics

Resource Cost Fixed 15,000
Completion Time Fixed 15,000
Due Date Varying 7,500 to 18,000 in intervals of 300 (50%

to 120% of completion time in intervals
of 2.5%)

Deadline Varying 18,000 , 21,000 and 24,000
Mark-up Varying 0, 25 and 50%
Budget Fixed 22,500 (+50% of resource cost)
Penalty Fee Cap Fixed 0

Figure 3.11 re-represents the data in Figure 3.10. It shows how presenting the comple-
tion time as a percentage of the way through the due date to deadline period means that all
values can be represented by a flat surface, where the due date and deadline only affects
the position of the job on this surface. This is useful for comparative purposes for jobs in
that the gradient is unaffected by the user’s preference for the due date and deadline.

It should be noticed that with the smaller deadlines and hence ”deadline slack” that
the progression through the due date to deadline section (0% to 80%) is quicker resulting
in a lower profit. This is reflected in that the red surface (deadline = 18,000) extends out
further than the 21,000 and 24,000 lines. This was demonstrated in Figure 3.10 by the
jobs with a smaller gap between the due date and deadline having a greater gradient. The
broker’s profit regardless of due date and deadline is shown to be at 33.3% of the way
between the due date and deadline.

The effect of the cap upon the penalty fee is demonstrated in Figures 3.12 and 3.13.
The penalty fee ranges from -50% to 100% of the maximum service charge in intervals
of 10.0%. The penalty fee causes the surface to have a steeper gradient, resulting in a
requirement to restrict the losses that can be imposed. This can even be seen when the

Chapter 3 84 Pricing Policy

pay-out is capped to zero, as the full resource cost of 15,000 would still be lost, along
with the prospect of a profit of 3,750 given a mark-up of 25%.

Figure 3.11: Broker’s Profit Shown as a Surface - Varying Deadline and Markup (com-
pletion time = 15,000)

Figure 3.12: Penalty Fee Exploration Shown as a Surface - Varying Due Date, Deadline
and Penalty Fee

Figure 3.12 and 3.13’s parameter are summarised in Table 3.4.

Chapter 3 85 Pricing Policy

Table 3.4: Parameters for Figures 3.12 and 3.13

Parameter Fixed/Varying Sweep Characteristics

Resource Cost Fixed 15,000
Completion Time Fixed 15,000
Due Date Varying 7,500 to 18,000 in intervals of 300 (50%

to 120% of completion time in intervals
of 2.5%)

Deadline Varying 18,000 , 21,000 and 24,000
Mark-up Fixed 25%
Budget Fixed 22,500 (+50% of resource cost)
Penalty Fee Cap Varying -9375 to 18,750 (-50% to 100% of the

maximum service price in intervals of
10%)

Figure 3.13: Penalty Fee Exploration at 25% Mark-up Varying Penalty Fee, (Due Date =
15,000, Deadline = 18,000

Chapter 3 86 Pricing Policy

Figure 3.12 uses the same data as Figure 3.13. It remains comparable with Figure 3.11
with a due date of 25%. It however shows the changes in the penalty fee cap. The cap
represents the lowest number the service price may go to. If it is negative then the broker
pays the user compensation. If this occurs the broker’s profit is rapidly reduced, offering
further incentive to complete the job on time. The narrower deadline further impacts upon
the profitability of the job and the 18,000 case loses the most amount of money for the
broker.

Figure 3.13 shows the effects of the penalty fee more for a subset of the data, than
Figure 3.12. The completion time is fixed at 15,000 and the deadline at 18,000. The due
date is altered in the range of -50% completion time to 0%.

It can be seen that the cap on the penalty fee in relation to service price greatly affects
the gradient of the line. This cap on the penalty fee is set as follows:

• Maximum Penalty = Maximum Service Price × Percentage Penalty

• Maximum Service Price = Resource Cost ×Mark-up

So with a fixed percentage penalty of 100% the broker will make pay a penalty of
18,500, while at -50% it will still get 50% of the maximum service price. The values for
the gradient shown in Figure 3.13, which follow the formula y = mx + c, are given as
follows:

• y = Actual Profit,

• x = (Completion Time - Due Date)/ (Deadline - Due Date),

• m = (Maximum Profit - Cap on Penalty Fee)/(0% - 100%)

• m = ((Resource Cost ×Mark-up - Resource Cost) - Cap on Penalty Fee)/(0-1)

• c = Maximum Profit = Maximum Service Price - Resource Cost

The gradient represents the rate of loss for a given percentage of the time between the
due date and completion time. This along with the mark-up, the slack and the breakeven
point will be important when deciding if a job should be accepted or not. The budget
constraint represents the upper limit of the service price so long as some budget resilience
remains it is not expected to take any further role in the jobs selection preference. This rate
of loss is heavily affected by the cap on the penalty fee so this will have to be constrained.

In Figure 3.14 the effect of changes in resource cost and markup are highlighted. The
resource cost is set to 15,000, 17,500 and 20,000 respectively, with the mark-up set to

Chapter 3 87 Pricing Policy

Figure 3.14: Resource Cost Exploration: Fixed Penalty Fee at 0 Varying Resource Cost,
Markup and Due Date

0%, 25% and 50%. The completion time remains fixed at 15,000 and deadline is fixed
at 25,000. The due date changes between 50.0% and +20% of the completion time. The
penalty fee cap is fixed at 0.

The position of the ”breakeven point” (a notion of the broker’s ”margin of error”) can
be seen to increase with the mark-up. At 50% mark-up the breakeven point is at 33.3% of
the distance from the due date to deadline. At 25% mark-up it is 20.0%. The breakeven
point is hence directly linked to mark-up and is shown on Figure 3.14 as the intersection
points, one for each mark-up. The percentage of the way through the due date to deadline
period can be found by:

x =
markup

100+markup

A worked example of this is shown at 25% mark-up:

0.2 =
25

100+25
The time for the breakeven point may be found by the following formula:

x =
Service Price−Resource Cost

Service Price−Cap on Penalty Fee
× (Deadline−Due Date)+Due Date

Chapter 3 88 Pricing Policy

A worked example of this is as follows:

18,750−15,000
18,750−0

× (24,000−20,000)+20,000 = 20,800

Mark-up can therefore be seen as useful in providing relative preference for two jobs
that are otherwise equal, as the broker is given more time before breakeven point and
gains a higher profit, without effecting the temporal constraints of the end user. Due to its
ability to change the position of the broker’s breakeven point it relates to the likelihood
of the broker been able to breakeven and make a profit. It is also significant that for any
given resource cost the breakeven point (0 broker profit) is always fixed. This is useful
in that it simplifies the model in regards to assessing the risk of the broker not breaking
even.

Figure 3.14’s parameters are summarised in Table 3.5.

Table 3.5: Parameters for Figure 3.14

Parameter Fixed/Varying Sweep Characteristics

Resource Cost Varying 15,000, 17,500 and 20,000 (2,500 increments)
Completion Time Fixed 15,000
Due Date Varying 7,500 to 18,000 in intervals of 600 (50%

to 120% of the completion time in
intervals of 5%)

Deadline Fixed 25,000
Mark-up Varying 0, 25 and 50%
Budget Fixed 22,500 (+50% of resource cost)
Penalty Fee Cap Fixed 0

In Figure 3.15 two factors are seen to alter the point at which service prices for the
same mark-up intersect. These are the mark-up itself and the cap upon the penalty fee.
The value for the broker’s profit at this point is given as:

Broker′s Pro f it =
Markup

Markup+100
×Cap On Penalty Fee

A worked example for this is:

2,857(4.s f) =
40

40+100
×10,000

This means that jobs with different mark-up’s and different resource costs can be
directly compared at the point of intersection, because the resource cost is no longer
relevant as only mark-up and the cap upon the penalty fee change the profit made at this

Chapter 3 89 Pricing Policy

Figure 3.15: Resource Cost & Penalty Fee Cap Exploration: Varying Penalty Fee, Re-
source Cost, Markup and Due Date

point. In order that this intersection point is also the breakeven point for the broker, the cap
on the penalty fee should be fixed to zero. This means the broker will only pay for the cost
of the resources that it has used and all jobs with the same mark-up become comparable at
the breakeven point regardless of the initial resource cost. The significance of the mark-
up is that for an accepted job it is the minimum amount of budgetary resilience possible,
while the cap on the penalty fee represents the worst possible case for payout. It therefore
means that this point for any given schedule/”resource cost” it is comparable in both its
profit (economic properties) and temporal (percentage of the way between due date and
deadline).

As the breakeven point is a fixed point an alternative for calculating the gradient, is to
therefore use this as a point or reference m = Maximum Pro f it−Y At Re f erence Point

0−X At Re f erence Point

Figure 3.15’s parameters are described in Table 3.6.

Chapter 3 90 Pricing Policy

Table 3.6: Parameters for Figure 3.15

Parameter Fixed/Varying Sweep Characteristics

Resource Cost Varying 15,000, 17,500 and 20,000 (2,500 increments)
Completion Time Fixed 15,000
Due Date Varying 7,500 to 18,000 in intervals of 600 (50%

to 120% of the completion time in
intervals of 5%)

Deadline Fixed 25,000
Mark-up Varying 10, 20 and 40%
Budget Fixed 22,500 (+50% of resource cost)
Penalty Fee Cap Fixed 10,000

3.6 Experimental: Discrete Event Simulation

In this section the exploration of the model is performed using discrete event simulation,
by using the ISQoS pricing simulator. The aim is to advance upon the work performed
in the parameter variation study (shown in Section 3.5) and to test parts of the model that
requires more than just sweeping through ranges of parameters.

The next two sections discusses the experimental method and generic configuration
settings that don’t change during the experimentation presented in this section. The sec-
tion after then discusses the results, which were largely reported in [103].

The results are split into two parts the first part focus upon the affect that a range
of parameters have upon the amount of jobs accepted in relationship to slack. This is
performed with a due date and deadline been equal, i.e. a hard deadline with no gradient.

The second section then demonstrates the effect of the gradient section and shifts to
highlighting the behaviour of the ISQoS Hybrid Offer Filter which was introduced in
Section 4.4.7.2. The experimentation largely focus upon broker profit made over the life
of the simulation. This is because a broker needs to make a profit in order to maintain
viability. The principle is to remain viable while ensuring as many users as possible have
their requirements satisfied, which in turn generates broker profit.

3.6.1 Experimental Method

The ISQoS simulator at the start of the simulation created a bucket of jobs, who’s prop-
erties were set to follow distributions as determined from trace analysis given in the lit-
erature [95–98]. These jobs were then released at a set rate to the simulated broker. The
broker submitted these jobs to the local schedulers/providers, which in turn calculated the

Chapter 3 91 Pricing Policy

machine to task allocations needed to make an offer. The broker then receives offers from
the providers. These offers are then ranked and filtered. If a winning offer existed it is
then accepted and the work is scheduled. Once the initial bucket of jobs was empty the
remaining scheduled work was allowed to complete and then the simulation was stopped.

Each run of the simulation was performed 10 times and where shown confidence
intervals of 95.4% will be marked.

3.6.2 Experimental Configuration

The ISQoS simulator is highly configurable, but some parameters remain fixed throughout
the experimentation shown in Section 3.6.3. The fixed parameters are hence listed in this
section.

The experiments stop condition was to stop once 1,000 jobs had been processed from
the bucket of jobs and no limit on the duration was set.

Each provider used a simple scheduler which assigned work based upon the machines
workload, it took the least loaded resources first and assigned tasks in order of workload
(largest task first). Eight providers were used, each with 144 machines. A range of both
machine speed and cost values was chosen. The machine cost was set such that the faster
the machine the more it costs, though there was no set distribution shape for this and
values were set by hand.

The task workload will be placed into three categories: small, medium and large.
The categories will denote the average task length. They will be set at the equivalent of
2hrs, 4hrs and 8hrs worth of work on the average machine of a provider. The average
speed of the machines is 16,333 units of work per second. Thus the amount of work for a
medium sized task is 240,000,000 operations. Similarly this has been done for the small
(120,000,000) and large (480,000,000) categories. The workload for a task will have a
normal distribution with a mean of 2.73 and a standard deviation of 6.1 following the
average task runtime indicated in [98]. The durations were chosen because [96] gives the
average time to run a task in a group submission/job as 14,181s and [95, 97] indicates
that most runtimes are shown to between a fraction of a minute and 1,000 min (1,000min
= 16.6hrs). The runtime variability between tasks belonging to the same BoT [98] is
indicated to follow a Weibull distribution with a shape of 2.05 and a scale parameter of
12.25 hence this variability will also be accounted for.

The task per job will be separated into three categories: small, medium and large. A
Weibull distribution will be chosen with a shape parameter set to 1.76 as per [98], the
scale parameter will be adjusted in a fashion that creates the appropriate range desired.

Chapter 3 92 Pricing Policy

Iosup et al. [98] give an average BoT size in their traces as been between 5 and 50, while
the maximum BoT size can be on the order of thousands. The authors in [95] indicate that
the average number of tasks in a bag in various different Grid traces investigated ranges
between 2 and 70 and that most averages for the traces examined fall between 5 and 20.
The ranges for the amount of tasks in a bag are therefore indicated in Table 3.7.

Bag Size Min and Max Values Mean
Small 2-10 4.99

Medium 11-39 21.49
Large 40-70 51.23

Table 3.7: The Minimum and Maximum Tasks per Job

The inter-arrival time (i.e. the time between arrivals of jobs) will follow the Weibull
distribution and will have a shape parameter of 4.25 as per [98]. The inter-arrival time for
job submissions is indicated to be between 1 and 1,000s in [95,97], with most been below
100s.

A selection of inter-arrival times have therefore been chosen to reflect this prior work.
Though a wide spread of inter-arrival times has been tested a more select range which
provides high levels of competition for resources will be discussed in this chapter. Inter-
arrival rates will be below 334.14s with an inter-arrival time of 210.14s where it is not
otherwise indicated.

3.6.3 Results & Evaluation

3.6.3.1 Job Acceptance and Slack

In Figure 3.16 the due date and deadline are set to be the same time, the focus will there-
fore be placed upon the effect of slack before this strict deadline. The effect a graduated
due date to deadline period will then be demonstrated afterwards. The inter-arrival time
is set at 210.14s, unless it was subject to change as part of experimentation (i.e. Figure
3.16b). This arrival rate has been determined to give a high level of competition between
tasks. The markup is fixed at 10% (except in Figure 3.16b where 30% is also shown)
and a medium workload per task and medium count of tasks per job were chosen. The
broker was configured to sort the offers by earliest completion time first and then accept
the topmost offer.

In Figure 3.16a two markups are shown, it can be seen that there is little distinguishing
difference between them. The profit made which is not shown here differs in that the
higher markup when compared with the lower markup makes more profit. The lack of

Chapter 3 93 Pricing Policy

(a) (b)

(c) (d)

(e)

Figure 3.16: The Effects of Slack upon Job Acceptance with Varying a) Markup, b) Ar-
rival Rate, c) Task Count, d) Task Size and e) Reference Machine Speed

Chapter 3 94 Pricing Policy

difference between markups is placed down to the lack of economic pressure on the jobs.
i.e. the budget constraint does not restrict the jobs, so there is limited competition between
them.

A clear transition between 250% and 300% is observed. This is considered to be an
aspect of competition, particularly in regard to temporal pressures. Firstly this experi-
ment is conducted with due date and deadline that are equal, so it can therefore be said
that at 100% no slack is permitted, so there would be no permitted start delay. The lack
of any permitted start delay means jobs must be able to start straight away on a machine
that is free of work. Given higher levels of slack then some delay can be tolerated and
that this delay will be directly related to other jobs in the system and hence the competi-
tion between them. Jobs with greater acceptable start delay hence can be queued behind
other jobs and can be more readily accepted in a schedule, slack therefore relates to how
permissible this possibility is for a given job.

The arrival rate influences the amount of jobs accepted, but as shown in Figure 3.16b
this only occurs after the transition point. It is noted that the 86.14 inter-arrival time trace
is levelling out and is tending towards a maximum permissible amount of acceptable
jobs, while 210.14 and 243.7 observe a much more linear relationship after this transition
period. Finally the 334.14 trace has reached the maximum amount of jobs submitted after
this transition. The effects shown here are because jobs have a fixed time window in
which they must be completed, so high arrival rates ensure these windows overlap more
and once the slack is increased more freedom of job placement permitted and fewer jobs
have to be rejected.

The position of this transition point can be shown to not relate to the task heterogeneity
i.e. to the task count (Figure 3.16c) or task size (Figure 3.16d).

In Figure 3.16c it is observed that before 2.5x slack the amount of tasks in a job
distinguishes the traces, which is not seen in the other figures. The differences in gradients
seen after the 3.0x point is also of interest as jobs with a lower amount of tasks per job
are accepted much more readily, though this also relates to there simply been less work.
Argument can still be made that if the slack is small then it helps if the job contains
fewer tasks, especially before the transition point. This distinction occurs as there is a
finite amount of machines over the average speed of the provider. The average speed was
chosen as the mechanism for estimating completion time. Hence when more tasks are
present more competition exists between the tasks, as there is a finite set of machines that
are fast enough to complete the work in time, especially with low levels of slack.

Figure 3.16d like Figure 3.16c changes the amount of workload per job; it must there-
fore be asked why in Figure 3.16d before the transition shows no distinguish between

Chapter 3 95 Pricing Policy

the low, medium and high traces. The reason for this is placed down to the fact that the
duration a job relates to the amount of work needing to be completed. In Figure 3.16d
this therefore makes no difference as the size of the slack is related to the estimate of the
completion time and hence to the task’s size.

The start delay relative to the task length during the experimentation has been very
limited. The initial slack therefore often mitigates the effect that competition and start
delay causes. In Figure 3.16e we see an alternative use for slack and the reason for the
sudden transition. The reference processor for estimating the job duration is seen to be
responsible. Three separate reference speeds were chosen, namely that of the fastest
possible machine 25,000, the average 16,333 and a slow machine 14,000. The slowest
machines on a provider was 6,000 ops/sec.

Calculation Description Calculation Transition Point - %
Due Date is of
Estimated Completion
Time

Fastest/Slowest 25,000
6,000 4.17

Average/Slowest 16,000
6,000 2.72

Slow/Slowest 14,000
6,000 2.33

Table 3.8: The Relative Speed Difference Between the Reference Machine and the Slow-
est machine

In Table 3.8 the reference machine’s speed is compared to the slowest machine and
in doing so indicates the location on the x axis of the transition point. This is achieved
by the formula: Transition Point As Percentage O f Due Date To Deadline Section =
Re f erence Processor Speed

Slowest Processor Speed

The choice of reference machine ensures tasks cannot be placed on machines slower
than the reference until the slack is sufficient to compensate for the extra time taken.
If the slack is always chosen to compensate for the heterogeneity in machines then job
acceptance rates will be high given the temporal constraints. If the end user requests a
small amount of slack then it can be assumed that they will require machines that are at
least as fast as the reference machine. Figure 3.16e hence shows with a slower reference
machine that jobs are accepted more readily, as more of the machines available are faster
than the reference, so can complete the task within the time allotted as determined by the
use of the reference machine.

Chapter 3 96 Pricing Policy

3.6.3.2 The Effects of Gradient Based Deadlines

The aim of this experimentation it to show the effects of increasing the gap between the
due date and deadline.

In this sections experimentation the inter-arrival time of jobs is set at 210.14s. The
broker in this section sorts offers from providers as before by earliest completion time
first. The filtering mechanism used is then changed. In Figure 3.17a and 3.17b the offers
are then filtered so that the first profitable offer is chosen, which prevents unprofitable
jobs from been accepted. This is similar to related work such as [148], given that faster
processors in our experimentation cost more and that we are sorting by earliest first. This
is experiment is also performed for a range of markups.

In Figure 3.17a follow a linear relationship, 10% and 50% have been marked on 3.17a
to highlight this. Confidence intervals on 10, 40 and 50% markup runs have been added
though for 20% and 30%’s error bars have been omitted but are broadly similar. It can be
seen in Figure 3.17a when the deadline is set to be 5x (500%) that of the due date, that all
jobs with 50% markup are accepted. This illustrates how higher markup encourages job
acceptance and exacerbates the effect of the increased gap between due date and deadline.
This occurs because the breakeven point is later in the 50% markup than it is with the 10%
markup and in general the 50% markup run is more likely to make a profit on a given job.

The detrimental effects of accepting any profitable offers is shown in Figure 3.17b.
The profit drops as the gap between due date and deadline increases. This is due to more
jobs being accepted (Figure 3.17a) which makes it more likely that the next job to arrive
will overshoot the due date. The increase in gap size effectively gives more time for job
to complete, which generates an increase in competition for the finite resources available
as more jobs can plausibly complete before the deadline. It can also be noted that when
the gap between due date and deadline is small the rate at which the service price drops
quickly, hence providing the steepness of the curve.

This downward trend in profit is eventually reversed as the gap increases. This is due
to the broker having more time to complete the work before the breakeven point as the
drop in the service price is slower and is aided by the acceptance of more jobs.

In Figure 3.18a and 3.18b the ISQoS Hybrid Offer Filter is used (see Section 4.4.7.2),
with the intent of mitigating the detrimental effects on the broker’s profit that was shown
in Figure 3.17b. The results are shown only for a markup of 50% and the Filter takes the
last 50 accepted jobs in order to establish the going rate.

In the Figure 3.18a fewer jobs can be seen to be accepted, when the threshold below
the going rate was less than zero. A threshold less than zero means that jobs completing
after the due date must have a higher rate of return than the average for the last 50 jobs.

Chapter 3 97 Pricing Policy

(a)

(b)

Figure 3.17: The Effect of Slack and Deadlines on Job Acceptance

Chapter 3 98 Pricing Policy

(a)

(b)

Figure 3.18: The Effects of Intelligent Filtering

Chapter 3 99 Pricing Policy

The broker’s profit and hence the level of quality of service provided can be seen to
increase in Figure 3.18b, when jobs that arrive after the completion time are required to
have a higher rate of return. There remains some loss in comparison to not allowing a
gradient section, but this has largely been mitigated. One way to guarantee mitigation
would be to use the due date to deadline period solely as a recovery mechanism/a way to
deal with completion time uncertainty. This would be completed by never accepting work
that is expected to complete after the due date, though this removes the benefits of having
a graduated deadline section.

3.7 Comparison Study

To summarise the discussion of similar models the Table 3.9 is presented. The criteria
for judging in the summary are as given as follows with explanations of their importance.
Using the chosen criteria the ISQoS variation presented in Section 3.3 demonstrates the
advantages of its use.

Service Price Gradient Start Position Linked to Runtime: The user’s preferences for
completion time should not be based upon system centric properties such as slow-
down.

Service Price Fixed to Client’s Offering Price: The user is unlikely to know a great
deal about the current market conditions, hence there needs guidance on how to
set the correct budget for a job. ISQoS offers this in terms of a series of offers and
counter offers. The user can hence see what budget is needed in order to get their
job executed. The budget in ISQoS does not necessarily mean the final price the
user is going to pay for the job either. The price should follow demand and should
not be driven by users bidding blindly against each other. The returned offers in
ISQoS can act in an advisory fashion indicating how far away a provider is from
completing a job on time and on budget.

Bound Penalty Fee: This limits the providers loss, ensuring it can participate without
signing a blank cheque.

Final Price Easy to Explain to End User: Simplicity to the end user is required. If a
service price cannot easily be determined it diminishes the user’s willingness to
pay.

Chapter 3 100 Pricing Policy

Table 3.9: Comparison of Related Pricing Models

Name
Runtime &
Gradient
Linked

Service Price
& Client’s
Offering
Price Linked

Penalty Fee
Bound

Quickly
Explainable
Pricing

First Price [54] Yes Yes Yes Yes
First Reward [99] Yes Yes No Yes
Risk Reward [99] Yes Yes No Yes
First Profit [148] No Yes Yes Yes

First
Opportunity
[148]

No Yes Yes Yes

First
Opportunity
Rate [148]

No Yes Yes Yes

LibraSLA [52] No Yes Optional Yes
Aggregate Utility [17] No Yes Yes No

ISQoS No No Yes Yes

3.8 Summary

In this chapter the pricing model was introduced, as was a simulator that was written to
test the viability of the model.

The pricing model allowed the service providers to set a resource cost which was then
used to determine a service price. The price was setup to diminish by using a gradient
based approach between a due date and deadline, which both incentivises QoS provi-
sion and binds the temporal and economic factors of jobs together. The due date and
deadline were set to be independent of job completion time which avoided system cen-
tric measures such as slowdown. Jobs were also allowed to be constrained by assigning
a maximum budget for job completion and by setting a mark-up, which can be used to
generate prioritisation. In generating this model key measures for judging jobs were also
expressed such as: due date slack, breakeven point slack and the deadline slack, as well
as economic slack variations such as budget slack and budget resilience.

The simulator first of all was used in a parameter sweep mode that showed the outcome
of a job with any given variation of settings.

Chapter 3 101 Pricing Policy

The outcome of this was to provide the following key observations:

• Though the due date and deadline can change, when profit is assessed as a percent-
age through this transition period, it removes the focus on exact values of due date
and deadline.

• The penalty fee needs capping and should not be too generous and that zero is
reasonable.

• If the penalty fee is set to zero, hence the broker pays for resources used but pays
no compensation to the end user then the broker will always breakeven at exactly
the same percentage through the transition period for a given mark-up. This signif-
icantly aids comparability, as at the breakeven point becomes well defined and is
independent of resource cost.

• If the penalty fee is not set to zero for a given mark-up a job will still have a point
where the service price is equal to a second job with the same mark-up even if the
resource cost is different, but this will not be at the breakeven point.

The simulator was then used in a discrete event mode that further tested the model,
which gave the following outcomes:

• How slack is related to job acceptance counts and to the machine heterogeneity,
i.e. that the amount of jobs accepted would suddenly increase once a transition
point was reached which was shown by Re f erenceProcessorSpeed

SlowestProcessorSpeed . This was due to the
reference processor effectively specifying the minimum processor speed accepted
when the deadline was closer to the completion time.

• That mark-up made jobs more preferential by moving the breakeven point, ensuring
more jobs could be accepted.

• That gradient based deadlines were shown to cause a reduction in profit, as too
many jobs would be accepted. A mechanism to alleviate this to use an assessment
of the rate that profit was expected to accumulate for a given job and to compare
this to a going rate.

Finally the ISQoS pricing model was compared in tabular form with existing models
in order to highlight the differences that it has with existing models.

Chapter 4

ISQoS Broker

4.1 Introduction

This chapter outlines the implementation of the broker that was developed as part of the
research. The main aims of this chapter are to: discuss brokerage and negotiation within
ISQoS, highlight the architecture requirements that makes this possible and to present
recommendations.

The next section 4.2 discusses the related work. This is then followed by the require-
ments analysis in Section 4.3 including discussion upon the architectural challenges that
led to fresh development instead of extending existing work in Section 4.3.2.

The architecture is then discussed in Section 4.4 that enables the brokerage mechanism
introduced in this chapter. This starts by providing an overview of the overall flow of
events in the system in Section 4.4.1. This is followed by a discussion of the agreement
process in the system and of the job and task representations. This is then followed by
the provider’s record of the Grid’s state information, on which offers are based. The
process of offer generation and committal is then discussed, followed by the scheduling
algorithms, offer ranking and selection mechanisms and finally by how pricing occurs in
ISQoS. This chapter is then concluded with a comparison study that discusses various
different middleware offerings in Section 4.5.9.

102

Chapter 4 103 ISQoS Broker

4.2 Related Work

This section discusses the related work to the broker that is introduced in this chapter. A
selection of brokers/schedulers and middleware is discussed in turn. They are placed into
three categories and classed as either: best effort, quality of service oriented or econom-
ically oriented, in a similar fashion to the survey paper Merlo et al. [127], this has been
chosen as a means to demonstrate progression between early best effort approaches and
later efforts towards quality of service and market oriented approaches.

4.2.1 Best Effort

The best effort approaches are characterised by queue based scheduling that is centred
around the resources, with the aiming of ensuring they remain busy. The listing given be-
low includes examples of deployments where cluster/local schedulers have been adapted
to work in a Grid context, rather than fresh developments aimed specifically at the Grid
problem.

4.2.1.1 Condor & Condor/G

Condor [178] is a local job management system, that allows for submission to clusters
at a localised level. Condor-G provides inter-domain job management services by using
Condor’s job submission features over a Globus controlled environment [178] hence act-
ing as a meta-scheduler for Condor [127]. It works by using a matchmaking mechanism
that uses ClassAds to describe both the available resources and the jobs requirements.

It remains an early example of meta-scheduling but has been criticised for being cen-
tralised, giving rise to a single point of failure, as well as making scheduling decisions
assuming a total knowledge of the environment and assuming submission corresponds
to an automatic execution on physical resources i.e. no delays occur due to staging of
data [127].

4.2.1.2 Portable Batch System (PBS)

The Portable Batch System (PBS) is a batch queuing and workload management system
that was originally developed by NASA [31]. PBS has a built-in FIFO scheduler whose
sole objective is to maximize CPU utilization [160]. This scheduler simply loops through
the queued job list and starts any job that fits in the available resources. In order to prevent
large jobs from never starting, due to small jobs being more likely to be able to fit the

Chapter 4 104 ISQoS Broker

available resources it implements a ”starving jobs” mechanism [31]. PBS is principally
used for cluster scheduling but may be utilised by Globus Toolkit to schedule jobs.

4.2.1.3 Oracle Grid Engine

The Oracle Grid Engine [177] is similar to PBS in that it is a solution that aims to keep
the resources busy. It hence is not oriented towards users quality of service needs. It starts
by placing job is in a pending list, after which a scheduler is then periodically triggered
so that the scheduling may be performed. During this scheduling it assigns the highest
priority jobs in the pending list to the most appropriate resources available [177]. This
gives it some notion of user orientation, though completion times and pricing are not
present. It has two general classes of policy to select which jobs are most important in the
pending queue, namely: ticket and urgency as well as an ability to define custom policies.
The ticket mechanism gives each user an amount of tokens that can be assigned to jobs
and hence acts as a primitive currency [118], while the urgency based policy however
defines how long a job is permitted to wait, hence jobs waiting longer get higher priorities
assigned to them [177].

4.2.1.4 Globus

The Globus Toolkit [77, 181] is often quoted as being the de-facto standard for the con-
struction of Grid environments [76, 181]. It is principally a set of software packages that
can be used to construct Grid environments and in presenting itself as a reusable tool-kit
forms the basis of many other Grid middleware solutions. It including facilities such as
Advance reservation, as implemented by ”General-Purpose Architecture for Reservation
and Allocation” (GARA) [75]. It also has others modules for: data management, for re-
source allocation the module ”Grid Resource Access and Management” (GRAM) [73]
and for monitoring and resource discovery the module ”Monitoring and Discovery Ser-
vice” (MDS) [158, 204] and security.

4.2.2 Quality of Service

The quality of service approaches are characterised by a shift towards the user and the pro-
visioning of Grid services. The two examples chosen here are because of their orientation
towards scheduling and quality of service. OpenCCS [18, 20, 146] being an advanced
scheduling platform, with extensions for strong resource resilience and risk awareness
and Gridway [92, 93] offers meta-scheduling for the Grid.

Chapter 4 105 ISQoS Broker

4.2.2.1 OpenCCS (Paderborn Center for Parallel Computing)

OpenCCS [18,20,146] performs scheduling rather than by working in a queue based sys-
tem. It comes with three scheduling strategies: First-Come-First-Serve (FCFS), shortest-
job-first (SJF) and longest-job-first (LJF). It also has extensions for QoS which mainly
focus upon risk awareness and management (AssessGrid [18]) and upon fault tolerance
(HPC4U [90]) . OpenCCS requires shared storage and does not perform staging in or out
as a result, but aims to merely perform scheduling [146]. This simplifies the scheduling
process but limits some of its applicability to Grid infrastructures.

4.2.2.2 GridWay Metascheduler

Gridway [92, 93] is a metascheduling solution that utilises Globus Toolkit and can there-
fore use scheduling solutions such as Oracle Grid Engine, PBS and Globus toolkit. It
supports standards such as Distributed Resource Management Application API (DR-
MAA) [142] so that it can communicate with lower level schedulers such as Oracle Grid
Engine [83].

A key feature of GridWay is that the scheduling algorithms can be swapped easily
hence it is referred to as a meta-scheduler [60, 83]. This ability to use custom scheduling
algorithms is considered highly desirable for experimentation in that different algorithms
may be tested within the same experimental setup. The default for GridWay however is a
greedy approach using round robin [82, 83] i.e. FIFO based scheduling [82].

Gridway enables QoS in terms of reliability via a performance monitor that period-
ically performs rescheduling in response to slowdown [92]. QoS support in GridWay
also provides fault recovery mechanisms, dynamic scheduling, migration on request and
opportunistic migration [110]. Extensions to GridWay have also been performed such
as Scheduler in Advance Layer (SA-layer), that allows for Job rescheduling using algo-
rithms such Bag of Tasks Rescheduling (BOT-R) and gap management for the limiting
the resource fragmentation effects of advance reservations [185]. In [185] they also per-
form network aware rescheduling and take into account data transfers. This is highly
desirable as network delays vary greatly between data-intensive and compute intensive
applications. Gridway has however no economic model and it uses a single strict deadline
and an earliest permitted start time. This therefore differs from the ISQoS pricing model
that implements a due date and deadline pair, with no earliest start time.

Chapter 4 106 ISQoS Broker

4.2.3 Economic

Economic approaches are presented here to highlight the different efforts that have been
made towards using economies to control the Grid and to provide self-management and
quality of service for end users.

4.2.3.1 Nimrod/G

Nimrod/G is a hierarchical, decentralized, agent-based scheduler [107] for Grids, aimed at
running parametric applications by using economic based scheduling [28], over a Globus
based infrastructure [127].

It is however not a general solution for discovering resources and submitting general
applications in a Grid environment, as it uses a restrictive parametric declarative lan-
guage. It has a limited amount of primitive scheduling algorithms available [39] that are
economically oriented. Criticism has also been levelled against Nimrod/G and GRACE
based economics in that it does not support a comprehensive and complex market based
economy [127]. Nimrod/G has however achieved some commercial interest, in the forked
variation EnFuzion scheduler [28], therefore as an early example of economics it is im-
portant, but it did not manage to enable significant commercial take-up.

4.2.3.2 GridBus + Aneka

In [188] the GridBus broker [38] and Aneka [202] middleware are used to perform eco-
nomically oriented negotiations for Bag of Task applications. This is quite advanced in
that it can generate alternative offers in cases where the original request for work cannot
be fulfilled and also uses a deadline and cost as QoS constraints, though it only has use
for a single hard deadline [188]. During the submission stage it asks only one provider at
once based upon cost constraints and other job requirements so does not establish a mar-
ket mechanism by asking each provider to bid for work. This means if the first provider
can accept the work then it is accepted even if another provider could have potentially
given a better offer, which can be seen to be an oversight.

The Venugopal et al. [188] implementation is also not seen to be user oriented and
agreements are heavily focussed upon resources oriented requirements of jobs. They de-
tail the reward for fulfilling an offer and penalty for not, along with very rigid descriptions
of reservation windows specifying how many CPUs of what speed, with a start and end
time for the reservation. This lacks flexibility and an approach that does not explicitly
indicate which reservations are needed and merely states when the user wants the job
completing by, in a graduated manner is seen as a better approach to negotiation.

Chapter 4 107 ISQoS Broker

4.2.3.3 GEMSS

GEMSS [128] is a service oriented Grid aimed at supporting medical simulations. It uses
scheduling and supports use of the Maui [31,100] and COSY [46] schedulers for this pur-
pose. WSLA [105] is used for SLA formation in GEMSS for both advance reservations
of resources and for the agreement between providers and clients.

The economic model driving GEMSS uses a start and single deadline for jobs, as
well as a jobs budget, thus differing from the ISQoS economic model. In having only a
single deadline value and no gradient it somewhat lacks the definitive economic reason
for a provider to complete work on time, given no means to penalise delays. GEMSS
facilitates swappable resource pricing and can perform pricing based upon either a fixed
rate or dynamic load.

GEMSS uses a reverse English auction for establishing the service price between the
provider and client which is used in provider selection. This price is used along with a
weighted ranking mechanism for the comparison of the job offers QoS parameters. The
QoS parameters in use are a jobs start time, completion time and service price. Though
there does not seem a strong reason for comparing jobs using weighted ranking, other
than that the economic model is not particularly complex, i.e. not incentivising timeliness
in a graduated fashion.

4.2.3.4 Resource Aware Policy Administrator

Resource Aware Policy Administrator (RAPA) [85] is a Grid resource manager that aims
to create SLA’s for job admission and is based upon the Globus toolkit. It is similar to
work presented in this chapter but has substantial limitations. It like the work here is
deadline based with economics. It however has an inflexible market model. Given the
proximity in nature it is discussed in detail below.

Jobs in RAPA regarding deadlines may be one of two types, either hard or soft, soft
deadlines means the user can accommodate delay, which is fixed to a maximum of +20%
of the user’s deadline. This 20% is highly restrictive and does not reflect the users true
deadline requirements. It principally derives from ensuring the middleware does not run
out of money, as the profit policy used allows for notionally unlimited loss as shown by
the following formula [85]:

pro f it =maximum reward−a penalty f actor×(completion time−deadline)−resource cost

Unlike in the ISQoS market model (see: Chapter 3) where the users preferences de-

Chapter 4 108 ISQoS Broker

termines the gradient of the loss and it is up to the broker to decide if the risk of accepting
the job is worth it. It is also limited in that resource usage is allocated by a proportional
share mechanism whereas it could be hoped that various scheduling mechanisms could
be made available.

The budget like in Nimrod/G is specified by the user, and represents the maximum the
user is willing to pay. In ISQoS the provider’s resource pricing mechanism determines the
cost of the resources and the user is billed accordingly up to their budget, thus allowing
the price to follow demand. In RAPA and Nimrod/G however, this is simply accepted as
the amount the user pays if all goes well, thus requiring some mechanism to ensure the
users provide a sensible informed value such as an auction.

4.2.3.5 GridEcon

GridEcon [8, 9] aimed to define a model for managing complex market-based service
oriented Grids, introducing new stakeholders such as risk brokers, SLA monitors and
price modellers [127], which provided value added services such as capacity planning
and insurance contracts [9].

In the economic framework it provided features such as Bid and Asks, which is similar
to the Condor ClassAd mechanism. Bids in GridEcon representing the resources asked
for by the buyer and Asks representing the resources made available by the providers. An
important element of matching resources to jobs is ensuring the units of trade are common
such as asking for n virtual machines for m hours [9].

GridEcon is flexible in that it provides scope for developing either spot markets, where
resources are sold and used almost immediately or futures markets, where future capacity
is traded, as part of capacity planning.

It used a top down approach, defining business models around the candidate applica-
tion and the high level goods to be traded. The lower levels of the Grid infrastructure had
the liability to meet the demands to establish the higher level services that was traded.
This approach may suffer from the semantic gap between high level application require-
ments and low level resource characteristics [127].

Chapter 4 109 ISQoS Broker

4.3 Requirements Analysis

4.3.1 Requirements

The starting point for any implementation is its requirements, these are therefore listed
below:

QoS Cost and Time: To provider an architecture that can be used to support QoS in
terms of job completion time and cost constraints.

Reflect Both Users and Resource Providers: The Broker should be able to act in a none
system-centric fashion. It should be able to reflect the user’s requirements and
express them in a way that gives adaptability to the provider.

Reservation Based Allocation: This is a central requirement of planning using tech-
niques used in operational research. In meeting this requirement it allows domain
experts in scheduling to contribute to the Grid community.

Scheduling API: Provide a mechanism to swap scheduling algorithms out easily and an
API that can be used without underlying expertise in Grids.

Swappable Resource Pricing: To support a wide range of experimentation the provider’s
resource pricing mechanisms should be replaceable.

Swappable Offer Ranking and Selection: To support a wide range of experimentation
the broker’s ranking and selection mechanisms should be replaceable.

SLA: Once a plan of action has been constructed, it should be able to be used as the basis
of guarantees on QoS, provided by a service level agreement.

SLA Negotiation: Negotiation needs to be used as a mechanism to advise the end user
of the current state of the Grid. This can be achieved through a series of offers and
counter-offers made between the broker and providers. The counter-offers made by
the providers, should the job submission be impossible to accept should assert how
far it is from being accepted. This can therefore be used to advise end users as they
re-evaluate their jobs submissions based upon the current environment.

4.3.2 Extension vs Fresh Development

As part of this research there was a requirement to implement any proposed solution as a
demonstration that the requirements can be fulfilled. The development process therefore

Chapter 4 110 ISQoS Broker

requires careful consideration between either extending existing work or developing from
scratch.

The outcome was to develop from a fresh start. There were several key reasons for
developing in such a way. These link strongly to the broker’s requirements and what
separates it from existing infrastructure. A key aspect of development however is the
mitigation of risk, so consideration is placed upon how existing software can be used to
support the broker’s development.

The broker was expected to form agreements in regards to quality of service, with a
focus upon completion time and cost. The current most widely used standard for agree-
ment formation is WS-Agreement [141]. Its message passing structure is XML based,
creating a technical requirement for the use of XML, in the message contents e.g. the
job’s description.

In regards to job admission the most relevant standard is Job Submission Description
Language (JSDL) [139] which is an XML based language for describing jobs. The utili-
sation of this standard is considered to improve the software’s compatibility and increase
the project’s overall relevance. There is however common middleware like Globus [74]
that uses Resource Specification Language(RSL) [181], which in most variations uses
a simple mappings between properties and a given value. This not being XML based
means there is no clear path, to place the job’s description into the agreement. In con-
sidering alternatives GridSAM [126] potentially offered a way to integrate into a Globus
environment as it supports JSDL and has some ability to translate JSDL into RSL, but
this route suffered technical problems and would only work by using adaptors rather than
following common standards, which is more desirable.

In examining implementations of the WS-Agreement protocol, the most favoured was
WS-Agreement for Java (WSAG4J) [91], which was a generic framework that also sup-
ported negotiation [143]. It is deployed from a Tomcat based container, thus it would
also requires substantial bridging into the Globus Toolkit 4 (GT4) environment that was
immediately available within the school. GT4 and WS-Agreement are also not contempo-
rary and use different versions of WS-Addressing [21] which makes development difficult
forcing it to focus on solving incompatibility issues rather than research.

Globus along with many other Grid middlewares primarily uses queue based mecha-
nisms and is batch oriented. It hence does not fit into the projects scope for scheduling and
the use of operational research techniques. There are a few environments that do support
scheduling such as Maui Scheduler [31, 100] and OpenCCS [18, 20, 146].

In terms of the brokered job submission it was to going to have to be achieved by
negotiation. A negotiation mechanism would need to assess job submissions to determine

Chapter 4 111 ISQoS Broker

if they could be completed within the required constraints of the end user. This would
then led to an offer accepting the work with execution details or if this could not be done
then a counter-offer would need to be constructed. Offers in needing to be realistic must
be based upon a candidate schedule that is derived from the current schedule. Existing
middleware however, uses the scheduling solely for allocating jobs to resources. The
ISQoS provider’s however would need to use schedules to advise what offer can be made
as part of the negotiation. This therefore makes it difficult to acquire a candidate schedule
without submitting the job for execution in existing middleware solutions.

It was therefore decided given such differences to develop from scratch and where
possible take software or parts of software where applicable.

4.4 Architecture

In this section we discuss the overall architecture of the ISQoS Broker, first of all an
overview of the broker is presented followed by discussion of individual parts afterwards.

4.4.1 Overall Architecture

Figure 4.1: Overview of the ISQoS System

An overview of the broker’s architecture is presented in Figure 4.1. It primarily con-
sists of three tiers: A broker, a provider and workers. The broker selects the provider
to use while the provider commands the workers to execute Grid jobs. The components
shown in Figure 4.1 are utilised in the following fashion.

Chapter 4 112 ISQoS Broker

Jobs are submitted via the job submitter of the broker to the offer maker and com-
mitter component of each provider. The broker is expected to contact various different
resource providers in order to establish a competitive marketplace i.e. multiple providers
will compete for work in a tender market.

The information submitted to providers by the broker consists of the job’s resource

requirements, a budget that the user has assigned for the completion of a job, the amount
of mark-up the broker makes for the service, which can be used as a notion of minimum
available funds for rescheduling and finally its temporal requirements. These are shown
as a due date by which the job should be completed by and a deadline by when it must be
completed. Further details of the agreements structure can be found in Section 4.4.2.

The resource providers from this information perform the initial scheduling of the
tasks within a job so they can derive an estimate for completion time and price. A job is
considered to be made up of a set of tasks that are all independent of one another. This is
because the broker is primarily aimed at parameter sweep / bag of task applications [41],
which are the predominant workload upon the Grid [95].

The providers derive their estimates by using a scheduling algorithm (Section 4.4.6)
and pricing mechanism (Section 4.4.8.1) that is plugged into the provider. The price is set
by the provider’s local pricing mechanism which feeds information into the scheduling
algorithm. The scheduler has available to it the current Grid state information and a
resource selector component that is capable of selecting the viable set of resources for
computing each task within a job.

The schedules that are generated are converted into offers to complete the work, which
are then submitted back to the broker. These offers include information about the time
and cost for completing the job and the time for completing each task within a job.

The broker from the offers that have been returned from the tender market, ranks
them and filters out the poor offers i.e. sort by earliest completion time first and filter out
unprofitable offers, though various selection mechanisms may be used, which are shown
in Section 4.4.7. The broker then takes the ”best offer” as determined by ranking and
filtering and asks the user if it acceptable to proceed with the job at a given price and
completion time.

If the offer made to the user is acceptable the broker then submits the bag of tasks
that make up the job to the winning provider. The winning provider then schedules the
work for a final time and then records the new state of the Grid. In the case an offer is
not acceptable the user is permitted to resubmit the job with different budget and time
requirements in order to acquire a different offer, that may be more acceptable.

Accepted jobs are placed into the schedule which is part of the current state informa-

Chapter 4 113 ISQoS Broker

tion of the Grid. The state records the mappings between workers and their jobs as well as
the current resource and job statuses. Workers are represented as objects which maintain
a copy of the XML description of the resource and a reference to the XML parser used
to interpret the description. The Worker’s description parser essentially maintains a set
of default questions which can be asked about the job i.e. what is the size of the memory
available? or what is the CPU speed? Jobs are also represented by objects that contain
XML descriptions taken from the job’s associated agreement. The job description is at-
tached to the agreement as an xsd:any type, which allows for XML other than JSDL
documents to be used. The descriptions of the tasks are treated in a similar fashion to
the resources and a basic list of default questions are provided i.e. how much memory is
needed. The resource selector for a given task can then be asked to provide the list of
acceptable workers to the scheduler, without it needing to have a great understanding of
what a resource entails.

A job’s description breakdowns down as follows: a job is a collection of tasks in the
bag, that need executing. Each task has several actions, these equate to: stage in, execute,
stage-out and clean the worker. Stage-out merely holds to the meaning of transferring data
away from the worker. Clean removes the task’s working area upon a worker node. If the
clean event is the very last action to be performed for the job then the job is submitted for
billing.

The action executor merely waits for the next action in the schedule to be ready for
execution. At which point it sends a signal to the worker nodes to begin their work.

4.4.2 Agreement Structure

In this section we discuss the structure of the agreements that are formed in the ISQoS
System. The ISQoS Grid architecture is service oriented and is based upon WS-Agreement
for Java (WSAG4J) [91]. It is designed for each provider to present a job execution ser-
vice that can be negotiated with. The use of WS-Agreement means requests for work
are responded to by providers in the form of offers to complete the work. These offers
then can be negotiated upon within a tender contract market. The negotiation and precise
structure of these offers is shown in Figure 4.2.

The ISQoS agreement structure like all WS-Agreement based documents has a name
assigned to the offer as well as its agreement context. The agreement context details in-
formation such as the participants belonging to the agreement. The ISQoS Agreement
because it is based upon WS-Negotiation also has a negotiation id and a negotiation con-
text.

Chapter 4 114 ISQoS Broker

Figure 4.2: ISQoS SLA Structure

The context in terms of the agreement formation process is useful. The providers
respond to offers by scheduling, after they have scheduled, they can make an offer. If
however the schedule indicates the work cannot meet all the constraints the negotiation
context can be set to advisory. This means further work is needed in the negotiation for
both sides to agree to execute the job. This allows the ISQoS system to offer advice to the
end user about the current state of the market, in terms of price and current workload of
the Grid. This of course is expressed in terms of the job the user wants to execute and not
a generic statement about a provider’s current load characteristics.

In the service terms the jobs, budget, due date and deadline requirements are given.
There is also a list of tasks in the job that the user wishes to execute, with estimates of
size of execution that is required and the amount of data that is required for staging in and
out. The broker also indicates to the providers what its mark-up is, i.e. its commission.
This allows the providers to avoid any schedules that are likely to be rejected and informs
providers of the boundaries around the budget and time constraints. These boundaries
were previously demonstrated in Section 3.3.4.

The broker focuses upon standards such as JSDL [139]. The agreement document
however maintains the capacity to swap out the term language used to describe the work
being performed. Thus it need only be XML based so that it can form part of the agree-
ment. This is achieved by having the part of the XML describing jobs contain an xsd:any
type for attaching the term language describing the job. This flexibility is also present
in the information provider which can use either GLUE [36] or Ganglia [81] based repre-

Chapter 4 115 ISQoS Broker

sentations of resources, though this will be discussed later.
The final parts of the service terms are for the provider to fill in. Providers are required

to give an estimated completion time for each task in the job, along with an overall com-
pletion time and service price. The values provided here hence can be used by the broker
after offers have been returned from the tender market and are the basis of assessments
made by the broker, that is shown in Section 4.4.7.

4.4.3 Job, Task and Resource Representations

In the previous section the transmission of data between broker and provider was dis-
cussed. In this section the storage of information about the agreements made and the
Grid is discussed. In particular the representations of jobs, tasks and resources that the
providers maintain is discussed and how it leads to a more generic way of handling dif-
ferent types of descriptions of the key actors in the Grid system.

Figure 4.3: Job, Task and Action’s Internal Representations within an ISQoS Provider

The topmost description of work that is agreed to in an agreement is the job. This is
then composed of a set of tasks and each of these tasks is composed of a set of actions as
shown by Figure 4.3.

The job covers the topmost issues in regards to the execution of work on the Grid.
It maintains a copy of the agreement and the negotiation offer that caused the work to
be accepted, as well as maintaining a copy of status reports for individual tasks, which
are used for determining if the job has completed. A copy of the agreement and the
negotiation offer are notably required to be stored. During the initial formation of the job

Chapter 4 116 ISQoS Broker

no agreement exists. The agreement is only formed after broker and client agree, so at
least one candidate schedule used to advise about the Grids status and one schedule that
is the final plan of action must be generated before an agreement is associated with a job.

The second tier down is the task, jobs are made up of a set of tasks. Though the
mappings are such that only a task records its association to a job so that task mappings
to jobs can change between states. i.e. so that tasks can have their details altered such as
start time and completion time etc.

Tasks along with a reference to the job that they belong to contain an XML description
of a job and a reference to a parser that is capable of understanding such a description and
answering a set of questions about such the task. The XML description of each task
is a JSDL document and an associated parser is available in order to interpret the XML
description. Structured in this way it becomes relatively simple to adapt to later or custom
job submission standards by allowing the term language to be swapped out.

The lowest tier of the job and task representations is that of the actions that must be
performed in order to complete the work. Actions are to be held in an event queue on
the provider waiting to be executed. The full set of available actions are shown namely:
stage-in, stage-in and execute, execute, stage out and clean as well as planned idle time

and reschedule actions. The planned idle time action allows a scheduler to force a worker
to do nothing, which may simply be used to keep the resource from doing other things
while a data transfer is in progress. The reschedule action allows the scheduler to place
into its schedule an event that forces it to consider rescheduling work. This can be useful
in that a scheduler could be configured to reschedule periodically but dynamically change
the rate it reschedules depending upon the current state of the Grid. The rate by which
rescheduling occurs might be changed for example due to: an increased chance of re-
source failure or a decrease in workload or that the last rescheduling event was not very
productive.

The resources within the Grid are shown in Figure 4.4. it like tasks is designed to
wrap around an XML description of a resource and present a unified realisation of such
a resource. It therefore has an XML parser and XML description in a similar way to the
tasks. Aside from this xml stored information some basic information is taken from the
XML and stored ready for use, namely: the resource name, its ip address and its speed.

Chapter 4 117 ISQoS Broker

Figure 4.4: Resources

4.4.4 Grid State Representation

In the last section the description of the jobs, tasks, actions and resources was discussed.
These together describe the allocation of a single agreement’s work to a set of resources
that are used during execution. In this section the record of the overall ”state of the Grid”
is discussed. This is expected to assist in the understanding of the offer generation phase
of the providers that is discussed in the next section.

Figure 4.5: State

In ISQoS rather than using a straight forward queuing mechanism a schedule is used
instead. The usage of a schedule allows for the ability to guarantee the quality of service
offered in terms of time and cost, so long as reasonable estimates or at least overestimates

Chapter 4 118 ISQoS Broker

on job size can be provided by the end user.
A schedule is basically a variation upon a queue, essentially events/actions are recorded

in sequential order and are acted upon at a predetermined time. The job size being needed
to find the correct to execute any given action. The main record of the schedule in ISQoS
is called the State, which is shown in Figure 4.5. The main part of the State is hence an
action queue which is basically a sorted linked list of actions that need to be executed.
The next item to be executed in the queue can hence be recovered from this list of actions.
Once an action is executed, it is flagged as being underway and is only removed once the
job is completed and cleaned from the schedule.

The state illustrates ISQoS further perceptions of the nature of a schedule. The most
important of these is demonstrated by the notion of a successor state. States can be shal-
lowly cloned ensuring that derivative copies of the state can be made. The key principle
this starts to demonstrate is that new candidate schedules/states are derivatives of the pre-
vious state. Essentially the newly derived state S′ is directly related to the previous state,
S and that it is the previous state overwritten by the changes the scheduler decided, i.e.
S′ = S⊕{allchanges}. An example of this is illustrated in Figure 4.5, with the addition
of two new actions.

States can be compared to one another, such comparisons includes the tests against
the set of actions in a state such as: the absolute difference, set difference, intersection
and union, as well as tests for is subset and is superset for determining the succession of
states. Two of these tests can be used to derive a notion of change between two states,
namely the absolute difference and set difference. To clarify the how these differ: set
difference is merely A - B whereas the absolute difference is (A ∪ B) - (A ∩ B). This
emphasises the notion of states/schedules succeeding one another.

States can provide subsets of actions in their actions list for machines, tasks, jobs and
all actions in the schedule/state. This brings about specific information about parts of the
overall schedule, such as the actions to execute on a given resource, or the resource where
a given task is to be placed.

States can also be assessed for inclusiveness of particular machines, actions, tasks and
jobs. A state also has a concept of coverage, in particular of its dependence upon a given
set of resources for the schedule it represents. This reliance gives some notion of how
many different resources are required to stay operational in order for the schedule to be
carried out and hence its reliability. This is illustrated in Figure 4.5, in that two new ac-
tions are added to the State and the schedule that it represents gains an additional resource
(i.e. resource 3) in its representation. In terms of resource discovery it is still required to
make available all resources that are accessible, however if they are not component parts

Chapter 4 119 ISQoS Broker

of the schedule they need not get recorded in the state and their current status also need
not be monitored.

States in sharing actions between them require a concept of moveability of actions,
firstly as actions are shallowly cloned between states if one action is changed it may
affect multiple states. It is therefore required to clone certain states or part of them when
rescheduling. This can be achieved for all actions belonging to a resource, to a task or
job, or simply to an individual action. Once moved they merely need to be repositioned
in the given states action queue.

4.4.5 Offer Generation and Committal

In this section the providers scheduling mechanisms structure is discussed and how this
has an effect on the overall system. Avoiding classical architectures such as Globus [74]
has allowed the focus upon scheduling and the ability to negotiate service level agree-
ments (SLAs). This includes the capacity to perform scheduling for indicative purposes
only, i.e. not for committing to work, but merely to generate a candidate schedule for
negotiation purposes. The use of scheduling in the architecture also brings it closer in
style to the Maui Scheduler [100] and OpenCCS [18, 20, 146] opposed to queuing based
methods.

Figure 4.6: The Elements of the Scheduling System

In Figure 4.6 the overall parts of the scheduling component can be seen that drives the
offer generation. All algorithms implemented in Section 4.4.6 slot into this scheduling en-
vironment. The algorithms drive the agreement making process. The aim of the algorithm

Chapter 4 120 ISQoS Broker

is to take a negotiation offer and the current state and to generate a new candidate state or
set of states. An algorithm can be asked to give a final schedule ready for committing i.e.
return a single schedule only, or it can be allowed to generate multiple schedules that can
be converted into several offers. As the scheduler follows the concept of single purpose,
it does not carry out any further objectives, so it does not distinguish between making an
offer and committing to a schedule. It is the rest of the environment that automatically
generates either an offer or commits to implementing the given schedule. This presents
the requirement that if middleware was made to implement an ISQoS brokering interface,
their scheduling component would equally be required to be separated from the element
that executes a given schedule.

The scheduling component is only intended to perform scheduling for negotiation
offers. This is important in terms of timing of when the scheduling is performed, this
is because a provider cannot agree to an offer and then schedule it. It must have a plan
of action first. It is however required for the jobs in the schedule once the agreement
has formed to have a reference to such an agreement. This therefore means once the
agreement is made the representation needs updating with the correct reference. This is
hence performed as part of the last actions of the create agreement action process and
places a reference to the agreement in the job. The jobs structure can be seen in Figure
4.3, where both references to the negotiation offer and the agreement can be found. The
flow of events in the offer maker and committer component are shown in Figure 4.6.

Figure 4.7: The Flow of Events in the Offer Maker and Committer Component

The broker first of all asks the provider for a negotiation template. This is then filled
in and submitted to the provider. The provider then forwards these details of to the offer
maker and committer component. The first round of scheduling generates a state. This is
then cast into an offer that is to be sent back to the broker for assessment. After several
rounds or just one round the job is able to be submitted. The user tells the broker they are
happy to proceed and the broker submits the work to the winning provider. This provider

Chapter 4 121 ISQoS Broker

then takes the agreement offer, creates a new state object, converts this to an agreement
and updates the copy of the current working state/schedule.

In order to make the ISQoS more usable partial implementations have been provided
for the scheduling algorithms component. The first partial implementation is for schedul-
ing algorithms and the second is for algorithms that additionally perform rescheduling.
These implementations in part deal with scheduling to generate a single final offer, re-
quiring that algorithm authors only implement a single copy of the scheduling algorithm,
that has the potential to provide many offers. These partial implementations also present
a mechanism for translating offers into a set of tasks that need to be completed in order to
complete the job.

The partial implementation for rescheduling algorithms additionally adds services that
allows for tasks to be moved about within the schedule. This includes fitness tests to
ensure inconsistent states are not generated. A mechanism that decouples tasks repre-
sentations in one state from other states is also provided, so that states can be modified
independently is provided. This decoupling occurs because so long as new schedules only
extend the current schedule there is no need to re-record the position of old tasks within
the schedule. Hence actions and tasks can belong to multiple states. If a task is going to
be moved however it is required to be cloned in order to ensure the current working state
is not unduly affected.

Components are made available to scheduling algorithms that provide services for the
price setting of resources and the acquisition of the available set of resources. This there-
fore means scheduling algorithms do not need to reimplement either pricing or resource
acceptability filtering services and they may merely be plugged in.

Scheduling algorithms can utilise additional helper features that have been imple-
mented in the ISQoS scheduling API. The first of these helper features is a task to action
mapper, this provides a facility for generating a set of new actions that belong to a task
i.e. the stage in, stage in and execute, execute, stage out and clean actions. It then has
the ability to remove certain elements from the generated set. This is useful as staging
in with a separate execute action can be used or the stage in and execute action can be
used instead. The latter merges the two actions causing the worker to start execution once
staging is complete.

Chapter 4 122 ISQoS Broker

The second of these helper features is aimed towards expected time to compute matrix
[7] based algorithms. The module provides generic capacities for recording estimates on
action durations. It includes the ability to generate expected time to compute and transfer
matrices for various situations, which are listed below:

• For a given action a list of estimates of expected durations on each resource within
a specified list.

• For a given machine it can generate a list of estimates of task durations for a given
resource.

• For a set of actions and machines, it generates the matrix of expected durations for
completion.

Finally facilities in this helper module are made available for the summing of durations
and costs over a set of expected time to compute collections, which is useful for ensuring
that a task’s actions do not violate the jobs temporal and budget constraints.

The last of these helper features is the status checker. This is useful both internally
to the provider in terms of confirming job status and initiating billing, but it is also use-
ful to scheduling algorithms that perform rescheduling for resilience purposes. It offers
facilities to check the status of either an action, task or job.

In extension to this work it could be envisaged that an additional component would be
added to this broker in terms of trustworthiness of providers. This would be in keeping
with existing literature such as AssessGrid [18]. An offer ranking/filtering mechanism
would then make use of such a component to alter the broker’s preference towards dis-
honest/unreliable provider’s offers. The aim would be make dishonesty among providers
less preferential and would help ensure that the provider’s kept to their promises to com-
plete the work on time and on budget. Failures to meet the promised QoS could then be
handled ensuring the broker is likely to make more profit and the users gain more utility
and assurance over job completion.

4.4.6 Scheduling Algorithms

The providers use scheduling algorithms to construct schedules, for the purpose of mak-
ing offers and committing to work. The providers are flexible in which algorithms may be
used. In order to allow for a range of experimentation and to show this flexibility a default
set of algorithms have been implemented. Algorithms from related work such as Nim-
rod/G where chosen for this default set, as well as common mechanisms such as round

Chapter 4 123 ISQoS Broker

robin and earliest completion time. The Cost Roulette Wheel, Cost Rate Roulette Wheel
and Cost Per Cycle Optimize algorithms are presented as new here. These are principally
implemented to demonstrate the adaptability of the implementation and to demonstrate it
as a platform for algorithm research. A Round Robin variation that implements reschedul-
ing is also implemented to assist experimentation that involves rescheduling. The initial
available set of algorithms are hence listed as follows:

Nimrod/G’s Cost Optimize: [37, 39, 42] This is an algorithm implemented in Nimrod/G
and is shown in Algorithm 1. This algorithm performs no load levelling and simply
assigns work to the cheapest resource available until it is full. This has a significant
drawback in that if the due date/deadline is sufficiently far in the future then there is
no incentive to assign to any resource other than the cheapest. This makes the more
expensive resources more likely to be idle and the free space on these resources are
simply lost.

Algorithm 1 Nimrod/G’s Cost Optimize
For Each Resource Available order by: cost non-decreasing order

While Unassigned Tasks == true Do
\\In ISQoS due date instead of deadline;
If assigning next task does not pass the deadline Then

Assign Task to Resource;
End If

End While
End For

Nimrod/G’s Time Optimize: [37, 39] This acts like the earliest completion time schedul-
ing algorithm but considers cost, ensuring the budget is not overrun, it is shown in
Algorithm 2.

Algorithm 2 Nimrod/G’s Time Optimize
For Each Resource Available order by: completion time non-decreasing order

While Unassigned Tasks == true Do
get 1st resource where cost per task is ≤ remaining budget per task
Assign to the resource found

End While
End For

Chapter 4 124 ISQoS Broker

Nimrod/G’s Cost Time Optimize: [39, 43] This algorithm is an improvement upon the
cost optimize algorithm. It performs grouping on cost. It then selects the fastest
machine within the cost group. This avoids some of the poor load levelling be-
haviour of the cost optimize scheduling algorithm, by ensuring it assigns work to
all resources with the same price. This however will not cope with costs on a contin-
uous range and a cost that is very marginally different will be placed into a different
grouping. It is shown in algorithm 3.

Algorithm 3 Nimrod/G’s Cost Time Optimize
For Each Resource Available order by: cost in non-decreasing order

Group resources by Cost and retain groups for later use
\\resources belonging to the same group require exactly the same cost

End For
For Each Resource Group order by: cost in non-decreasing order

For Each (task yet to be assigned) Do
For Each (resource in the group) Do

Calculate completion time;
End For
Assign task to fastest resource;

End For
End For

Cost Per Cycle Optimize: This is similar to Nimrod/G’s Cost Optimization algorithm,
however it sorts by cost per CPU cycle instead. This is considered to be a better way
of performing the allocation, though it still however lacks load levelling features.

Cost Roulette Wheel: This allocates work to the Grid in a pseudo random fashion. It
aims to load level, but disproportionately based upon the ratio of costs on resources.
A random number generator specifies the position upon a roulette wheel. The in-
verse of cost determines the percentage of the roulette wheel given to each resource.
The inverse of the cost ensures resources that are cheaper are likely to be allocated
to first. It is shown in Algorithm 4.

Cost Rate Roulette Wheel: This is like the above algorithm but performs the same ran-
dom allocation based upon the cost per cycle instead.

Earliest Completion Time: This creates an earliest time to compute and transfer data
matrix and selects the fastest option. It is like Time Optimize algorithm in this

Chapter 4 125 ISQoS Broker

Algorithm 4 Cost Roulette Wheel
FOR EACH (Task in Job to Allocate) {

Get set of resources that meet resource requirements;
IF suitableWorkerSet.isEmpty() {

Throw Cannot Schedule Exception;
}
getMachineSelection(suitableWorkerSet);
FOR EACH (Action in Task) {

assignActionToEndOfMachinesSchedule(suitableWorkerSet);
}

}
Return Candidate Schedule;

getMachineSelection(suitableWorkerSet) {
FOR EACH (Resource in suitableWorkerSet) {

summedCosts = summedCosts + (1/resource.getCost());
}
FOR EACH (Resource in suitableWorkerSet) {

calculateSelectionChance(summedCosts);
\\chance = (1/ resource.getCost()) / summedCosts;
}
Randomly Select Resource Based upon selection Chance;

Return Selected Machine;
}

Chapter 4 126 ISQoS Broker

regard but omits budget checks. It hence is more suitable for ISQoS as it may be
used for offering advice rather than simply failing to provide a schedule.

Round Robin: This performs basic round robin order selection.

Round Robin Rescheduling: This performs basic round robin order selection and pushes
new jobs in as early as possible into the schedule by the moving of existing jobs.
The aim of this was to diminish the acceptance preference of jobs based upon how
early they arrive. The details of this algorithm are listed in Algorithm 5.

Algorithm 5 Round Robin Rescheduling
FOR EACH (Task) {

Get next worker in round robin order that meets resource
requirements, skipping the turn of workers that do not meet requirements;
IF Worker.isEmpty() {

Place Task’s Actions; BREAK; }
FOR EACH (ACTION in Task) {

FIND insertion point WHERE (
Later Actions will not go past their Due Date
AND No action already started will be moved
AND No action due to start will be moved);

Place Action in earliest position possible;
move existing actions later on;

BREAK;
}

}

4.4.7 Offer Ranking and Selection

The broker in order to make a profit must generate the appropriate level of QoS. To do this
it must decide which jobs are practical to compute within the allotted time and by which
provider. This brings about various selection strategies for offers to compute jobs. There
are three principle mechanisms by which selection may be performed, these are namely:

• Random: This selection mechanism randomly picks a provider.

• Current load: This mechanism hooks into the information provider and then asks
which provider is the least loaded.

• Sort and Filter: This is the most complex mechanism available as it gives a wide
variation of options. It first of all sorts offers using a wide variety of possible
comparators and then it makes a selection, while filtering out some offers.

Chapter 4 127 ISQoS Broker

The load based and random selection mechanisms also having variations that test for
broker profitability, thus ensuring the broker cannot accept work that is expected to cause
a loss in profit. The sort and filter selector has some variations of the filtering mechanism
that can equally perform a test for profitability. The sort and filter selection mechanism
is the most complex out of the available mechanisms due to the possibility of choosing
various sorting and filtering mechanisms. The options available are therefore discussed in
more detail in Section 4.4.7.1 and in Section 4.4.7.2.

4.4.7.1 Offer Sorting Mechanisms

The sorting mechanisms available are listed below, though this list is implicitly twice the
size as the Sort and Filter selector may reverse the order:

• Budgetary Resilience: The difference between the budget and the estimated cost.
This hence within the ISQoS pricing model ranks all offers by how much spare
money is available to the broker for rescheduling should something go wrong.

• Cheapest: The offers are sorted by their total price.

• Earliest: The offers are sorted by completion time earliest first.

• Profit: The offers are sorted by the broker’s profit, most profit to least.

• Profit Rate: This is the broker’s profit margin / duration of the job.

• Profit Then Earliest: This first of all sorts by profit and then by completion time.

• Profit Then Latest: This first of all sorts by profit then by completion time in the
reverse order.

• Provider Name: This sorts by the provider’s name. This comparator is available so
is permitted here even if it makes no sense.

The comparators that focus on profit and have a second order sort must be used cor-
rectly, otherwise the incorrect profit comparators could be selected. This is especially the
case given the reversing of the ordering. The Profit then Earliest sort has the following
properties:

Natural Order: Profit is least to most and Completion Time is earliest to latest.

Reverse Order: Profit is most to least and Completion Time is latest to earliest. Caveat:

Offers arriving the latest are first.

Chapter 4 128 ISQoS Broker

This is dealt with by the Profit then Latest sort which has the following properties:

Natural Order: Profit is least to most and Completion Time is latest to earliest.

Reverse Order: Profit is most to least and Completion Time is earliest to latest.

4.4.7.2 Offer Filtering Mechanisms

The offers once sorted need to be filtered and an option selected from the list of available
offers. The permitted options for filtering are:

• Minimum Profitability: A minimum acceptable profit is set. The topmost offer that
meets this criteria is selected.

• Minimum Profitability Rate: A minimum rate of profit is set for the broker. The
topmost offer that meets this criteria is selected.

• Hybrid Offer Filter [103]: as shown in Algorithm 6, is a filtering mechanism that
aims to accept all jobs that have no constraint issues and evaluates all others based
upon a comparison to a going rate that is established from the last n records of
accepted offers. It is hence a hybrid between a going rate filter and a topmost
profitable filter. In doing this it has several advantages, which are listed below:

Algorithm 6 ISQoS Hybrid Offer Filter
FOR EACH (Offer) {

Sort the offers based upon the ranking mechanism chosen;
IF Completion Time <= Due Date AND
Service Price <= Budget {

Accept Offer; BREAK;
} ELSE {

Take the last n accepted offers and find the average rate
at which profit accumulates and establish the going rate;
IF Current offer profit rate >=
(going rate − acceptable deviation below going rate) {

Accept Offer; BREAK;
}
}

}

– If the constraints are fully met then the job is automatically accepted. The
main advantage of this is that if the arrival rate of jobs slows then uncon-
strained (fully profitable) jobs are always accepted. The pricing model dictates

Chapter 4 129 ISQoS Broker

that these jobs are the most profitable possible anyway. This can be contrasted
with a going rate calculation which may not accept a job with a lower profit
even if it could fit with no problem. This is particularly advantageous if differ-
ent mark-ups are in use and other factors such as differing network transport
cost compared to the cost of computation.

– If offers are constrained by either time or budget then a going rate assessment
is performed. If the offer still remains profitable enough then it is accepted,
hence if jobs with different mark-up’s arrive they will be treated differently
and higher mark-up based jobs may still make a sufficient profit to be accept-
able.

– It can be expected on an unused Grid that jobs will be accepted readily, this
hence removes the immediate need for a history of records and alleviates the
issues of starting with no information from which to determine the going rate.

• Near Going Rate: This establishes from a history of the last n records the current
rate at which profit is accumulated by the broker. It then establishes a minimum
value below this that is acceptable. If the new offer is above this threshold then
it is accepted. The previous jobs are used to establish the going rate. Both the
history size and a proximity below the going rate considered to be acceptable are
configurable. The advantage of specifying deviation from the going rate over having
a minimum profit rate is that it better follows demand and will automatically adapt if
the environment changes. An example of this would be if the amount of resources
available changed which would allow more space in the Grid, that in turn means
more jobs could be accepted causing the service price to change when dynamic
pricing is used.

• Topmost Offer: This selects the topmost offer from the sorted list of offers, with no
further selection criteria.

• Topmost Profitable Offer: This selects the topmost offer from the sorted list that is
profitable. If no offer is acceptable then no option is provided to the end user for
execution. The offers would then solely be used to advise the end user how much
they could be expected to pay to have work completed on time.

Chapter 4 130 ISQoS Broker

4.4.8 Pricing Mechanisms

4.4.8.1 The Available Pricing Mechanisms

In the ISQoS Grid the providers have to set their own price. This has to be set compet-
itively and it has to reflect the current load the provider is experiencing i.e. price has to
follow demand.

This demand is caused by the acceptance of jobs by the provider and is expressed in
the provider’s schedule. The schedule has a set of jobs which are made up of tasks which
are in turn comprised of actions, which have to be assessed for the demand they represent
for the provider’s resources.

The actions consist of stage in, execute, stage out and clean. Stage-out only repre-
sents the transferring of files while clean-up cleans and bills the work. The stage in and
execute actions may also be combined to form a single action, meaning the worker nodes
will automatically start execution once the stage-in has been completed. These actions
together establish the demand on the provider and its resources.

This demand the actions create when assessed may be for the provider as a whole or
it may be performed so the price is different for each given resource. The provider level
price setting mechanisms are therefore:

A count of actions that the provider has to perform: The amount of actions in a provider’s
schedule is counted and then a price is assigned accordingly. The number of actions
is proportional to the number of tasks so it was not seen to be of any use to count
tasks. Actions are placed in a queue of actions that the provider is expected to start,
so task counting against a list of actions takes more computational effort.

The average finishing time of work on the provider’s resources: This would be simi-
lar to the ”count of provider actions” metric but would account for jobs of varying
lengths. The completion time of the last action in the schedule is compared to the
current time. This value is then mapped across to a price written in a configuration
file on disk.

A static resource price: This is the most basic case where a static singular price is set
for the provider as a whole.

This can also be set at a similar fashion for each individual resource/machine:

A count of actions that a particular machine has to perform: A variation upon the ”count
of provider actions” metric but the count is performed for each resource which is

Chapter 4 131 ISQoS Broker

then priced separately. This variation can therefore be used when cost guides local
resource selection.

The finishing time of all work on a particular machine: A variation upon the ”count
of machine actions” metric but would account for jobs of varying lengths. The
completion time of the last action in the schedule is compared to the current time
and from this value it is then mapped across to a given price.

A static resource price: This is the most basic case where a static singular price is set
for the provider as a whole forming a default. Individual named resources are then
allowed to take an alternative fixed price.

A key factor that is discussed in Chapter 6 is the counting of actions that are subse-
quently removed during the billing process. The billing removes actions from the sched-
ule and hence changes the price. There therefore exists variations which do not count
actions that have already started. In ignoring work that has executed it ensures the count
of actions and the price change more steadily over time.

4.4.8.2 The Effects of Dynamic Pricing Mechanisms

In the previous section the pricing mechanisms were discussed. The effect of establish-
ing a resource cost dynamically in the pricing model is discussed here. To narrow this
discussion the ”count of provider actions” is selected as the basis of this discussion.

When jobs are submitted to the Grid it causes resource demand. If the demand in-
creases and additional resource allocations are made then so does the schedules size, thus
the count of provider actions metric is reasonable. The schedule is essentially a queue of
actions that are required to be executed on a set of machines at a given time, hence for
discussion it can be simplified to being expressed as a queue. This queue length/schedule
size is merely a concept of how much work is currently being performed by the provider,
hence demand is proportional to the queueś length.

demand ∝ queue length (4.1)

It can be assumed as demand increases for the finite commodity of ”time on the Grid”
that the price increases as well, i.e. in relation to supply and demand. The setting of the
price is a supplier’s prerogative but it is reliable to assume as demand increases for the
resources, that a supplier would increase the price to suppress the excess demand. The
resource price is hence roughly proportional to demand, for this discussion it is considered
proportional.

Chapter 4 132 ISQoS Broker

resource price ∝ demand (4.2)

It can therefore be seen that demand is proportional to both queue length and resource
price, thus linking back to the initial assumptions that resource price should be set based
upon the queue length.

resource price ∝ queue length (4.3)

If the budget is considered in this context its meaning may be understood better. Bud-
get relates to the maximum resource price, as the maximum resource price is the budget
reduced by the profit margin the broker is expected to make. It therefore relates to the
maximum resource price available.

max resource price = budget−max broker pro f it (4.4)

Thus it can be seen that the budget is related to the maximum queue length, i.e. the
maximum amount of work the provider is allowed to have in its queue when the job is
accepted.

max resource price ∝ max queue length (4.5)

Expressing the schedule as a queue length gives the intended impression of the maxi-
mum time ahead of submission which is allowed before the job starts. This is because if
the queue length is small the price is low so the Job will not get priced out of the market.
Hence previous jobs push the current job to be submitted further on in the schedule. Jobs
placed in the schedule take up space on the Grid which is reflected in the start delay and
the available slack. Thus the budget which is giving this maximum queue length also
provides a maximum acceptable start delay/minimum slack.

This effect of maximum queue length can be seen to be true because if the price to run
a single job is considered without relation to ”where specifically the job will be placed”,
then resources will be more expensive given higher workloads/”the further into the future
the work is placed due to previous work pushing new jobs further on in the schedule”.
Thus the budget once linked in the model to time expresses the maximum permitted queue
length.

This maximum queue length is also in relation to the average size of jobs, i.e. the
amount of worked to be performed and the speed and quantity of the resources used to
compute the jobs. If the resources are faster jobs take up less space in the queue/execute

Chapter 4 133 ISQoS Broker

quicker. This means they get billed and removed from the schedule faster, making the
queue smaller.

In regards to queue length and start delay, if the local scheduling algorithm does not
load level then a resource could be unloaded and be more expensive when setting the price
at provider level. The more expensive time hence could represent time closer to the current
time. This earlier block of time is functionally equal to any other block of time, less the
risk of resource failure, e.g. highly utilised resources fail more often, so the selection of
the right pricing mechanism for the scheduling algorithm should be considered. This can
also be seen to be the case if the scheduling algorithm uses cost to guide placement of
jobs, as in Nimrod/G’s algorithms shown in Section 4.4.6 (see Algorithms 1, 2 and 3).

4.5 Feature Comparison

In this section the ISQoS broker is compared and contrasted with similar schedulers and
brokers. The Grid schedulers and brokers that are evaluated that form the current state
of the art are: Condor/G [197], PBS [31], Oracle Grid Engine [177], Globus Toolkit,
GridWay [60], OpenCCS [18, 20, 146], Nimrod/G [129] and GridEcon [8, 9]. An initial
discussion of the evaluation criteria will be given followed by a tabulated assessment of
the criteria.

4.5.1 Cost & Time Guarantees

In Grids given the finite amount of resources if time guarantees are to be implemented
then it is required to have an understanding of the priority of each job to be completed
as only a certain fraction of jobs can be completed within the allotted time constraints.
Economics is a technique that may be used to realise this prioritisation.

The ISQoS Broker and similar brokers such as Nimrod/G have been developed with
economics in mind. Nimrod/G provides the choice of four different scheduling algorithms
and allows for the selection of cost and time constraints [39]. The ISQoS providers have a
scheduling interface (as described in Section 4.4.5) that allows for the implementation of
cost aware scheduling algorithms. In ISQoS however it is also possible for cost unaware
scheduling algorithms to be used within the process while maintaining an economic ap-
proach and allowing the economic model to operate. This approach is in part preferred
as it then allows ISQoS providers to return estimates as guidance, when the scheduling
algorithm cannot meet the economic or time constraints.

The Nimrod/G cost algorithms are simple as previously discussed in Section 4.4.6.

Chapter 4 134 ISQoS Broker

For example if the cost optimize algorithm is used and the deadline constraint is not
actively having an affect then it stacks all work upon the cheapest resource, without any
form of load levelling. This is even the case if a 2nd equally cheapest resource is present.
The Cost Time Optimization algorithm partly gets around this by grouping resources of
equal cost together and then allocating to the fastest resource, thus providing better load
balancing. Though this is not best when dealing with costs on a continuous scale, where
using the ratio between cost and resource speed would be better. The time optimization
algorithm works in a simple earliest completion time fashion while respecting the budget
constraints.

Oracle Grid Engine has three classes of job ranking policy, including a ticket based
mechanism that provides a proportional share based mechanism, an urgency based mech-
anism i.e. priority and the final option is to have custom policies [177]. Proportional share
mechanisms can be seen to be a primitive economic mechanisms [118] hence Oracle Grid
Engine could be considered to have some cost awareness. Though proportional share
based mechanisms tend only to consider sharing resources and do not further control the
flow of where jobs are allocated.

4.5.2 Advance Reservation Support

Advance Reservation is a key requirement in been able to establish any form of comple-
tion time guarantees as it provides the opportunity for guarantees to be realised.

Advance reservation is possible in several middleware solutions, but it must be noted
at that it requires estimated durations for each task, which are not always available. This
therefore means that reservations must last at least as long as the duration of the task for
the execution to work correctly. Middleware is hence is likely to support reservations
but is not likely to put them to use in environments centred upon having high machine
utilisation.

4.5.3 Queuing vs Scheduling

Most Grid Infrastructure (schedulers/brokers/middleware) use queue based mechanisms
as opposed to scheduling in the same fashion as operational research. Condor, PBS and
Grid Engine are good examples of such a queue based approach. The requirement to act
in a queue based fashion, stems from the need to keep the resources of the Grid working
and no intent to provide time and cost provision. A scheduling based approach requires
that job’s size is known, but it then allows for guarantees in completion time to provided.
The Mauri Scheduer, OpenCCS and ISQoS mechanisms differ in this regard and use a

Chapter 4 135 ISQoS Broker

scheduling based approach. Below in Table 4.1 the differences between a queuing and
scheduling based system are highlighted [18]:

Table 4.1: Queuing vs Scheduling [18]

Queuing System Scheduling System

Considered time frame present present and future
Runtime estimates not required required
Submission leads to insert in queues complete reschedule

Job start times known no yes
Reservations difficult yes, trivial

Deadline scheduling optional yes, trivial
Backfilling optional yes, trivial
Examples PBS, NQS, LL, ... Maui Scheduler, OpenCCS

4.5.4 Negotiated Job Submission

In regards to job submission it is useful to understand how quickly results are likely to
be returned from each provider. This is dependent upon the current workload of the
environment relative to its capacity and other constraints such as the job’s priority/value
and the jobs size.

In order to achieve an estimated completion time, a candidate schedule needs produc-
ing. In other none ISQoS infrastructures this mechanism simply does not exist. Jobs are
simply submitted to a provider by a user whom has been informed of current resource
utilisation.

The lack of this candidate schedule mechanism limits the ability to perform any sense
of negotiation as it would be difficult to relate the work that is to be submitted and its
completion requirements to resource availability. It also means brokers are reliant upon
metrics such as current workload and queue length which are unrealistic measures to use
when guarantees upon cost and time of job completion are required.

Current workload (i.e. the amount of machines/operators that are busy) and queue
length measures only relate to the current situation upon the Grid, which will quickly
change. They could be likened to a call centre in which a blanket statement of all operators
are busy and you are x in the queue. In the call centre’s case many ”jobs” are of a similar
size and the expected time to been served can be guessed. In the case of the Grid jobs
differ in sizes and have varying amounts of data to transfer which causes coupling between
the jobs i.e. two jobs using the same network can only stage out/in together by sharing the
bandwidth, thus slowing each other down.

Chapter 4 136 ISQoS Broker

4.5.5 Monitoring, Adaptation and Rescheduling

Rescheduling is an important tool when the dynamic nature of the Grid is considered. It
can aid in recovering from errors and is also useful in moving tasks’ advance reservations
in order to honour more agreements or the current agreements better.

A summary of the capacity to reschedule is provided below:

• ISQoS - Periodic scheduling, with the ability to dynamically select the period at
runtime and rescheduling upon job submission is also allowed.

• Oracle Grid Engine - Periodic scheduling only, jobs enter a queue before being
scheduled fully [177].

• GridWay MetaScheduler - It has both periodic and event driven rescheduling i.e.
when performance slowdown or remote failure is detected [92].

• OpenCCS Rescheduling is performed upon the submission of a new job.

• Condor The DAG (Directed Acyclic Graph) manager that handles workflows is
capable of generating rescue DAGs when it exists with an error code. The rescue
DAG is a new DAG listing the elements of the original DAG left unexecuted. To
remedy the situation, the user can examine the rescue DAG correct any mistakes in
submission and then resubmit it as a normal DAG.

4.5.6 Advanced Discovery, Scheduling API & Flexible Pricing

In the ISQoS provider delivers an API for developers of new scheduling algorithms, it
is capable of hiding away much of the difficulty of Grids and presents the scheduling
as merely the allocating of jobs to resources. For example it determines the estimated
completion time for each job on a given resource and uses the same API mechanisms for
both execution and data transfers. The advanced discovery mechanism given presents a
list of capable resources for a given job that are available for allocation, thus removing an
implementers requirements to check themselves.

The scheduling algorithm may easily be swapped out for experimental purposes see
Sections 4.4.5 and 4.4.6) with alternatives and the pricing mechanisms may also similarly
be swapped out (see Section 4.4.8) such that any commodity market pricing strategy can
be formed by a given provider.

Chapter 4 137 ISQoS Broker

4.5.7 User vs System Centric Scheduling

The majority of Grid Middleware/Brokers and Schedulers are system centric [37, 40, 54,
186]. In that they aim to maximise utilisation of Grid resources or are otherwise orientated
towards system oriented metrics.

ISQoS is different in its setup in that it is more balanced and considers the users
objectives, especially in terms of delivery time and how much it costs. The cost however is
also system centric in that the price can be made to adapt to current load and hence control
utilisation, whilst also ensuring the provider benefits from providing Grid resources.

4.5.8 Open Standards

In Grid middleware in order to gain a degree of interchangeability and general compat-
ibility so that different middleware’s can work together either open standards or a large
amount of adaptors, that complicate integration efforts are needed. In recent years there
has been a heavy drive towards open standards. The ISQoS broker therefore imple-
ments standards such as WS-Agreement, WS-Agreement negotiation and Job Submis-
sion Description Language (JSDL) as well as web service based standards, WSRF , WS-
Notification, WS-Security.

4.5.9 Comparison Study

In this section each of the brokers/middleware are compared. They are split into three
tables, one for best effort approaches (Table 4.2), one for QoS oriented (Table 4.3) and
one for economic approaches (Table 4.4).

In Table 4.2 the best effort approaches are discussed. These are characterised by queue
based scheduling that is centred around the resources and aiming to keep them as busy as
possible.

In later work there are substantial efforts to provide quality of service provision with
respect to reliability. The vast variations of different middleware and their configurations
gives rise to meta-schedulers such as GridWay, i.e. ones that control and submit work
to local Grid infrastructures using adaptors, which in turn schedule the work for com-
pletion. The OpenCCS software provides a fully schedule based solution to deploying
Grid resources and given the work of the HPC4U project allows for resilience to resource
failure. These two QoS oriented middlewares are shown in Table 4.3.

There is also a focus upon the development of economic models to control Grids,
given their diverse nature. Early work such as Nimrod/G focussed solely upon Auction

Chapter 4 138 ISQoS Broker

Table 4.2: Feature Comparison Study - Best Effort

Best Effort

Condor-G Portable
Batch
System
(PBS)

Oracle Grid
Engine

Globus

Advanced Discovery no no no yes via
Globus
MDS

Cost & Time
Guarantees

no no no no

Advance Reservation
Support

no no/yes with
Maui

yes yes

Queuing vs
Scheduling

queue queue
scheduling
with Maui

queue queue

Negotiated Job
Submission

no no no no

Rescheduling no no allows
checkpoint-
ing

no

Monitoring yes no some yes
Adaptation no no some -

QMas-
ter can
auto-restart

no

Open Standards no no some
DRMAA

no

User vs System
Centric

system system system system

Plug-in Scheduling no no yes (some
flexibility)

no

Flexible Pricing no no no no

Chapter 4 139 ISQoS Broker

Table 4.3: Feature Comparison Study - QoS

QoS

OpenCCS GridWay
Advanced Discovery yes yes
Cost & Time
Guarantees

time only no

Advance Reservation
Support

yes depending
on un-
derlying
infrastruc-
ture

Queuing vs
Scheduling

queue queue

Negotiated Job
Submission

no no

Rescheduling yes with
HPC4U

yes

Monitoring yes with
HPC4U

yes

Adaptation yes with
HPC4U

yes

Open Standards no (WS-
Agreement
used in As-
sessGrid)

some
DRMAA

User vs System
Centric

system system

Plug-in Scheduling yes yes
Flexible Pricing no no

Chapter 4 140 ISQoS Broker

based approaches. Later work such as GridEcon took a top down approach creating a set
of economically oriented services which be used in the Grid. The ISQoS project takes
this service orientated approach and develops quality of service around the concept of job
completion time and cost. These economic approaches are shown in Table 4.4.

Table 4.4: Feature Comparison Study - Economic

Economic

Nimrod/G GridEcon ISQoS
Advanced Discovery yes potential yes
Cost & Time
Guarantees

yes potential yes

Advance Reservation
Support

no potential yes

Queuing vs
Scheduling

scheduling scheduling scheduling

Negotiated Job
Submission

yes potential yes

Rescheduling yes potential yes
Monitoring no potential yes
Adaptation no potential potential
Open Standards no yes yes
User vs System
Centric

system potential both

Plug-in Scheduling no yes yes
Flexible Pricing no auction

only
yes yes

4.6 Summary

In this chapter the broker’s implementation and infrastructure was introduced. The aim
was to highlight its architecture and to present recommendations resulting from its imple-
mentation. The broker was then evaluated in comparison to other available software.

The broker’s implementation was driven from its requirements and in particular the
requirement to negotiate cost and time requirements for job completion in a non-system
centric fashion. In doing so a true compute service was developed, that supported swap-
pable pricing and job ranking mechanisms with a range of scheduling algorithms available
by an easy to use scheduling API. In doing so this provided the capacity to run a variety
of economically oriented experiments, that will be shown in chapters 5 and 6.

Chapter 4 141 ISQoS Broker

The broker was implemented largely from scratch because of specific infrastructure
requirements. These requirements are namely to:

• allow for the negotiation of job’s quality of service requirements in the admission
phase.

• allow offer construction, by requesting a schedule that describes how well a provider
may complete the work, without asking a provider to commence execution.

• avoid legacy standards such as DRMAA and RSL that do not use XML, as they can-
not be used in agreement formation, in modern standards such as WS-Agreement.

• avoid queuing based mechanisms for job admission, which allows operational re-
search based techniques to be used for the scheduling of Grid Jobs.

The structure of the broker is discussed including how the binding of job descriptions
is performed using the XML any type and how the infrastructure allows generic job and
resource descriptions to be used. This includes the pairing or a parser and set of require-
ment tests together to create a generic way of testing if a job can be executed upon a given
resource.

The scheduling API was then discussed in full, which is simple to use. The API
also pushes a state based concept of new schedules being derivatives of previous sched-
ules. Thus highlighting how ISQoS recommends a schedule should be perceived. In that
changes such as adding a new job to the schedule, moving jobs in the schedule, removing
jobs from the schedule and errors making resources unavailable make updates/overwrites
of the previous existing schedule.

The API’s discussion was followed by algorithms that have been implemented in the
broker, including the implementation of Cost Roulette Wheel and Cost Rate Roulette
Wheel algorithms which are new. The main aim of these was to perform load levelling
while considering economic pressures, inside the ISQoS market framework.

The scheduling algorithms were followed by the offer ranking and selection mecha-
nisms that evaluate offers made by providers. The ranking and filtering mechanism was
very flexible and including the introduction of the ISQoS Hybrid Offer filter and going
rate filter mechanisms, that aim to utilise the ISQoS market model.

The providers pricing mechanisms were also discussed and in particular how schedule
size/queue length relates to the market price. Finally a comparison study was performed,
with the intent of highlight how ISQoS is an advance upon the current state of the art.

Chapter 5

Job Admission and Profit

5.1 Introduction

In this chapter experiments are performed with the aim of demonstrating the improve-
ments in QoS that may be obtained by submitting jobs for estimates in the ISQoS tender
market and then selecting the best provider for computation. The selection mechanism
for assessing offers is hence compared. A listing of all the selection mechanisms avail-
able may be found in Section 4.4.7 and the ones selected for test are discussed in the next
section.

The experiments explore a difficult problem as the user agrees to pay a certain amount
for each job completed, while the broker agrees to make guarantees on the jobs completion
time. If the broker makes too many allocations then it is likely to have its service price
drop below the cost of the resources used to execute the job, while too few and it does
not achieve the maximum profit/global utility possible [147]. It will hence make a loss,
which over the long term makes it unviable, due to budget balance [155]. It also requires
to balance the load between the provider’s it uses sufficiently such that as most jobs as
possible may be accepted. A trade off situation thus occurs.

The focus is upon high load scenarios where correct selection is most required, as per
the motivating scenarios for the thesis (see: Section 1.2). High load ensures far more
jobs are available than can be computed on time. This means in order to ensure time
constraints are met, which is directly linked to the broker’s profit in the pricing model,

142

Chapter 5 143 Job Admission and Profit

some jobs have to be rejected. It should be noted that during low load situations both
market and non-market mechanisms provide good welfare and that if utilization increases
market mechanisms outperform their non-market based rivals [130].

The research questions that are answered in this section are discussed next, followed
by the configuration of the experiments performed in Section 5.3. This is then followed
by the results and evaluation of the experimentation and finally by the chapter summary.

5.2 Experimental Research Objectives

This chapter’s research concentrates upon admission control and steering of jobs to the
correct provider, within the tender contract market of the ISQoS Grid. The focus of this is
to therefore to assist meeting the aim from Chapter 1 of providing a brokering architecture
that can be used to support QoS in terms of time and cost constraints and in particular to
ensure that the market model is constructed to allow multiple sites to compete and to
manage the steering of jobs between providers. The research question this chapter aims
to satisfy is therefore to determine how best can admission control be performed within
the ISQoS market in order to establish QoS?

5.3 Experimental Setup

5.3.1 Experimental Method

The principle action in the experimentation reported upon in this chapter is to vary the
selection and sorting mechanism used. Given the wide variety of selection and sorting
mechanisms shown in Section 4.4.7 only a sample was tested in experimentation. To
establish which ones were tested they are placed into three categories and listed here.
These categories are namely: classical, flooding and selective.

The first classic strategies relate to current mechanisms for submitting to the Grid.
They do not require any data from the offers, hence represent a situation with direct sub-
mission without negotiation. This can be achieved either randomly or by submitting based
upon the current load of the provider and are indicated by orange on the graphs.

• Randomly: In the experimentation offers are first asked for and then an offer is
chosen randomly. This was chosen as a baseline in order to perform comparisons
from.

Chapter 5 144 Job Admission and Profit

• Current Load: The current load selection mechanism hooks up to a Ganglia [81]
information provider. An average of the cpu user value across all workers for a
given provider is used as a measure of load. This closely as possible represents if
a CPU is busy or not as per the UK’s NGS [132] load monitor tool. The user CPU
usage is used so as to ignore as much as possible minor non-Grid related system
activities taking place on the worker nodes.

The second set of strategies floods the Grid and tries to optimize greedily upon either
time or profit and represent naive optimization strategies, which are indicated by red on
the graphs.

• Earliest First: This mechanism sorts the offers by completion time and selects the
topmost offer. This strategy makes no account for the broker’s profit and so long as
the budget and the deadline constraints are met then the job is accepted.

• Highest Profit: This mechanism sorts the offers profit and select the topmost offer.
This strategy makes no account for the broker’s profit and so long as the budget and
the deadline constraints are met then the job is accepted.

The last set of strategies named selective aim to filter out the worst offers and ensure
only jobs likely to make the broker sufficient profit are accepted. These mechanisms are
Highest Profit (Profitable Only), Hybrid Offer Filter, Load Based Selection (Profitable
Only), Random (Profitable Only) and a Near Going Rate mechanism. These are indicated
by blue on the graphs with the ISQoS specific ones indicated in green.

• Highest Profit (Profitable Only): This extends the highest profit approach and per-
forms checks to see if the broker will make a profit before accepting.

• Near Going Rate: This was configured to initially sort by profit and select only
profitable jobs.

• Hybrid Offer Filter: This was like the going rate mechanism configured to initially
sort by profit and select only profitable jobs.

• Random (Profitable Only) & Load Based Selection (Profitable Only): These extend
the classical methods by allowing them to submit to the site chosen by their ranking
mechanism and then checking to see if the broker will make a profit.

During the experimentation jobs were submitted by using a job submission tool in the
following way. In the first stage the submitter acquires the job submission templates from

Chapter 5 145 Job Admission and Profit

each provider. It then fills the templates with the user’s preferences. These preferences
are for:

1. Budget: The user’s maximum price they are willing to pay.

2. A due date and deadline: A preferred time and the last point in where the job is still
of use.

3. Task description/s: Job Submission Description Language (JSDL) document/s de-
scribing the work to be performed.

4. File size and execution requirement: Estimates for each task within a job.

The broker/submitter tool then requests offers from providers in the tender market
[40]. Each provider calculates a schedule that is suitable for the completion of the work
and submits its offer back to the provider. This offer includes the estimated completion
time for the job, the overall cost and completion time estimates for each individual task.

In the experimentation there are different types of selection process, which are swapped
using a class loading mechanism. Some of the selection mechanisms tested however do
not require the full agreement process. The offer returning process is not stopped how-
ever even when the information in the offer sent back is not used, such as in the random
selection and load based selection mechanisms. The alternative is to submit an offer for
direct acceptance or rejection with only yes/no feedback and although this is possible it is
not done in order to keep consistency in communication patterns and in general how the
experiment is performed.

The broker/mass submitter tool in its final stages applies a mark-up, performs an as-
sessment and submits the best offer to the user for acceptance. The implemented agree-
ment mechanism also provides the facility for multiple rounds of negotiation, this is how-
ever out of the scope of the experimentation and jobs are simply rejected. This avoids
changing input values for the template in an attempt to simulate the user’s preferences as
this is considered to be highly subjective. It should be noted that providers will not make
offers that will go past the deadline, as they know they will fail, so the offer collection
phase aids the finding of a suitable provider for the work to be completed upon.

In the experimentation a Grid is established with 2 providers/clusters of machines.
Each provider had 4 virtual machines (VMs) of which one also acted as a head node.
Jobs were submitted at intervals, from a separate broker virtual machine instance. This
prevented the broker from making one provider less competitive than the other. In total
the experiment hence had 9 virtual machines.

Chapter 5 146 Job Admission and Profit

The virtual machines ran Ubuntu 11.10 (64bit) server, with full virtualization and
ran upon 4 physical hosts. The virtual environment was constructed using OpenNebula
2.0 [145] and Xen 4.0.1 [55]. Each head node had 1GB of RAM allocated and the worker
nodes had 768MB and the processors each ran at a speed of 2.4GHz. The head nodes
were allowed to be allocated to by the scheduler ensuring the resource space allowed was
as large as possible. The size of the Grid was chosen because of the limited resources
available. It was also desirable to have competition between providers so 2 providers
were used.

The ISQoS Grid which was setup on the VM’s used WS-Agreement for Java v1.0
for the Broker and Provider agreement process. Ganglia 3.2.0 [81] was used to provide
resource information to each of the head nodes, about the availability of its resources.

Experiments were then ran with the settings discussed in the next section. There were
6 runs of each trace taken and 95% confidence intervals are hence marked on the figures
shown in the next section. The first 10 accepted jobs of the traces have been ignored to
counteract effects of starting with an unloaded Grid.

5.3.2 Experimental Configuration

The submitter tool sent 100 jobs with 8 tasks to the providers to requests offers. It had
to either accept the job and submit to one of the two providers or reject the job. Jobs
were submitted with a 30 second gap between submissions. This is shorter than the time
it takes to compute a job, which means the Grid fills and resources become sufficiently
scarce as per a time sensitive, high utilization scenario. Each provider was configured to
use the round robin scheduling algorithm (see Section 4.4.6 for the list of implemented
algorithms).

Jobs were setup to be none data intensive and the stage in/out size was 1 megabyte.
This mitigates issues with considering the network configuration of the virtual cluster on
the cloud testbed. The execution size estimate for a task was given a value of 3,000.
This value derives from a reference processor of 3,000 MHz multiplied by an expected
duration of 1 minute. This means upon the resources available, tasks are expected to last
approximately 1 minute and that if a job was allocated to a single machine it would take
8 minutes to complete, the 8 tasks.

Each job’s due date was set to the submission time + 8 and its deadline was set to the
submission time + 12, with the knowledge that the Grid would soon be overtaxed.

Each job was given a budget of 20,000 which was chosen to be sufficiently high so
as not to act as a selection pressure. A fixed mark-up for the broker of 20% was chosen,

Chapter 5 147 Job Admission and Profit

which means the broker breaks even 16.67% of the way between the due date and deadline
[103], so the provider must complete work before this point to remain in profit. A static
resource price was chosen that bills time for both the use of network and resource time
equally at 1 unit per second. The set of available price setting mechanisms is discussed in
Section 4.4.8.1.

5.4 Results & Evaluation

Figure 5.1: Average Slack

A key measure of QoS is the amount of available slack as it relates directly to meeting
of the temporal QoS requirements and has a strong bearing upon the profit the broker is
going to make. Slack is taken in this context to be the difference in time between the
completion time and either the due date, breakeven point or the deadline. Hence zero due
date slack is completing just in time for the broker’s service price to remain unchanged.
In Figure 5.1 it can be observed that there is a distinction between mechanisms where
profit checking is permissible or not, in regards to the amount of slack available. Essen-
tially if the SLA is not evaluated for the broker’s profit then the spare slack is entirely
consumed and time guarantees are not upheld. The Highest Profit (profitable only) selec-
tion mechanism tends to go past the due date making it less suitable. This means while
filtering against profit is useful, it is not always going to offer a guarantee that the due
date constraint is going to be met.

It should be noted that the relationship between slack and profit is strong, the greater

Chapter 5 148 Job Admission and Profit

the breakeven slack (the time between completion and the breakeven point) the greater the
likelihood that the broker is going to make a larger profit. This may also be expressed as
maintaining positive due date slack. There however remains a trade-off behaviour where
it is possible to gain greater profit by fitting slightly more jobs in to a schedule and only
just meeting or just passing the due date, which is more preferential to the broker and for
the global utility gained.

Figure 5.2: Average Number of Jobs Accepted

Figure 5.3: Overall Broker Profit

Adaptations of the classical submission strategies that examine the agreement and test

Chapter 5 149 Job Admission and Profit

for profit perform well, but they tend to have a wide variance in slack (Figure 5.1) and
job acceptance (Figure 5.2) as compared to the Hybrid Offer Filter. This is reflected in
the overall profit (Figure 5.3), with the Hybrid and Going Rate approaches winning out,
some 30.0% above their nearest rivals.

In terms of job admission it can be seen that there is a requirement in order to generate
the greatest QoS and profit to generate a stable and consistent selection process. This has
a benefit in not only giving a consistent behaviour to end users, but it causes a more stable
service price, which in Chapter 6 is shown to aid QoS provision. It should also be noted
that it was previously shown that the Hybrid Offer approach works much better than the
going rate mechanism in lower arrival rate situations [103].

Selecting providers by their current load is a common way to submit work to in a none
economic oriented Grid. This has the disadvantage that the current load does not reflect
well how long each job will take to complete. This is illustrated by an example where
current load is only shown as the count of jobs in the queue, relative to how many pro-
cessors are available. This disadvantage is reflected in the results by the fact that the load
based and random selection mechanisms appear to be very similar. This is also the case
when looking at the profit checking equivalent of both mechanisms. It is therefore sus-
pected that the load based selection mechanism acts more as a means of random number
generation. It is also believed that when a Grid is nearing full capacity (as per the experi-
ment), this effect is exacerbated. This is because at lower load levels the amount of tasks
are fewer than the CPUs available meaning this ratio would indicate the least loaded sites
well enough, especially as provider selection becomes less important. At higher loads it
should be noted that this ratio of jobs to CPUs simply does not reflect how long it will
take the CPUs to become free.

The selective based strategies indicated on Figures 5.1, 5.2, 5.3 and 5.4 in blue and
green, use details from the offer to manage their selection process. It should be noted that
if the time between the first query that determines the properties of the offer and the final
submission is sufficiently far apart then the offer will not represent the current state of
the environment. Offers hence should expire after a sufficient amount of time has passed.
In terms of guiding the selection process it is not expected to be detrimental that the first
offer is indicative and that a provider can use a different schedule once the job is sent
for final submission, so long as the scheduling strategy is not wholly different from that
which handled the initial query. The provider is hence expected to be honest in this regard
and use the same scheduling strategy.

The start delay as shown in Figure 5.4, is used here as a metric for understanding
the pressures upon resources on the Grid. Strategies selecting based upon none negative

Chapter 5 150 Job Admission and Profit

Figure 5.4: Average Start Delay

broker profit fair best and in all cases beat other strategies. The random and the highest
profitable job strategies perform worst and have notable variance in their start delay. The
deviation from the ordering as compared to how many jobs are accepted should also be
noted as it gives some notion of the differing quality of site selection.

Figure 5.5: Completion Time Trace - Run 1 - Highest Profit Based Selection

Given the examination of job selection mechanisms it seems wise to examine what is

Chapter 5 151 Job Admission and Profit

actually happening, in greater detail. If a single trace is examined a sequence of loading
and unloading may be observed. In Figure 5.5 a trace from the first run of the highest profit
selection mechanism is shown. The completion time (completion time - time of offer) is
shown against each instance of either job acceptance or rejection. It becomes clear that
the trend is to have several jobs rejected until a point where the completion time drops
sufficiently, because more resources are free and then a job is accepted bring the next
completion times back to a higher level. The system hence is constantly going between a
sequence of rejection, with ever decreasing delay and acceptance. This is symptomatic of
any deadline constrained system and is important to understand in admission control.

5.5 Summary

In this chapter different offer selection strategies were tested for the brokering mechanism.
Classical job submission strategies were shown to perform badly when placed within the
tender market, even when providers do not accept jobs past their deadline requirement.
The filtering against broker profit for jobs which is directly linked to QoS vastly improves
the situation. The further correct use of the pricing model for job selection was also
shown to improve matters as it then better reflected the future scheduled work, as shown
by the Hybrid Offer filter. The work in this chapter was on a small scale, it is expected
to translate to a larger scale. The benefit offered derive from scheduling and using offers
to better steer jobs. This will therefore prove beneficial should the cost of generating
candidate schedules not out way the computational cost of performing the work, which
can be expected to be the case.

Finally it was illustrated how the use of deadline based systems causes undulation in
job completion time as the Grid goes through a cycle of loading and unloading of work
placed upon it. In considering this cyclical pattern it is likely to present itself when the
providers are nearing full load, with respect to the time constants of jobs. The presence
of the deadlines will therefore cause this effect regardless of scale, especially when all
resource available to a provider are in use such as in a load levelling based scenario. This
will also be exacerbated when users understand the runtime of jobs and set due dates and
deadlines that are close to this expected runtime.

Chapter 6

Dynamic Pricing And Offer
Prioritisation

6.1 Introduction

In this chapter experiments are performed with the aim of demonstrating the effects of
temporal and budget constraints upon machine/task selection, with the particular regard to
the creation of a mechanism by which job prioritisation may take place. This is achieved
by the introduction of dynamic pricing mechanisms, which means the system can adapt
to current conditions. The pricing mechanisms available are discussed in Section 4.4.8.

The focus as with Chapter 5 remains upon high load scenarios where correct selection
is most required, again as per the motivating scenarios shown in Section 1.2, as during
low load situations both market and non-market mechanisms provide good welfare and
only at high load do market mechanisms outperform their non-market based rivals [130].

The research objectives of this chapter’s experimentation is discussed next, followed
by the configuration of the experiments performed in Section 6.3. This is then followed
by the results and experimental evaluation. The results are shown as a progressive set of
experiments in which first the transition from temporal to economic constraints (Section
6.4.1), followed by the introduction of rescheduling (Section 6.4.2). The rescheduling
causes instability in the service price. This instability is then counteracted by adapting
the pricing mechanism and results are presented to demonstrate this (Section 6.4.4). After

152

Chapter 6 153 Dynamic Pricing And Offer Prioritisation

this results section a discussion of how pricing instability occurs is given (Section 6.5)
along with recommendations (Section 6.6) on how to counteract the issues seen. Finally a
comparison of time and cost constraints is provided in Section 6.7 followed by the chapter
summary in Section 6.8.

6.2 Experimental Research Objective

This chapter’s research concentrates upon job prioritisation and price stability within the
ISQoS Grid. The focus of this is therefore to meet the aim from Section 1.4 of providing
a market model for job submission that distinguishes between jobs in terms of QoS levels.

In order to address the objective of the research the following specific research ques-
tions have been asked:

1. How do budget and time constraints interact within the market model?

2. How can jobs be prioritised by using time and budget constraints?

3. How can price be stabilised in the market, in order to drive resource allocation
stability?

6.3 Experimental Setup

6.3.1 Experimental Method

The experimental method and setup of the resources used during the experimentation is
first described. Followed by in the next section a description of the settings used in the
experimentation.

A Grid with 2 providers/clusters of machines was established. Each provider had 4
virtual machines (VMs) of which one also acted as a head node. Jobs were submitted at
intervals, from a separate broker virtual machine instance. This prevented the broker from
making one provider less competitive than the other. In total the experiment hence had 9
virtual machines.

The virtual machines ran Ubuntu 11.10 (64bit) server, with full virtualization and
ran upon 4 physical hosts. The virtual environment was constructed using OpenNebula
2.0 [145] and Xen 4.0.1 [55]. Each head node had 1GB of RAM allocated and the worker
nodes had 768MB and the processors each ran at a speed of 2.4GHz. The head nodes
were allowed to be allocated to by the scheduler ensuring the resource space allowed was

Chapter 6 154 Dynamic Pricing And Offer Prioritisation

as large as possible. The size of the Grid was chosen because of the limited resources
available. It was also essential to have competition between providers so 2 providers were
used.

The ISQoS Grid which was setup on the VMs uses WS-Agreement for Java v1.0
for the Broker and Provider agreement process. Ganglia 3.2.0 [81] was used to provide
resource information to each of the head nodes, about the availability of its resources.

The experiments were run with the settings discussed in the next section. There were
6 runs of each trace taken and 95% confidence intervals are hence marked on the figures
shown in the next section. The first 15 accepted jobs of the traces have been ignored to
counteract effects of starting with an unloaded Grid.

6.3.2 Experimental Configuration

The experiment was run with 100 jobs with 8 tasks each being sent from the broker. The
broker had to select either to accept the job and submit to one of the two providers or
reject the job. Jobs were submitted with a 30 second gap between submissions. This is
shorter than the time it takes to compute a job, which means the Grid fills and resources
become sufficiently scarce as per a time sensitive, high utilization scenario.

Jobs were setup to be none data intensive and the stage in/out size was only 1 Megabyte.
This mitigates issues with considering the network configuration of the virtual cluster on
the School of Computing’s testbed. The execution size estimate for a task was given a
value of 3,000. This value derives from a reference processor of 3,000 MHz multiplied
by an expected duration of 1 minute. This means upon the resources available the tasks
are also expected to last approximately 1 minute.

This means that if a job was allocated to a single machine it would take 8 minutes
to complete. The due date was hence set no lower than the submission time + 8, with
the knowledge that the Grid would soon be overtaxed. The deadline was set to the due
date + 4 minutes. Though the fixed size of jobs and tasks are not entirely realistic, they
are chosen to generate a situation where the Grid is overtaxed and to allow the study of
selection pressures of jobs. If the job size were to be changed, preference would be given
to smaller jobs with the same budget hence distorting the result obtained.

Three different budgets that jobs could be given were established: 12,000 15,000 and
18,000. These values were chosen as they intersected the likely prices that would be
generated at different stages of the experiment. A fixed mark-up of 20% was chosen.

During the course of the experimentation rescheduling is introduced. In Section 6.4.1
the round robin scheduling algorithm is used. A rescheduling based variation is then used

Chapter 6 155 Dynamic Pricing And Offer Prioritisation

in Sections 6.4.2 and 6.4.4. The algorithms implemented by the providers may be found
in Section 4.4.6.

A dynamic resource pricing mechanism was chosen which bills time for both the
use of network time and resource time equally. It derived its charge from the count of
actions that the provider currently has in its schedule, which maps across to a set price
(see Section 4.4.8.1). The provider thus tracks current demand when setting its price by
this method. This method was chosen as the jobs being submitted were of equal size
and there was no great need for a more complex solution. If jobs were of a different
size it would be required to have a more complex solution as the tasks might not be
of comparable size meaning counting actions would not truly reflect current resource
demand. The scheduling algorithm in use was not price aware so a single price could be
set for all resources upon a given provider. It is possible to count the price either across the
provider as a whole or against a single resource. Seen as the algorithms did not account
for price i.e. for load levelling purposes there was no need to set prices differently. In
Section 6.4.4 the pricing mechanism is changed so it ignores work that has been started
or finished.

The broker used the hybrid offer filter selection mechanism (see Algorithm 6) and
ranked jobs by broker profit, the offer ranking and selection mechanism used is shown in
Figure 4.4.7.

6.4 Results & Evaluation

6.4.1 Transition to Economic Constraints Dominance

This section’s aim is to show how different higher budgets become prioritised over lower
budgets when dynamic pricing is used. Figure 6.1 shows the gradual increasing of the
allowed due date and deadline. Initially there is no preference based upon budget shown
and the temporal constraints take precedence. When the due date is at 12 minutes the
lowest budget jobs at 12,000 start to be penalised and by 16 minutes the lowest budget
jobs are all but completely rejected. This demonstrates selection based upon budget which
is highly preferential in an economic based system. This is caused because as the due
date increases a greater amount of the work is allowed to be scheduled concurrently on
each provider. This causes the resource costs to increase to match the demand. In doing
so the lower priority/budget jobs are priced out of the market. Note that experimental
noise means that when the due date equals 8 that there is a slight variation in the average
amount of jobs accepted, where no job selection preference due to budget is actually

Chapter 6 156 Dynamic Pricing And Offer Prioritisation

Figure 6.1: Transition to Budget Prioritisation - With Round Robin Scheduling

demonstrated.
The jobs with the highest budgets are shown to be accepted more readily in an ever

increasing fashion, whilst the middle budget range jobs increases temporarily as the low-
est budget jobs are no longer accepted. This prioritisation of jobs based upon the budget
is seen to be a valuable property of the submission system especially as it is achieved
without any need for jobs to directly compete in an auction style for resources.

In Figures 6.2, 6.3 and 6.4 constraint violations are counted. A constraint violation
occurs when a job is rejected due to either the temporal or budget constraint. If the budget
constrains a job then a budget violation counter is incremented. A temporal constraint
violation is considered to have occurred if the time before the breakeven point is less than
zero i.e. where the job is no longer making a profit. This point, where the broker breaks
even, is 16.67% of the way between the due date and deadline [103]. It was useful to pick
this point as the deadline was unlikely to be ever passed due to the hybrid offer filter, job
admission policy in use. This policy filters out unprofitable jobs, hence any job that would
complete too close to the deadline would be rejected. The number of constraint issues
is incremented if either a temporal or budget constraint is violated and both constraints
counter is incremented only in cases where neither constraint was satisfied.

In Figure 6.2 it can be seen that the constraint violations are initially of the temporal
type only, this is because the highly restrictive temporal constraints are dominating, en-
suring schedule size does not increase sufficiently, which limits the service price. As the
due date gets larger the budget constraints become more dominant as the larger schedules

Chapter 6 157 Dynamic Pricing And Offer Prioritisation

Figure 6.2: All Constraint Violations - With Round Robin Scheduling

cause the service price to rise.
In Figures 6.3 and 6.4 the selection pressures for jobs with specific budgets, namely

12,000 and 15,000 are shown, demonstrating the biasing towards the higher budget jobs.

Figure 6.3: Constraint Violations with a Budget of 12,000 only - With Round Robin
Scheduling

Figure 6.3 shows with a due date of 8 that jobs are either not meeting the temporal
constraints or they are accepted. As the due date increases the budget constraints become
dominant. Though temporal constraints are still being violated, it is also the case that

Chapter 6 158 Dynamic Pricing And Offer Prioritisation

the budget constraints are being violated as well, so practically the budget constraints are
taking precedence, as violating both constraints has the same effect as violating only one
constraint i.e. job rejection. It should be noted due to randomness that in Figure 6.3 the
amount of jobs violating the budget constraint drops with a due date of 20 and 24. This
is because fewer jobs had a budget of 12,000. It should also be noted that all jobs with a
due date of 24 and budget of 12,000 are rejected.

Figure 6.4: Constraint Violations with a Budget of 15,000 only - With Round Robin
Scheduling

Figure 6.4 like Figure 6.3 again shows that initially jobs are either not meeting the tem-
poral constraints or they are accepted. As the due date is increased the budget constraints
again become more dominant, but it takes much longer for jobs to be predominantly re-
jected because of budget violations, which is an indication of the desired property of
prioritisation.

To provide further insight into what increasing the budget means in terms of selection
a study of the start delay associated with each billed job in the 6 runs performed is shown
in Figures 6.5 and 6.6. Figure 6.5 shows values for all due dates and Figure 6.6 for due
date 18, 20 and 24 only.

Chapter 6 159 Dynamic Pricing And Offer Prioritisation

Figure 6.5: Start Delay - With Round Robin Scheduling - For All Due Dates

Figure 6.6: Start Delay - With Round Robin Scheduling - For Due Dates 18, 20 and 24

Chapter 6 160 Dynamic Pricing And Offer Prioritisation

The higher budget jobs obtain higher average start delays than lower budget jobs. This
seems initially counter to what is required, however the start delay shows how long a job
has to wait for before it is executed and hence how busy the provider is at the time of
billing. Therefore more jobs in the schedule means two things:

1. Jobs have to wait longer to be executed

2. Jobs have to pay more in order to be placed in the schedule, due to the higher
demand

This means if a higher budget job arrives it has a greater chance of being accepted in
the larger schedules where it would have otherwise been rejected, if the start delay was
not accepted. This therefore brings the average start delay experienced up as compared to
the lower budget jobs i.e. 12,000. The higher budget jobs would therefore experience a
higher variance in the start delay that they experience.

This can be seen when examining Figures 6.5 and 6.6 side by side. Initially it can
be seen in the earlier bills in Figure 6.6 that the lower budget jobs (12,000) are delayed
equally as with all other jobs but are then priced out of the market by the time the Grid
reaches full load. It can also be seen that the averages are higher in Figure 6.6 than Figure
6.5 due to the exclusion of the lower due dates from the figure.

Due date also effects the start delay as it simply permits greater delays to be possi-
ble as shown in Figure 6.7. The figure shows the average start delay for each billed job
over 6 runs. The start delay in the earlier bills rises rapidly due to the cold start of the
Grid deployed on the testbed. i.e. with no jobs initially present. Once the initial shock of
accepting many jobs is over the billed jobs can be seen to be tending towards a steady con-
sistent start delay. This steady start delay is obtained faster when the temporal constraints
are made more stringent. This indicates that if production systems were to follow this
model that the intent of users to obtain the fastest completion time possible and setting
the temporal constraints accordingly is hence likely to cause stabilisation faster in regards
to amount of delays incurred.

Chapter 6 161 Dynamic Pricing And Offer Prioritisation

Figure 6.7: Start Delay - With Round Robin Scheduling - Shown By Due Date

6.4.2 Rescheduling

It was previously indicated in Section 4.4.6 that different scheduling algorithms may be
selected at provider level. This can introduce more complex situations where rescheduling
may be performed. In this case we show how this can have a profound effect upon the
market.

In the case where rescheduling is performed similar results can be obtained to the
none rescheduling case, there are however notable differences.

Figure 6.8 demonstrates that the budget constraint becomes more dominant than the
temporal constraints much later on as compared to Figure 6.2. This is reflected in the
distinction between the amount of jobs accepted of each type, where the lower budget
jobs are no longer rejected entirely. This is in part caused by fewer jobs being accepted
(shown later in Figure 6.28), leading to a slightly lower resource cost. On average 28/85
jobs without rescheduling and 26/85 with rescheduling, but it is also more significantly
down to greater fluctuations in the service price.

To highlight the fluctuations in service price Figure 6.9 shows a trace of the service
price over the 6 runs which have a due date of 20. It shows that when rescheduling occurs
the service price drops significantly at various stages in the trace, which is not the case
where rescheduling is not in use. The drop in price means it becomes low enough for the
lower budget jobs to be accepted. This is the case even though the temporal constraints
are relaxed meaning higher workloads on the server could be expected. These higher
workloads would therefore give rise to an expectation that the service price was also high.

Chapter 6 162 Dynamic Pricing And Offer Prioritisation

Figure 6.8: All Constraint Violations - With Rescheduling

Figure 6.9: Effect upon Service Price of Rescheduling (Due Date = 20, Average of all
Runs)

Chapter 6 163 Dynamic Pricing And Offer Prioritisation

6.4.3 Causes of Price Instability

In order to explain what is happening and why the price is being reduced a simplified case
is presented. A single processor is examined, with the arrival of four jobs that submitted
in sequence. The temporal constraints is simplified and due date is considered to be equal
to the deadline and the time is represented as discrete time rather than continuous. The
arrival of each of the four jobs is shown, with the top row representing the processors
availability and the rows after representing the jobs availability. The time increments
on by one step each time and is represented by the dashed area on the figures presented
next. This example is presented for the rescheduling and round robin cases to enable the
examination of the differences between the two sample cases.

Figure 6.10: Instability Demonstration - Round Robin

In Figure 6.10 the round robin base case is presented. It can be seen that Job 1 arrives
on the processor and takes up two blocks but has a deadline of four ahead of its arrival
time. The processor is free so it is allocated immediately. The arrival of Job 2 one block
of time later means Job 1 and Job 2’s allocable space overlaps. Job 1 having already
been allocated takes priority and Job 2 is placed afterwards. Similarly this happens to
Job 3. Job 4 arrives and its allocatable space is all but overlapped by Jobs 2 and 3 and
as they arrived first and their reservations are respected, hence Job 4 is rejected. This is
unremarkable but is established so the rescheduling case may be examined as well.

In Figure 6.11 we see the rescheduling case being demonstrated. The arrival of Job

Chapter 6 164 Dynamic Pricing And Offer Prioritisation

Figure 6.11: Instability Demonstration - Rescheduling

1 is handled in much the same way as before given the processor is unloaded. The next
arrival one block of time later means Job 1 and Job 2’s allocable space overlaps. This time
in order to break the precedence of earlier jobs always coming first, Job 1 takes a lower
priority. The first ”block in the job”/task has already been executed. The second task may
now however be postponed. Job 2 hence starts immediately in this time period. When Job
3 arrives Job 2 is prevented from moving by the end of Job 1. Job 3 is hence placed at the
end of the processors available space. Finally Job 4 arrives and it is again rejected due to
a lack of space.

This simple case shows how the jobs that arrived earlier can block future jobs from
being moved. It also shows how the billing of each job can be moved closer together. This
is important as this removes work from the schedule. Once this has been done it means
the service price drops, in cases where all actions in the schedule are used to determine
current load. Rescheduling lends itself towards two jobs completing on a single resource
within short succession, which rapidly reduces the service price.

6.4.4 Price Stability

Given there is instability in the service price and given the explanation presented in Sec-
tion 6.4.3 a mechanism to alleviate the problems is tested. Comparisons are therefore
made between the round robin, rescheduling and the re-priced (rescheduling) variations.

To further emphasise what is happening and the explanation given in Section 6.4.3 the
time between billing events, this is shown in Figure 6.12. It can be seen the time between

Chapter 6 165 Dynamic Pricing And Offer Prioritisation

Figure 6.12: Average Time Between Billing Events for each Given Due Date)

billing events does not differ that greatly between any of the three series before due dates
20 and 24. It can then be seen that the rescheduling variation gets a much greater range
of possible values and the average from one run to the next differs markedly. Essentially
the average time between bills varies much more in the rescheduling case then it does in
either the round robin or repriced variations.

Figure 6.13: Standard Deviation for the Time between Billing Events for each Given Due
Date)

To further emphasise what is happening the standard deviation for the time between

Chapter 6 166 Dynamic Pricing And Offer Prioritisation

bills is shown in Figure 6.13. The standard deviation for both the rescheduling case and
the repriced increases but the rescheduling case does so much quicker. In considering
Figures 6.13 and 6.12, it can be seen that the average time for the Round Robin and
Repriced variations does not move, while the rescheduling variation does. It can also be
seen that the time between bills in the rescheduling and the repriced variation begins to
vary more, though the repriced variation maintains the average better. This maintenance
of the average means the price is likely to be more stable.

Figure 6.14: Average Time Between Billing Events for Due Date = 24)

Lastly in regards to the time between bills, the average time between bills over time
is observed. Bills are grouped and the time between the bill and the previous bill on the
same provider is given. The earlier and later buckets may be ignored as the trace begins
and ends but are shown for completeness. The average time between bills can be seen
to move over time for the rescheduling case but not the repriced or round robin cases for
higher due dates such as 24 (see Figure 6.14). The round robin variation stays very stable
and the repriced variation undulates around the round robins value. This is not seen in
earlier due dates such as 8 and 16, as shown in Figures 6.15 and 6.16.

In testing the instability consideration also has to fall on the average service price
over each of the runs (see Figure 6.17). The service price for rescheduling and round
robin are about equal/and within error margins until the later due dates of 20 and 24,
which mirrors what is happening with the time between bills. It can be deduced that the
only thing that distinguishes round robin and the rescheduling variation is related to how
the rescheduling occurs i.e. something happens due to rescheduling, or the ineffectiveness

Chapter 6 167 Dynamic Pricing And Offer Prioritisation

Figure 6.15: Average Time Between Billing Events for Due Date = 8)

Figure 6.16: Average Time Between Billing Events for Due Date = 16)

Chapter 6 168 Dynamic Pricing And Offer Prioritisation

Figure 6.17: Average Service Price (For Each Due Date)

of the rescheduling algorithm. The rescheduling variation cannot therefore be efficiently
performing the rescheduling with respect to the pricing model, causing the service price
to go down.

It can also be seen in Figure 6.17 that the re-priced rescheduling variation does not
initially perform as well in terms of service price. This is not surprising as actions that
have been executed do not contribute to the service price, hence it is at a disadvantage.
It can be observed that as the due date increases, this effect is diminished. This is due
to larger schedules, which ensure the work that has been executed and is yet to be billed
makes up a smaller proportion of the schedule.

This disadvantage should however exist throughout and it could be expected that its
average service price should never approach that of the rescheduling variation. It however
surpasses the service price of the plain rescheduling variation, which should always be in
a better position to obtain a higher service price.

It should also be noted that there is a possibility as the maximum budget possible is
18,000 that the service price is tending towards a maximum in an asymptotic fashion i.e. it
will not reach this maximum value, but will approach very close. The re-priced variation
could be less susceptible during its approach to this maximum.

The variation in service price shown in Figure 6.17 is further explored in Figures 6.18
and 6.19, as this gives a notion of price stability, which is an important factor in good
allocations within a Grid market [199].

It should be noted how the re-priced service price does not vary as much as the

Chapter 6 169 Dynamic Pricing And Offer Prioritisation

Figure 6.18: Standard Deviation of the Average Service Price (as shown in Figure 6.17)

rescheduling variation when the due date is larger i.e. 20 or 24. The rescheduling vari-
ation starts small and then gets disproportionally larger at due dates 20 and 24, whereas
the re-priced variation starts slightly larger and stays roughly the same size.

Figure 6.19: Standard Deviation as Multiple of Smallest Deviation Value

In order to highlight the change in standard deviation and hence how under control
the pricing mechanism is Figure 6.19 is introduced. The standard deviation is altered to
be a multiple of the lowest standard deviation found (Round Robin at Due Date 20). The
summary of values is shown in Table 6.1.

Chapter 6 170 Dynamic Pricing And Offer Prioritisation

Table 6.1: Summary of Standard Deviation of Service Price

Rescheduling Round Robin Re-priced

Lowest Standard Deviation 3.72 1 4.99
Highest Standard Deviation 12.07 5.06 7.83

High − Low 8.35 4.06 2.85
(High − Low) − (Re-priced’s High − Low) 5.5 1.21 0

It can be seen that the lowest standard deviation is provided by the round robin
scheduling algorithm. The highest standard deviation and hence the one that is most
out of control is the rescheduling variation. This is only seen at due dates 20 and 24,
where more opportunity for rescheduling is available. The re-priced variation does not
suffer any ill effects at the higher due date values.

Re-priced has the lowest difference between the highest and lowest standard devia-
tions for any given due date i.e. regardless of the due date the standard deviation/spread
of possible services prices is the least.

In comparison the round robin has a similar spread at 1.21 times the re-priced vari-
ations spread. The rescheduling variation suffers heavily though and has a standard de-
viation 5.5 times as large as the re-priced variation. The rescheduling variant before if
ignoring due dates 20 and 24 would be much improved and have the following values
(Table 6.2):

Table 6.2: Summary of Standard Deviation of Service Price Ignoring Due Date 20 and 24

Rescheduling

Lowest Standard Deviation 3.72
Highest Standard Deviation 6.08

High − Low 2.36
(High − Low) − Re-Priced’s Delta -0.49

Hence it can be seen that it performed very similarly to re-priced and round robin until
this point.

To highlight the fluctuations in service price in a similar fashion to Figure 6.9 and
to show the repriced variation does not show the same variation in prices Figure 6.20 is
introduced. It examines the service price over time in the same fashion as Figure 6.9. It
shown a trace of the service price over 6 runs where the due date equals 24. It shows
that when rescheduling occurs the service price drops significantly at various stages in
the trace, which is not the case when repricing is used even though rescheduling is still
used in addition to the changed resource pricing strategy. The re-priced variation obtains

Chapter 6 171 Dynamic Pricing And Offer Prioritisation

Figure 6.20: Service Price over Time (Due Date = 24)

a similar service price to the rescheduling variant however more importantly, it does not
suffer from random dips in the service price and only one outlier moves away from the
12,000 to 18,000 band of service prices.

Figure 6.21: Final Overall Revenue

In considering the price stability the final revenue generated by the broker at the end
of the experiment is also of great interest. It relates both to the average service price
and to the job acceptance count. This is shown in Figure 6.21. We can see that the re-

Chapter 6 172 Dynamic Pricing And Offer Prioritisation

priced variation returns roughly the same amount of revenue by the end of each run in the
experiment as the rescheduling variation.

Figure 6.22: Constraint Violations - Re-Priced (All Budgets)

The change in service price is likely to affect job submissions in regards to the prefer-
ential treatment of higher budgets in comparison to lower ones. Hence the next aspect to
consider is the constraint violations, in a similar fashion to Figures 6.2, 6.3, 6.4 and 6.8.

Hence Figure 6.22 is presented and placed in comparison to Figures 6.2 and Figure
6.8. It is clear the budget constraints are delayed in taking effect. This can however be
compensated for by increasing the service price associated with a given count of jobs i.e.
the mapping between price and the current count of actions in the schedule. The curve
for the budget constraint violation also appears concave rather than convex as shown in
Figure 6.2, Figure 6.8, which is of some interest. This therefore gives some indication
of what happens if the job acceptance count remains high (see Figure 6.28) when the
budgetary constraints are not violated regularly.

Considering that the constraint violations differ the acceptance preferences between
different budgets is required to be understood. The preference mechanism remains strong
in the re-priced variation, as shown in Figure 6.23, though the lowest budget jobs are not
removed entirely, which is the case with Round Robin (see Figure 6.1) and Rescheduling
(see Figure 6.24).

The most notable comparison when observing Figure 6.1, 6.23 and 6.24 is looking
at the position in which the separation based upon available budget occurs. Essentially
the higher the pressure upon the budget constraint the earlier this separation appears. The

Chapter 6 173 Dynamic Pricing And Offer Prioritisation

Figure 6.23: Job Acceptance and Budget Selection Preference for re-pricing

Figure 6.24: Job Acceptance and Budget Selection Preference for Rescheduling

Chapter 6 174 Dynamic Pricing And Offer Prioritisation

Round Robin algorithm has the greatest selection pressure followed by the Rescheduling
and then Repriced variations.

Figure 6.25: Rescheduling - Job Completion Time

Figure 6.26: Round Robin - Job Completion Time

The completion time for each job is also considered to be deeply relevant. The average
completion time seems to support the idea that before a due date of 18 that the round robin
and rescheduling are just as efficient as each other i.e. the schedules size/queue lengths

Chapter 6 175 Dynamic Pricing And Offer Prioritisation

Figure 6.27: Rescheduling Re-priced - Job Completion Time

have not really developed enough to cause a lot of rescheduling to occur. All three graphs
seem to show times with a due date of 16 to have a completion time of around 14 minutes
and 24 seconds.

In terms of rescheduling when ignoring completed work (re-priced) it is about as effi-
cient as the other rescheduling mechanisms when comparing completion time. Reschedul-
ing as seen in Figure 6.25 seems to show separation based upon budget (a fanning out of
different completion times) which is not seen in Figures 6.26 and 6.27 where only the
lower budget jobs seems to be greatly affected.

Finally in this section we consider the count of jobs/offers accepted. This count is
higher for the re-priced variation in comparison to either the rescheduling or round robin
variations (see Figure 6.28).

We can see in terms of overall acceptance that all three variations have very similar
results, the average for re-priced remains slightly higher and round robin is the next most
favourable. Rescheduling variation is finally the least favourable.

Chapter 6 176 Dynamic Pricing And Offer Prioritisation

Figure 6.28: Job Acceptance

6.5 Discussion upon Price Stability

Figure 6.29: Price and Schedule Dependence

In this section we discuss the stability of prices in relation to dynamic pricing models.
Dynamic pricing is the adaptation of the price of resources in accordance with demand.
This gives rise to a situation shown in Figure 6.29 where the following is the case:

• The price is set by observing the current schedule for demand information

• The schedule has work added to it which is effected by the price of resources,
causing a circular relationship.

Chapter 6 177 Dynamic Pricing And Offer Prioritisation

• The schedule has work removed from it which may affect the resource price, though
this depends upon the pricing strategy used.

6.5.1 Maintaining Selection Pressure

If this relationship is to be maintained, in order to get prioritisation effects then the price
must feature as a selecting pressure in the schedule. If it does not then the price effects
the schedule relationship is diminished or removed while the price will remain observant
of the schedule.

This relationship may diminish if the budget is set sufficiently high as to no longer be
a selection pressure. Noting that the budget being to high is in relation to the mark-up and
amount of work that is part of the job i.e. more work or higher mark-ups means the budget
must also be higher given the same resource price. In considering the user’s preference
towards saving money, it is likely that they are going to render as little money available
for the job as possible, so they are incentivised to maintain the price effects the schedule
relationship.

6.5.2 Effectors of Price Stability

In terms of price stability heterogeneity is an important aspect this can either relate to the
jobs, aspects of the schedule or the resources used. In terms of jobs the following aspects
cause effects:

Size of the Job (Amount of Work) If the price is set by how far ahead of time the last
work completes is then the following is the case. The greater the size of the job,
in terms of how much is to be computed then the greater the resource price. If
billing occurs with larger jobs then the comparison is performed against the current
time so the larger jobs no longer affect the price. This is beneficial as the price
is gradually becomes less dependent upon a single job. This mechanism prevents
the price from dropping rapidly but when new jobs arrive the price can still spike,
although admittedly in doing so it follows demand.

Size of the Job (Task Count) This directly effects how many actions are placed in the
queue. If pricing is based upon an action count then during billing actions are
removed from the schedule and the price drops. Hence when jobs have many tasks
the price drops further, making this form of pricing subject to heterogeneity in the
job. The use of action counts in this case also does not respect the relative size of
work, so again causes difficulties.

Chapter 6 178 Dynamic Pricing And Offer Prioritisation

Billing Frequency/Rate Work is Cleared from the Schedule The frequency of billing
is of importance, in cases where the removal of work from the schedule causes
changes in the price. This can be seen in cases such as where prices are based
upon action/job/task counts, or amount of work in the schedule in terms of cycles,
if completed work that is not billed contributes towards the current price.

Billing Frequency If billing is performed at the end of each job more work is cleared
from the schedule then if it was billed at the completion of every task. In terms of
stability it therefore may be beneficial to bill on a per task basis, even though this
breaks the initial premise of billing for a bag of tasks.

Job Acceptance Frequency which is in part upon the arrival rate of jobs, i.e. if no jobs
are submitted none may be accepted. It is the principle actor in terms of increasing
the current resource price and the greater the amount of work accepted at any one
time then the more the price will rise.

It is also based upon parameters such as the remaining time available for the job,
i.e. due date and deadline and the budget requirements and size of the job. Hence
the overlapping of jobs in regards to their available space should be considered such
as in Section 6.4.3.

The job acceptance frequency is important as the more work in a given schedule then
the greater the price. The acceptance rate should also relate strongly to the ability to clear
work from the schedule i.e. over the long term accepting more work than can be cleared
is unsustainable as wait times increase indefinitely. Therefore in terms of resources the
following aspect also causes effects:

Machine Availability and Speed This relates directly to the ability of the system as a
whole to both accept work, i.e. the permitable queue size is bigger and also the
ability to clear work away from the schedule is faster.

Network Speed this relates to how quickly data may be transferred and hence the ability
to clear and bill work from the schedule. The faster this can happen the greater the
possibility for price fluctuations. In been able to clear work away faster this changes
how fast work may be accepted.

The Schedule’s Quality This is variation upon the comment of machine availability,
speed and network speed. It however relates to the schedule generated. If the sched-
ule utilises the resources more efficiently then it is more likely to be able to clear

Chapter 6 179 Dynamic Pricing And Offer Prioritisation

work from the schedule and cause billing events to occur, which in turn changes the
price.

6.6 Counteracting Price Instability

In Sections 6.4.1, 6.4.2 and 6.4.4 it was seen that before the budget constraints became
dominant that selection pressures did not favour jobs based upon the budget available. If a
Grid become overworked then the economic selection pressures are required. This means
the economic factors should be made to be dominant by changing the resource/service
price.

It was also seen in Section 6.4.2 how price stability affected the ability of the mecha-
nism to maintain this selection pressure. This was then further discussed in Section 6.4.3
and assessed further in Section 6.4.4. The various ways that might be used to obtain a
more stable price are therefore discussed and the possible options are hence listed below:

Step Change From a Previous Price The mechanism by which the price is selected may
be changed to make an incremental step change from the previous price. This would
hence avoid some of the fluctuations and allow for rescheduling. The moderated
changes however would have to reflect the completion of spikes in load. Spikes
in load can occur for example just before an important conference [95]. The price
smoothing mechanism would be required to remain responsive and should not for
example artificially maintain a high price at the end of a peak in demand. This is be-
cause the system as a whole could either have unrealized profit or utility [118,130].

Do not Rely upon Completed Work for Pricing The is by far the simplest solution, by
simply ensuring that pricing does not rely upon already completed work for deter-
mining the resource cost. This means any billing event will not affect the price,
by removing jobs from the schedule that are used as part of the measure of current
load. An example of such a measure would be to take the difference between the
current time and the average completion time of all jobs for the provider.

Maintain an Even Billing Distribution An alternative though needlessly complicated
option would be to ensure the billing events were purposefully held apart. In hold-
ing these events further apart it would reduce the number of occurrences, where a
lot of work is removed from the schedule at the same time. This would require a
scheduling algorithm that was geared specifically towards the pricing mechanism.
If individual tasks were not allowed to interweave, then this would help prevent the

Chapter 6 180 Dynamic Pricing And Offer Prioritisation

near simultaneous execution of billing actions. However, if a single very large job
completes then regardless of dispersion of billing events the price would fall and
potentially harm the selection process.

6.7 Time and Cost Constraints Compared

Following the experimentation in this section it is possible to compare time and cost
constraints and show how they are related within the pricing model that the experiment
tests.

The budget constrains across all jobs evenly based upon the current system load, re-
gardless of if they can be allocated in a position that is far into the future. This is in
difference to due date and deadline which will not constrain based on load if the current
load is high and the due date/deadline is sufficiently far in the future. Essentially the
closer the temporal parameters are to the current time then the lower the available slack
in scheduling and hence the more likely it is that they respond to the current system load.
The budget as a selection pressure also adapts based upon the mark-up, current system
load and the expected resource usage as indicated by the schedule covering work in the
future. Thus if more work is required to be performed then it is more expensive and hence
more likely to act as a selection pressure.

The due date and deadline acts as a selection pressure based upon the current load
and amount of work to be performed, but does not directly take a mark-up as a modifier.
The mark-up however changes the breakeven point which is between the due date and
deadline, thus the temporal pressures can be adjusted as well. This effect is not however
seen with other [17,52,54,99,148] related gradient decent based models and is due to the
removal of the direct relationship between the available budget and the price paid, causing
the introduction of a mark-up for the broker, e.g. in LibraSLA [52] the budget is the price
paid unless the soft deadline is passed.

Temporal constraints within the ISQoS system and other related models are also likely
to cause a sequence of loading and unloading as shown in the previous chapter in Figure
5.4. This is caused by the pressure of such a time constraint becoming more effective
under heavy load and then waning after it has been effective in preventing jobs from
entering the market and can be considered symptomatic of deadline based approaches.
The budget constraint is however more complex in this regard and can be used in this
situation to preferentially select jobs with different budgets, job sizes and mark-ups.

The budget in the experimentation presented acts like a spot price (see Section 2.5.3.2
for a definition of futures and spot pricing). The price is determined from the immediate

Chapter 6 181 Dynamic Pricing And Offer Prioritisation

load profile. If the due date is far in advance a futures price might be more applicable, as
it no longer reflects the current load. This means the price in the future could be different
to a more current price and be based upon the estimated future demand!

The ISQoS negotiation mechanism acts as a tender contract market. An auction and
batch based system seems incompatible with the idea of rescheduling to meet time con-
straints. Though auctions do still have attractive properties in terms of competition, which
is something ISQoS finds more difficult. This discussion is summarised in Table 6.3.

Table 6.3: Cost and Time Constraints Compared

Concept Due Date/Deadline Budget

Reflects current load Yes: unless constraints are far
in the future.

Yes: unless budget is very
high. Requires price to follow
demand.

Influencing factors None: effects gradient in
due date to deadline period,
though the breakeven point
moves.

Mark-up: Makes the job more
favourable to the broker, but
consumes the budget quicker.

Constraining upon reflects the
job’s expected resource usage

Partially: Only when due date
and deadline are close to the
current time relative to the
amount of work required to
be performed. Slack however
reflects usage.

Yes: Cost increases with
more time upon resource that
is requested.

Creates availability window
(Temporally)

Yes: By Definition. Yes: If price increases due to
load then the budget creates
a notion of maximum accept-
able load. The work already
present removes space earlier
on in the schedule.

Creates availability window
(Fiscally)

Yes: A breakeven point is
formed, between the due date
and deadline.

Yes: By Definition.

Chapter 6 182 Dynamic Pricing And Offer Prioritisation

6.8 Summary

This chapter has focussed upon job prioritisation (see Section 6.4.1) and demonstrated
how economic constraints can establish this, whilst also showing an initial period where
temporal constraints dominate. Given that users will be aiming to set the budget assigned
to jobs as low as possible it can be reasoned that the budget constraints are likely to always
have the desired job prioritising effect.

Rescheduling was then introduced in Section 6.4.2 and showed how it can lead to price
instability, by causing the schedule to have several jobs cleared from it, due to completion,
within close succession. The reasons for this were then discussed in Section 6.4.3. This
instability was then tackled in Section 6.4.4, leading to the recommendations made in
Section 6.6). The primary recommendation was to break the link between the resource
cost and work that would be removed during billing. An additional key recommendation
was to ensure that prices are made as an incremental step change, that is not too large
from the previous price.

Chapter 7

Conclusion

7.1 Summary

The work presented in this thesis has developed an economic model for the execution of
Grid jobs with particular focus upon completion time and upon the cost of execution. This
model has then been implemented in order to realise the models usage and to establish a
platform by which Grid scheduling research from an economic perspective may be carried
out. The developed platform focuses upon utilising scheduling to guide negotiations,
between a broker and a tender market for job submissions. The main purpose of the
negotiation being to ensure that quality of service is met. This is achieved through steering
jobs to the correct provider and by using a market that ensures trade-offs between price
and completion time can be realised, while keeping the user informed of the current state
of the Grid.

Chapter 2: begins this with introducing the Grid and demonstrating current research
trends towards quality of service provision in Grids. Quality of service provision
is then discussed in greater detail, focusing first upon the difficulties in Grids for
provisioning QoS and then on to mechanisms used to provide QoS. The discussion
then moves onto Service level agreements, which is a mechanism that can be used
to define the levels of quality of service required and modern standards such as WS-
Agreement are discussed in detail. Economics in Grids is then introduced which is
a mechanism for quantifying QoS in monetary terms as well as proving compensa-

183

Chapter 7 184 Conclusion

tion given failings in QoS. It also offers opportunities to commercialise and expand
the use of the Grid. This is finally followed by a discussion of scheduling in Grids
that allows for the co-ordination of actions on the Grid as well as a means to guide
the negotiation process.

Chapter 3: is aimed at introducing the market model for the Grid, that drives the pro-
cesses within the proposed negotiation system for QoS. The aims of the model are
first discussed along with existing literature that has a similar deadline constrained
nature. The model is then introduced defining a clear graduated boundary for the
quality of service constraints of both completion time and cost. Discrete event sim-
ulation is introduced as a means of testing the model. In order to carry out the
simulation of the model a simulator was developed. This simulator is shown to be
tested with a sweeping study of possible parameters. After testing the simulator is
utilised to perform discrete event simulation on the market. The model is finally
compared in a study with existing literature.

Chapter 4: introduces the broker that implements the proposed economic model. This
chapter starts with a review of the literature with a selection of brokers and middle-
ware that are available. This review is performed showing the trend towards quality
of service provision in Grids, to which the proposed negotiation system is aimed.
This review is then followed by a requirements analysis phase, based upon the aims
of the research. The overall architecture is introduced with the focus being placed
upon the agreement structure. Discussion progresses on to the internal structure of
the providers which, allows for the negotiation to occur, followed by the scheduling
algorithms that drive both the negotiation and resource allocation processes. This is
followed by the pricing mechanisms and offer ranking and filtering mechanisms that
drive the decision making process within the broker and provider. Finally Chapter
4 concludes with a feature comparison study that compares the work presented in
the thesis with existing work from the literature.

Chapter 5: focuses upon admission control within Grids, ensuring that only the work
that can be performed within the constraints is accepted. Various high level ap-
proaches to job admission are tested from current existing methods such as examin-
ing current workload, to naive strategies such s flooding the Grid with jobs, to more
selective strategies including ones that take advantage of the proposed economic
model. The admission of jobs is also shown to be cyclical in nature due to the pres-
ence of the deadline constraints, causing a sequence of loading and unloading of
the Grid to occur.

Chapter 7 185 Conclusion

Chapter 6: focuses upon the effects of the budget and temporal constraints within a dy-
namic pricing model. Firstly it demonstrates a transition between the temporal con-
straints being dominant to the economic constraints becoming the overriding factor
as the temporal constraints are relaxed. The market then being driven by economic
constraints demonstrates a preference towards jobs of a higher priority based upon
the mark-up assigned to the job. An often used technique of rescheduling is intro-
duced, which is shown to have effects upon the market, leading to price instability.
The root causes for this are discussed and then countered by changing the pricing
mechanism within the market. Finally the constraints of time and cost are compared
and the overlap in their nature is discussed.

7.2 Research Contributions

The core contributions that have been demonstrated in this thesis are the following:

• An architecture has been presented that allows for the negotiation of quality of
service within the Grid and in particular on the completion time and cost. This
is established as a tender market by which service providers may bid for jobs to
perform.

• An economic model has been established that is the central part of the negotiation
process. It binds the price to the end user with the quality of service provided by
the service provider. It achieves this by establishing clear boundaries around the
expected quality of service, in terms of both completion time and cost. It utilises
SLAs to both incentivise the provision of quality of service and to mediate levels of
provision by informing the users of the current state of the Grid.

• A simulation study was conducted to test the proposed pricing mechanism. A sim-
ulator was developed to enable repeatable experiments that test the viability of the
brokering mechanism, ensuring that it maintained budget balance and remains in-
centive compatible [155].

• Finally recommendations on how to establish an economic market for Grids is pro-
vided. Covering multiple areas such as:

Job selection strategies: such as the ISQoS hybrid offer filter, that utilises the eco-
nomic model presented.

Chapter 7 186 Conclusion

Negotiation as advice: how to use the negotiation process to advise users of the
current state of the Grid and how it can be more efficient than current load
based approaches.

economic model utilisation: such as the relationship between slack and job accep-
tance in the Grid and how to ensure the breakeven point is highly describable
and predictable, regardless of resource cost.

The similarities and differences of the budget and temporal constraints: showing
how they can act in a very similar fashion upon the Grid and discussion upon
how the budget can limit the maximum amount of work permitted on the Grid
at anyone time.

Pricing mechanisms: how they can be utilised to introduce stability in the pricing
and can be made to ignore events that might cause significant fluctuations in
price.

7.3 Future Work

The future work can be extended in several directions the two obvious main avenues are
towards Cloud computing and further depth in the economics used to control the compute
market.

7.3.1 Cloud Computing Deployment

There are several avenues for future work, one of the key areas is upon the broker which
could be advanced along the follow lines:

Cloud computing has become an important paradigm and has overshadowed Grids.
The ISQoS system could be adapted to work in a Cloud infrastructure. The main part
where changes would be necessary would be the information provider. If it was able to
create new VM instances and then declare their presence to the provider’s scheduler that it
belongs then, it would work in a cloud context by being able to dynamically scale, while
avoiding the need for the instant provisioning of VMs. There is always a delay in the
provisioning of new VMs so the emphasis would be on not trying to instantly provision
and let scheduling remove much of the need to do so. Due to the large scale of computing
resources involved in Grids or Clouds it would more naturally be able to balance the type
of VM instances needed. The scheduler would then not need to know about VM starting
and finishing and the commissioning and decommissioning of VM instances would be
masked by what information was presented by the information provider to the scheduler.

Chapter 7 187 Conclusion

The work could therefore be likened to Platform as a Service (PaaS), in that it provides
an execution platform by which it is possible to pass an executable and its description for
execution without further knowledge. Alternatively if the VMs are setup for specific
software and only job descriptions and data are provided, a Software as a Service (SaaS)
model could be realised.

Tasks that remain running at the end of advance reservations, are currently required to
be terminated and the user must accept the time on the resources they bought is up. This
system can be likened to a parking meter system i.e. if a user is over the limit then an in-
stant penalty is received. The data losses incurred are however undesirable, so the state of
the process execution could be saved ready for renegotiation. The provider/broker could
then ask the user how much they are willing to pay to complete the work, while asking
for a fresh estimate on completion time. The alternative to this is to either reschedule and
charge accordingly or let the jobs overrun by a given amount and to take this into account
when scheduling.

7.3.2 Economics

The research associated with the work may also be extended by following up in the areas
of:

Working further on price stability: Mechanisms could be generated to better follow
the current demand for resources. This would ensure the price was set closer to the
optimum point. They would have to comprehend how much prices should change,
the nature of the work being performed, in relation to the resources available.

Adding more rescheduling and adaptive capacity: Currently rescheduling may be per-
formed either at intervals (which may be changed as desired) or at events such as
a new job arriving. It does not however reschedule at the time when an error oc-
curs, such as machine failure. This additional adaptive capacity could be tested and
shown to be an improvement over the existing system. The trade-off between status
signals would have to be compared with the cost of not having such an adaptive
mechanism.

Extending work into scheduling algorithms specifically for the ISQoS system: The ca-
pacity to reschedule exists but this is underutilized by the algorithms that have been
implemented within the ISQoS System. Further scheduling algorithms could be de-
veloped to that periodically reschedule, as opposed to the round robin rescheduling
algorithm currently implemented that reschedules only at submission time.

Chapter 7 188 Conclusion

Ensuring the mark-up becomes more associated with risk to the broker: New Pricing
policies could be developed that would focus on areas such as risk management.
The broker in such a scenario would be able to modify the percentage mark-up it
takes, hence ensuring the broker selects the provider most likely to get the job done
on time. The mark-up could therefore be used to penalise the providers that are
not performing well. The experimentation would have to derive a mechanism that
would separate unreliable providers from reliable ones.

Bibliography

[1] Adami, D., Giordano, S., Pagano, M.: Dynamic network resources allocation in
grids through a grid network resource broker. In: Davoli, F., Meyer, N., Pugliese,
R., Zappatore, S. (eds.) Grid Enabled Remote Instrumentation, pp. 115–130.
Springer US (2009)

[2] Adami, D., Giordano, S., Repeti, M., Coppola, M., Laforenzu, D., Tonellotlo, N.:
Design and implementation of a grid network-aware resource broker. pp. 41–6.
ACTA Press, Anaheim, CA, USA (2006)

[3] Adamson, W., Kornievskaia, O.: A practical distributed authorization system for
gara. In: Infrastructure Security, pp. 314–324. Cancun, Mexico (2002)

[4] Agbaria, A., Friedman, R.: Model-based performance evaluation of distributed
checkpointing protocols. Performance Evaluation 65(5), 345–365 (2008)

[5] Al-Ali, R., Rana, O., Walker, D.: G-qosm a framework for quality of service man-
agement. In: Cox, S. (ed.) UK e-Science Programme All Hands Meeting 2003.
Cardiff University Wales, Nottingham, UK (2003)

[6] Al-Ali, R., Sohail, S., Rana, O., Hafid, A., Von Laszewski, G., Amin, K., Jha, S.,
Walker, D.: Network qos provision for distributed grid applications. International
Journal of Simulation: Systems, Science & Technology 5(5), 13–28 (2004)

[7] Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D.: Task execution time modeling
for heterogeneous computing systems. In: 9th Heterogeneous Computing Work-
shop (HCW 2000). pp. 185–199 (2000)

[8] Altmann, J., Courcoubetis, C., Darlington, J., Cohen, J.: Gridecon the economic-
enhanced next-generation internet. In: Grid Economics and Business Models, pp.
188–193 (2007)

189

Chapter 7 190 BIBLIOGRAPHY

[9] Altmann, J., Neumann, D., Fahringer, T., Courcoubetis, C., Stamoulis, G., Dramiti-
nos, M., Rayna, T., Risch, M., Bannink, C.: Gridecon: A market place for comput-
ing resources. In: Grid Economics and Business Models, vol. 5206, pp. 185–196.
Springer Berlin / Heidelberg (2008)

[10] Andreetto, P., Andreozzi, S., Ghiselli, A., Marzolla, M., Venturi, V., Zangrando,
L.: Standards-based job management in grid systems. Journal of Grid Computing
8(1), 19–45 (2010)

[11] Anglano, C., Brevik, J., Canonico, M., Nurmi, D., Wolski, R.: Fault-aware
scheduling for bag-of-tasks applications on desktop grids. In: Grid Computing,
7th IEEE/ACM International Conference on. pp. 56–63 (2006)

[12] Anglano, C., Canonico, M.: Scheduling algorithms for multiple bag-of-task appli-
cations on desktop grids: A knowledge-free approach. In: Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on. pp. 1–8 (2008)

[13] Anglano, C., Canonico, M.: Fault-tolerant scheduling for bag-of-tasks grid appli-
cations. In: Advances in Grid Computing - EGC 2005, pp. 630–639. No. Lecture
Notes in Computer Science (2005)

[14] Appleton, O., Cameron, D., Cernak, J., Db, P., Ellert, M., Frgt, T., Grnager, M.,
Johansson, D., Jnemo, J., Kleist, J., Koan, M., Konstantinov, A., Knya, B., Mrton,
I., Mohn, B., Mller, S., Mller, H., Nagy, Z., Nilsen, J., Ould Saada, F., Pajchel,
K., Qiang, W., Read, A., Rosendahl, P., Rczei, G., Savko, M., Skou Andersen, M.,
Smirnova, O., Stefn, P., Szalai, F., Taga, A., Toor, S., Wnnen, A., Zhou, X.: The
next-generation arc middleware. Annals of Telecommunications pp. 1–6 (2010)

[15] Ardaiz, O., Freitag, F., Navarro, L., Eymann, T., Reinicke, M.: Catnet: Catallactic
mechanisms for service control and resource allocation in large-scale application-
layer networks. In: Cluster Computing and the Grid, 2002. 2nd IEEE/ACM Inter-
national Symposium on. pp. 442–442 (2002)

[16] Ardaiz, O., Artigas, P., Eymann, T., Freitag, F., Navarro, L., Reinicke, M.: The
catallaxy approach for decentralized economic-based allocation in grid resource
and service markets. Applied Intelligence 25(2), 131–145 (2006)

[17] AuYoung, A., Grit, L., Wiener, J., Wilkes, J.: Service contracts and aggregate
utility functions. In: 15th IEEE International Symposium on High Performance
Distributed Computing (HPDC-15). IEEE, New York (2005)

Chapter 7 191 BIBLIOGRAPHY

[18] Battre, D., Hovestadt, M., Kao, O., Keller, A., Voss, K.: Planning-based scheduling
for sla-awareness and grid integration. In: Bartk, R. (ed.) PlanSIG 2007 The 26th
workshop of the UK Planning and Scheduling Special Interest Group. vol. 1, p. 8.
Prague, Czech Republic (2007)

[19] Battre, D., Hovestadt, M., Kao, O., Keller, A., Voss, K.: Implementation of virtual
execution environments for improving sla-compliant job migration in grids. In:
Parallel Processing - Workshops, 2008. ICPP-W ’08. International Conference on.
pp. 47–52 (2008)

[20] Battre, D., Hovestadt, M., Kao, O., Keller, A., Voss, K.: Virtual execution envi-
ronments for ensuring sla-compliant job migration in grids. In: IEEE International
Conference on Services Computing SCC ’08. vol. 2, pp. 571–572 (2008)

[21] Battre, D., Kao, O., Voss, K.: Implementing ws-agreement in a globus toolkit 4.0
environment. In: Talia, D., Yahyapour, R., Ziegler, W. (eds.) Grid Middleware and
Services, pp. 409–418. Springer US (2008)

[22] Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Marchal, L., Robert, Y.: Cen-
tralized versus distributed schedulers for bag-of-tasks applications. Parallel and
Distributed Systems, IEEE Transactions on 19(5), 698–709 (2008)

[23] Becker, M., Borrisov, N., Deora, V., Rana, O.F., Neumann, D.: Using k-pricing for
penalty calculation in grid market. In: Hawaii International Conference on System
Sciences, Proceedings of the 41st Annual. pp. 97–97 (2008)

[24] BEinGRID: Beingrid, business experiments in grid (2010), http://www.

beingrid.eu/

[25] Bell, W.H., Cameron, D.G., Millar, A.P., Capozza, L., Stockinger, K., Zini, F.:
Optorsim: A grid simulator for studying dynamic data replication strategies. In-
ternational Journal of High Performance Computing Applications 17(4), 403–416
(2003)

[26] Bharadwaj, V., Ghose, D., Robertazzi, T.G.: Divisible load theory: A new
paradigm for load scheduling in distributed systems. Cluster Computing 6(1), 7–17
(2003)

[27] Bhatti, S.N., Sorensen, S.A., Clark, P., Crowcroft, J.: Network qos for grid systems.
International Journal of High Performance Computing Applications 17(3), 219–
236 (2003)

http://www.beingrid.eu/
http://www.beingrid.eu/

Chapter 7 192 BIBLIOGRAPHY

[28] Biette, M., Voss, K., Padgett, J., Gourlay, I., Djemame, K., Fally, B., Ponsard, C.,
Mouton, S., Stmke, J., Ttard, F.: Preliminary exploitation plan version 1.0 (2006)

[29] Bittencourt, L., Madeira, E.: Towards the scheduling of multiple workflows on
computational grids. Journal of Grid Computing (2009)

[30] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An Architecture
for Differentiated Service. RFC Editor (1998)

[31] Bode, B., Halstead, D., Kendall, R., Lei, Z., Hall, W., Jackson, D.: The portable
batch scheduler and the maui scheduler on linux clusters. In: Proceedings Of The
4th Annual Linux Showcase And Conference. pp. 217–224. Usenix Association,
Atlanta (2000)

[32] Bolze, R., Cappello, F., Caron, E., Dayd, M., Desprez, F., Jeannot, E., Jgou, Y.,
Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quetier,
B., Richard, O., Talbi, E.G., Touche, I.: Grid’5000: A large scale and highly re-
configurable experimental grid testbed. International Journal of High Performance
Computing Applications 20(4), 481–494 (2006)

[33] Bouguerra, M., Gautier, T., Trystram, D., Vincent, J.: A flexible checkpoint-restart
model in distributed systems. In: PMAA 2009, the 8th International Conference on
Parallel Processing and Applied Mathematics. IEEE, Wroclaw, Poland (2009)

[34] Broberg, J., Venugopal, S., Buyya, R.: Market-oriented grids and utility comput-
ing: The state-of-the-art and future directions. Journal of Grid Computing 6(3),
255–276 (2008)

[35] Bubak, M., van Albada, G., Dongarra, J., Sloot, P., Vanmechelen, K., Depoorter,
W., Broeckhove, J.: A simulation framework for studying economic resource man-
agement in grids. In: Computational Science ICCS 2008, vol. 5101, pp. 226–235.
Springer Berlin / Heidelberg (2008)

[36] Burke, S., Andreozzi, S., Field, L.: Experiences with the glue information schema
in the lcg/egee production grid. Journal of Physics: Conference Series 119(6,
062019) (2008)

[37] Buyya, R., Abramson, D., Venugopal, S.: The grid economy. Proceedings of the
IEEE 93(3), 698–714 (2005)

Chapter 7 193 BIBLIOGRAPHY

[38] Buyya, R., Venugopal, S.: The gridbus toolkit for service oriented grid and utility
computing: an overview and status report. In: Grid Economics and Business Mod-
els, 2004. GECON 2004. 1st IEEE International Workshop on. pp. 19–66 (2004)

[39] Buyya, R.: Economic-based Distributed Resource Management and Scheduling for
Grid Computing. Ph.D. thesis, Monash University, Melbourne, Australia (2002)

[40] Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic models for resource
management and scheduling in grid computing. Concurrency and Computation:
Practice and Experience 14(13-15), 1507–1542 (2002)

[41] Buyya, R., Giddy, J., Abramson, D.: An evaluation of economy-based resource
trading and scheduling on computational power grids for parameter sweep appli-
cations. In: The Second Workshop on Active Middleware Services (AMS 2000),
In conjunction with Ninth IEEE International Symposium on High Performance
Distributed Computing (HPDC 2000). Kluwer Academic Press, Pittsburgh, USA
(2000)

[42] Buyya, R., Murshed, M.: Gridsim: a toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing. Concurrency
and Computation: Practice and Experience 14(13-15), 1175–1220 (2002)

[43] Buyya, R., Murshed, M., Abramson, D., Venugopal, S.: Scheduling parameter
sweep applications on global grids: a deadline and budget constrained cost-time
optimization algorithm. Software: Practice and Experience 35(5), 491–512 (2005)

[44] Caminero, A., Carrin, C., Caminero, B.: Designing an entity to provide network
qos in a grid system. In: 1st Iberian Grid Infrastructure Conference (IberGrid).
Santiago de Compostela, Spain (2007)

[45] Caminero, A., Rana, O., Caminero, B., Carrin, C.: Performance evaluation of an
autonomic network-aware metascheduler for grids. Concurrency and Computation:
Practice and Experience 21(13), 1692–1708 (2009)

[46] Cao, J., Zimmermann, F.: Queue scheduling and advance reservations with cosy.
In: Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th Inter-
national. p. 63 (2004)

[47] Cardenas, C., Gagnaire, M.: Evaluation of flow-aware networking (fan) architec-
tures under gridftp traffic. Future Generation Computer Systems 25(8), 895–903
(2009)

Chapter 7 194 BIBLIOGRAPHY

[48] Cardenas, C., Gagnaire, M., Lopez, V., Aracil, J.: Admission control in flow-aware
networking (fan) architectures under gridftp traffic. Optical Switching and Net-
working 6(1), 20–28 (2009)

[49] Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for scheduling
parameter sweep applications in grid environments. In: Heterogeneous Computing
Workshop, 2000. (HCW 2000) Proceedings. 9th. pp. 349–363 (2000)

[50] Castillo, C., Rouskas, G.N., Harfoush, K.: On the design of online scheduling
algorithms for advance reservations and qos in grids. In: Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International. pp. 1–10 (2007)

[51] Castillo, C., Rouskas, G.N., Harfoush, K.: Online algorithms for advance resource
reservations. Journal of Parallel and Distributed Computing In Press, Corrected
Proof (2011)

[52] Chee Shin, Y., Buyya, R.: Service level agreement based allocation of cluster re-
sources: Handling penalty to enhance utility. In: Cluster Computing, 2005. IEEE
International. pp. 1–10 (2005)

[53] Chronz, P., Wieder, P.: Integrating ws-agreement with a framework for service-
oriented infrastructures. In: Grid Computing (GRID), 2010 11th IEEE/ACM Inter-
national Conference on. pp. 225–232 (2010)

[54] Chun, B.N., Culler, D.E.: User-centric performance analysis of market-based clus-
ter batch schedulers. In: Cluster Computing and the Grid, 2002. 2nd IEEE/ACM
International Symposium on. pp. 30–30 (2002)

[55] Citrix Systems: Home of the xen hypervisor (2012), http://www.xen.org/

[56] Cohen, J., Harder, U., Martinez Ortuno, F., Richardson, C., Darlington, J.: Node-
level architecture design and simulation of the magog grid middleware. Confer-
ences in Research and Practice in Information Technology Series 99, 57–67 (2009)

[57] De Roure, D., Baker, M.A., Jennings, N.R., Shadbolt, N.R.: The evolution of the
grid. In: Berman, F., Fox, G., Hey, T. (eds.) Grid Computing: Making the Global
Infrastructure a Reality, pp. 65–100. Wiley, Chichester (2003)

[58] Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: An
overview of workflow system features and capabilities. Future Generation Com-
puter Systems 25(5), 528–540 (2009)

http://www.xen.org/

Chapter 7 195 BIBLIOGRAPHY

[59] DeFanti, T.A., Foster, I., Papka, M.E., Stevens, R., Kuhfuss, T.: Overview of the i-
way: Wide-area visual supercomputing. International Journal of High Performance
Computing Applications 10(2-3), 123–131 (1996)

[60] Distributed Systems Architecture Group: Documentation (2009), http://www.
gridway.org/doku.php?id=documentation

[61] Dumitrescu, C.L., Foster, I.: Gangsim: a simulator for grid scheduling studies. In:
Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE International Sympo-
sium on. vol. 2, pp. 1151–1158 Vol. 2 (2005)

[62] Eerola, P., Ekelof, T., Ellert, M., Hansen, J.R., Konstantinov, A., Konya, B.,
Nielsen, J.L., Ould-Saada, F., Smirnova, O., Waananen, A.: The nordugrid ar-
chitecture and tools (2003)

[63] EGEE: glite (2009), http://glite.web.cern.ch/glite/

[64] EGI: European grid initiative - towards a sustainable production grid infrastructure
(2010), http://www.egi.eu/

[65] Ejarque, J., de Palol, M., Goiri, i., Juli, F., Guitart, J., Badia, R.M., Torres, J.:
Exploiting semantics and virtualization for sla-driven resource allocation in service
providers. Concurrency and Computation: Practice and Experience 22(5), 541–572
(2010), http://dx.doi.org/10.1002/cpe.1468

[66] Elmroth, E., Tordsson, J.: An interoperable, standards-based grid resource broker
and job submission service. In: e-Science and Grid Computing, 2005. First Inter-
national Conference on. pp. 9 pp.–220 (2005)

[67] Elmroth, E., Tordsson, J.: A standards-based grid resource brokering service sup-
porting advance reservations, coallocation, and cross-grid interoperability. Concur-
rency and Computation: Practice and Experience 21(18), 2298–2335 (2009)

[68] EMI: European middleware initiative (2010), https://www.eu-emi.eu/

[69] Eymann, T., Reinicke, M., Streitberger, W., Rana, O., Joita, L., Neumann, D.,
Schnizler, B., Veit, D., Ardaiz, O., Chacin, P., Chao, I., Freitag, F., Navarro, L.,
Catalano, M., Gallegati, M., Giulioni, G., Schiaffino, R.C., Zini, F.: Catallaxy-
based grid markets. Multiagent Grid Syst. 1(4), 297–307 (2005)

http://www.gridway.org/doku.php?id=documentation
http://www.gridway.org/doku.php?id=documentation
http://glite.web.cern.ch/glite/
http://www.egi.eu/
http://dx.doi.org/10.1002/cpe.1468
https://www.eu-emi.eu/

Chapter 7 196 BIBLIOGRAPHY

[70] Eymann, T., Streitberger, W., Hudert, S.: Catnets - open market approaches for
self-organizing grid resource allocation. In: Proceedings of the 4th international
conference on Grid economics and business models. Springer-Verlag, Rennes,
France (2007)

[71] Farooq, U., Majumdar, S., Parsons, E.W.: A framework to achieve guaranteed qos
for applications and high system performance in multi-institutional grid computing.
In: Parallel Processing, 2006. ICPP 2006. International Conference on. pp. 373–
380 (2006)

[72] Farooq, U., Majumdar, S., Parsons, E.W.: Achieving efficiency, quality of ser-
vice and robustness in multi-organizational grids. Journal of Systems and Software
82(1), 23–38 (2009)

[73] Foster, I.: A globus primer or, everything you wanted to know about globus, but
were afraid to ask describing globus toolkit version 4 (2005)

[74] Foster, I.: Globus toolkit version 4: Software for service-oriented systems. Journal
of Computer Science and Technology 21(4), 513–520 (2006)

[75] Foster, I., Fidler, M., Roy, A., Sander, V., Winkler, L.: End-to-end quality of service
for high-end applications. Computer Communications 27(14), 1375–1388 (2004)

[76] Foster, I.: What is the grid? a three point checklist. Grid Today 1(6), 22–25 (2002)

[77] Foster, I., Kesselman, C.: Globus: a metacomputing infrastructure toolkit. Inter-
national Journal of High Performance Computing Applications 11(2), 115–128
(1997)

[78] Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The physiology of the grid. In:
Berman, F., Fox, G., Hey, T. (eds.) Grid Computing: Making the Global Infrastruc-
ture a Reality, pp. 217–249. Wiley, Chichester (2003)

[79] Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable
virtual organizations. In: Berman, F., Fox, G., Hey, T. (eds.) Grid Computing:
Making the Global Infrastructure a Reality, pp. 169–197. Wiley, Chichester (2003)

[80] Fox, G., Ko, S.H., Pierce, M., Balsoy, O., Kim, J., Lee, S., Kim, K., Oh, S., Rao,
X., Varank, M., Bulut, H., Gunduz, G., Qiu, X., Pallickara, S., Uyar, A., Youn, C.:
Grid services for earthquake science. Concurrency and Computation: Practice and
Experience 14(6-7), 371–393 (2002)

Chapter 7 197 BIBLIOGRAPHY

[81] Ganglia Project: Ganglia monitoring system (2012), http://ganglia.

sourceforge.net/

[82] Garg, S.K., Venugopal, S., Buyya, R.: A meta-scheduler with auction based re-
source allocation for global grids. In: Parallel and Distributed Systems, 2008. IC-
PADS ’08. 14th IEEE International Conference on. pp. 187–194 (2008)

[83] Gaweda, I., Wilk, C.: Grid brokers and metaschedulers market overview (2006)

[84] Grosu, D., Das, A.: Auctioning resources in grids: model and protocols. Concur-
rency and Computation: Practice and Experience 18(15), 1909–1927 (2006)

[85] Han, Y., Youn, C.H.: A new grid resource management mechanism with resource-
aware policy administrator for sla-constrained applications. Future Generation
Computer Systems 25(7), 768–778 (2009)

[86] Haque, A., Alhashmi, S.M., Parthiban, R.: A survey of economic models in grid
computing. Future Generation Computer Systems 27(8), 1056–1069 (2011)

[87] Harchol-Balter, M.: Performance Modeling and Design of Computer Systems:
Queueing Theory in Action. Cambridge University Press (2013)

[88] Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968)

[89] Hong-Linh, T., Samborski, R., Fahringer, T.: Towards a framework for monitoring
and analyzing qos metrics of grid services. In: e-Science and Grid Computing,
2006. e-Science ’06. Second IEEE International Conference on. pp. 65–65 (2006)

[90] Hovestadt, M.: Fault tolerance mechanisms for sla-aware resource management.
In: Parallel and Distributed Systems, 2005. Proceedings. 11th International Con-
ference on. vol. 2, pp. 458–462 (2005)

[91] Hudert, S., Ludwig, H., Wirtz, G.: Negotiating slas-an approach for a generic ne-
gotiation framework for ws-agreement. Journal of Grid Computing 7(2), 225–246
(2009)

[92] Huedo, E., Montero, R.S., Llorente, I.A.: A modular meta-scheduling architec-
ture for interfacing with pre-ws and ws grid resource management services. Future
Generation Computer Systems 23(2), 252–261 (2007), futur. Gener. Comp. Syst.

[93] Huedo, E., Montero, R.S., Llorente, I.M.: A framework for adaptive execution in
grids. Software: Practice and Experience 34(7), 631–651 (2004)

http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/

Chapter 7 198 BIBLIOGRAPHY

[94] INRIA: Welcome to the simgrid project! (2010), http://simgrid.gforge.
inria.fr/

[95] Iosup, A., Epema, D.: Grid computing workloads. Internet Computing, IEEE
15(2), 19–26 (2011)

[96] Iosup, A., Jan, M., Sonmez, O., Epema, D.: The characteristics and performance of
groups of jobs in grids. In: Euro-Par 2007, Parallel Processing, pp. 382–393 (2007)

[97] Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.J.:
The grid workloads archive. Future Generation Computer Systems 24(7), 672–686
(2008)

[98] Iosup, A., Sonmez, O., Anoep, S., Epema, D.: The performance of bags-of-tasks
in large-scale distributed systems. In: Proceedings of the 17th international sympo-
sium on High performance distributed computing. ACM, Boston, MA, USA (2008)

[99] Irwin, D.E., Grit, L.E., Chase, J.S.: Balancing risk and reward in a market-based
task service. In: High performance Distributed Computing, 2004. Proceedings.
13th IEEE International Symposium on. pp. 160–169 (2004)

[100] Jackson, D., Snell, Q., Clement, M.: Core algorithms of the maui scheduler. In:
Job Scheduling Strategies for Parallel Processing, pp. 87–102 (2001)

[101] Jarvis, S.A., Thomas, N., van Moorsel, A.: Open issues in grid performability.
International Journal of Simulation and Process Modelling (IJSPM) 5(5), 3–12
(2004)

[102] Jeeho, S., Robertazzi, T.G., Luryi, S.: Optimizing computing costs using divisible
load analysis. Parallel and Distributed Systems, IEEE Transactions on 9(3), 225–
234 (1998)

[103] Kavanagh, R., Djemame, K.: A grid broker pricing mechanism for temporal and
budget guarantees. In: Thomas, N. (ed.) 8th European Performance Engineering
Workshop (EPEW’2011), LNCS. vol. 6977. Springer, Borrowdale, The Lake Dis-
trict, UK (2011)

[104] Kearney, K.T., Torelli, F., Kotsokalis, C.: Sla*: An abstract syntax for service
level agreements. In: Grid Computing (GRID), 2010 11th IEEE/ACM International
Conference on. pp. 217–224 (2010)

http://simgrid.gforge.inria.fr/
http://simgrid.gforge.inria.fr/

Chapter 7 199 BIBLIOGRAPHY

[105] Keller, A., Ludwig, H.: The wsla framework: Specifying and monitoring service
level agreements for web services. Journal of Network and Systems Management
11(1), 57–81 (2003)

[106] Kenyon, C., Cheliotis, G.: Architecture requirements for commercializing grid re-
sources. In: High Performance Distributed Computing, 2002. HPDC-11 2002. Pro-
ceedings. 11th IEEE International Symposium on. pp. 215–224 (2002)

[107] Kertsz, A., Kacsuk, P.: A taxonomy of grid resource brokers. In: Distributed and
Parallel Systems, pp. 201–210 (2007)

[108] Kesselman, C., Foster, I.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers (1998)

[109] Kleinrock, L.: Queueing Systems, Volume 1, Theory, vol. 1. Wiley, John & Sons,
Incorporated (1975)

[110] KnowARC: D3.1-1 interoperability minimal service survey (2007), http://
www.knowarc.eu/documents/Knowarc_D3.1-1_07.pdf

[111] Kokkinos, P., Varvarigos, E.A.: A framework for providing hard delay guarantees
and user fairness in grid computing. Future Generation Computer Systems 25(6),
674–686 (2009)

[112] Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Leboisky, M.: Seti@home-
massively distributed computing for seti. Computing in Science & Engineering
3(1), 78–83 (2001)

[113] Kshemkalyani, A.: Fast and message-efficient global snapshot algorithms for
large-scale distributed systems. Parallel and Distributed Systems, IEEE Transac-
tions on PP(99), 1–1 (2010)

[114] Kubert, R., Hai-Lang, T., Axel, T.: A soap performance comparison of different
wsrf implementations. In: Proceedings of the International Conference on Man-
agement of Emergent Digital EcoSystems. ACM, France (2009)

[115] Kumar, S., Dutta, K., Mookerjee, V.: Maximizing business value by optimal as-
signment of jobs to resources in grid computing. European Journal of Operational
Research 194(3), 856–872 (2009)

http://www.knowarc.eu/documents/Knowarc_D3.1-1_07.pdf
http://www.knowarc.eu/documents/Knowarc_D3.1-1_07.pdf

Chapter 7 200 BIBLIOGRAPHY

[116] Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Grid scheduling simula-
tions with gssim. In: Parallel and Distributed Systems, 2007 International Confer-
ence on. vol. 2, pp. 1–8 (2007)

[117] Kurowski, K., Nabrzyski, J., Oleksiak, A., Wglarz, J.: A multicriteria approach
to two-level hierarchy scheduling in grids. Journal of Scheduling 11(5), 371–379
(2008)

[118] Lai, K.: Markets are dead, long live markets. SIGecom Exch. 5(4), 1–10 (2005)

[119] Lai, K., Rasmusson, L., Adar, E., Zhang, L., Huberman, B.A.: Tycoon: An im-
plementation of a distributed, market-based resource allocation system. Multiagent
Grid Syst. 1(3), 169–182 (2005)

[120] Lamanna, D.D., Skene, J., Emmerich, W.: Slang: a language for defining service
level agreements. In: Distributed Computing Systems, 2003. FTDCS 2003. Pro-
ceedings. The Ninth IEEE Workshop on Future Trends of. pp. 100–106 (2003)

[121] Lee, Y.C., Zomaya, A.Y.: A grid scheduling algorithm for bag-of-tasks applica-
tions using multiple queues with duplication. In: Computer and Information Sci-
ence, 2006 and 2006 1st IEEE/ACIS International Workshop on Component-Based
Software Engineering, Software Architecture and Reuse. ICIS-COMSAR 2006.
5th IEEE/ACIS International Conference on. pp. 5–10 (2006)

[122] Lee, Y.C., Zomaya, A.Y.: Practical scheduling of bag-of-tasks applications on grids
with dynamic resilience. Computers, IEEE Transactions on 56(6), 815–825 (2007)

[123] Lehner, W., Meyer, N., Streit, A., Stewart, C., Gruber, R., Keller, V., Thimard, M.,
Waldrich, O., Wieder, P., Ziegler, W., Manneback, P.: Integration of grid cost model
into iss/viola meta-scheduler environment. In: Euro-Par 2006: Parallel Processing,
vol. 4375, pp. 215–224. Springer Berlin / Heidelberg (2007)

[124] Liu, C., Baskiyar, S.: A general distributed scalable grid scheduler for independent
tasks. Journal of Parallel and Distributed Computing 69(3), 307–314 (2009)

[125] Luque, E., Margalef, T., Bentez, D., Depoorter, W., De Moor, N., Vanmechelen, K.,
Broeckhove, J.: Scalability of grid simulators: An evaluation. In: Euro-Par 2008
Parallel Processing, vol. 5168, pp. 544–553. Springer Berlin / Heidelberg (2008)

[126] McGough, A.S., Lee, W., Das, S.: A standards based approach to enabling legacy
applications on the grid. Future Generation Computer Systems 24(7), 731–743
(2008)

Chapter 7 201 BIBLIOGRAPHY

[127] Merlo, A., Clematis, A., Corana, A., Gianuzzi, V.: Quality of service on grid:
architectural and methodological issues. Concurrency and Computation: Practice
and Experience 23(8), 745–766 (2011)

[128] Middleton, S., Surridge, M., Benkner, S., Engelbrecht, G.: Quality of service ne-
gotiation for commercial medical grid services. Journal of Grid Computing 5(4),
429–447 (2007)

[129] Monash eScience and Grid Engineering Laboratory: The nimrod toolkit (2009),
http://messagelab.monash.edu.au/Nimrod

[130] Neumann, D., Ster, J., Weinhardt, C., Nimis, J.: A framework for commercial grids
- economic and technical challenges. Journal of Grid Computing 6(3), 325–347
(2008)

[131] Neumann, D., Stoesser, J., Anandasivam, A., Borissov, N.: Sorma building an
open grid market for grid resource allocation. In: Grid Economics and Business
Models, pp. 194–200 (2007)

[132] NGS: National grid service (2009), http://www.ngs.ac.uk

[133] Nimis, J., Anandasivam, A., Borissov, N., Smith, G., Neumann, D., Wirstrm, N.,
Rosenberg, E., Villa, M.: Sorma business cases for an open grid market: Concept
and implementation. In: Altmann, J., Neumann, D., Fahringer, T. (eds.) Grid Eco-
nomics and Business Models, vol. 5206, pp. 173–184. Springer Berlin / Heidelberg
(2008)

[134] Nou, R., Kounev, S., Julia, F., Torres, J.: Autonomic qos control in enterprise
grid environments using online simulation. Journal of Systems and Software 82(3),
486–502 (2009), j. Syst. Softw.

[135] Nudd, G.R., Jarvis, S.A.: Performance-based middleware for grid computing. Con-
currency and Computation: Practice and Experience 17(2-4), 215–234 (2005)

[136] OASIS: Oasis web services resource framework (wsrf) tc (2010), http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

[137] Oey, M.A., Timmer, R.J., Mobach, D.G.A., Overeinder, B.J., Brazier, F.M.T.: Ws-
agreement based resource negotiation in agentscape. In: Proceedings of the 6th in-
ternational joint conference on Autonomous agents and multiagent systems. ACM,
Honolulu, Hawaii (2007)

http://messagelab.monash.edu.au/Nimrod
http://www.ngs.ac.uk
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

Chapter 7 202 BIBLIOGRAPHY

[138] Oliveros, E., Muoz, H., Cantelar, D., Taylor, S.: Brein, towards an intelligent grid
for business. In: Altmann, J., Neumann, D., Fahringer, T. (eds.) Grid Economics
and Business Models, vol. 5206, pp. 163–172. Springer Berlin Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-85485-2_13

[139] Open Grid Forum: Job submission description language (jsdl) specification, ver-
sion 1.0 (2005)

[140] Open Grid Forum: The open grid services architecture, version 1.5 (2006)

[141] Open Grid Forum: Web services agreement specification (ws-agreement) (2007)

[142] Open Grid Forum: Distributed resource management application api specification
1.0 (2008)

[143] Open Grid Forum: Web services agreement negotiation specification (ws-
agreement negotiation) (2010)

[144] Open Grid Forum: Ws-agreement negotiation version 1.0 (2011)

[145] OpenNebula Project: Opennebula homepage (2012), http://opennebula.
org/

[146] Paderborn Center For Parallel Computing: Openccs user manual version
0.9.1 (2012), https://www.openccs.eu/core/attachment/wiki/

WikiStart/user.pdf

[147] Palmer, J., Mitrani, I., Mazzucco, M., McKee, P., Fisher, M.: Optimizing revenue -
service provisioning systems with qos contracts. pp. 187 – 191. Spain (2007), ad-
mission policies;M/M/N/K queue;Per units;QoS requirements;Revenue maximiza-
tion;Service provisioning systems;

[148] Popovici, F.I., Wilkes, J.: Profitable services in an uncertain world. In: Super-
computing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference. pp. 36–36
(2005)

[149] Priol, T., Snelling, D.: Next generation grids: European grid research 2005
- 2010 (2003), ftp://ftp.cordis.europa.eu/pub/ist/docs/ngg_
eg_final.pdf

http://dx.doi.org/10.1007/978-3-540-85485-2_13
http://opennebula.org/
http://opennebula.org/
https://www.openccs.eu/core/attachment/wiki/WikiStart/user.pdf
https://www.openccs.eu/core/attachment/wiki/WikiStart/user.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/ngg_eg_final.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/ngg_eg_final.pdf

Chapter 7 203 BIBLIOGRAPHY

[150] Quetier, B., Cappello, F.: A survey of grid research tools: simulators, emulators
and real life platforms. In: IMACS’2005 - the 17th IMACS World Congress on
Scientific Computation, Applied Mathematics and Simulation. Paris, France (2005)

[151] Rahman, M., Ranjan, R., Buyya, R., Benatallah, B.: A taxonomy and survey on
autonomic management of applications in grid computing environments. Concur-
rency and Computation: Practice and Experience 23(16), 1990–2019 (2011)

[152] Rak, M., Liccardo, L., Aversa, R.: A sla-based interface for security management
in cloud and grid integrations. In: Information Assurance and Security (IAS), 2011
7th International Conference on. pp. 378–383 (2011)

[153] Robertazzi, T.G.: Ten reasons to use divisible load theory. Computer 36(5), 63–68
(2003)

[154] Romberg, M.: The unicore grid infrastructure. Special Issue on Grid Computing of
Scientifc Programming Journal 10, 149–157 (2002)

[155] Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: A multiattribute combina-
torial exchange for trading grid resources. In: Proceedings of the 12th Research
Symposium on Emerging Electronic Markets (RSEEM) (2005)

[156] Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: Trading grid services - a
multi-attribute combinatorial approach. European Journal of Operational Research
187(3), 943–961 (2008)

[157] Schopf, J.M.: Ten actions when grid scheduling. In: Nabrzyski, J., Schopf, J.M.,
Weglarz, J. (eds.) Grid resource management: state of the art and future trends, pp.
15–23. Kluwer Academic Publishers (2004)

[158] Schopf, J.M., Raicu, I., Pearlman, L., Miller, N., Kesselman, C., Foster, I., DArcy,
M.: Monitoring and discovery in a web services framework: Functionality and
performance of globus toolkit mds4 (2006)

[159] Schwiegelshohn, U., Badia, R.M., Bubak, M., Danelutto, M., Dustdar, S.,
Gagliardi, F., Geiger, A., Hluchy, L., Kranzlmller, D., Laure, E., Priol, T., Reine-
feld, A., Resch, M., Reuter, A., Rienhoff, O., Rter, T., Sloot, P., Talia, D., Ullmann,
K., Yahyapour, R., von Voigt, G.: Perspectives on grid computing. Future Genera-
tion Computer Systems 26(8), 1104–1115 (2010)

Chapter 7 204 BIBLIOGRAPHY

[160] Seneviratne, S., Levy, D.C.: Cost profile prediction for grid computing. Concur-
rency and Computation: Practice and Experience 22(1), 107–142 (2009)

[161] Shakhlevich, N., Djemame, K.: Quality of service provision for grid applications
via intelligent scheduling (2009)

[162] Silva, D.P.D., Cirne, W., Brasileiro, F.V., Grande, C.: Trading cycles for infor-
mation: Using replication to schedule bag-of-tasks applications on computational
grids. In: Euro-Par 2003, Applications on Computational Grids. pp. 169–180
(2003)

[163] da Silva, F.A.B., Senger, H.: Improving scalability of bag-of-tasks applications
running on master-slave platforms. Parallel Computing 35(2), 57–71 (2009)

[164] SLA@SOI Consortium: Sla@soi homepage (2011), http://sla-at-soi.
eu/

[165] Smirnova, O., Cameron, D., Dobe, P., Ellert, M., Fragat, T., Gronager, M., Johans-
son, D., Jonemo, J., Kleist, J., Kocan, M., Konstantinov, A., Konya, B., Marton,
I., Moller, S., Mohn, B., Nagy, Z., Nilsen, J.K., Saada, F.O., Qiang, W., Read, A.,
Rosendahl, P., Roczei, G., Savko, M., Andersen, M.S., Stefan, P., Szalai, F., Taga,
A., Toor, S.Z., Waananen, A.: Recent arc developments: Through modularity to
interoperability. Journal of Physics: Conference Series 219(6, 062027) (2010)

[166] Smirnova, O., Eerola, P., Ekelf, T., Ellert, M., Hansen, J., Konstantinov, A., Knya,
B., Nielsen, J., Ould-Saada, F., Wnnen, A.: The nordugrid architecture and middle-
ware for scientific applications. In: Computational Science ICCS 2003, pp. 665–
665 (2003)

[167] Smith, W., Foster, I., Taylor, V.: Scheduling with advanced reservations. In: 14th
International Parallel and Distributed Processing Symposium (IPDPS). pp. 127–
132 (2000)

[168] Song, H.J., Liu, X., Jakobsen, D., Bhagwan, R., Zhang, X., Taura, K., Chien, A.:
The microgrid: A scientific tool for modeling computational grids. Sci. Program.
8(3), 127–141 (2000)

[169] Spooner, D.P., Jarvis, S.A., Cao, J., Saini, S., Nudd, G.R.: Local grid scheduling
techniques using performance prediction. Computers and Digital Techniques, IEE
Proceedings - 150(2), 87–96 (2003)

http://sla-at-soi.eu/
http://sla-at-soi.eu/

Chapter 7 205 BIBLIOGRAPHY

[170] Stober, J., Neumann, D.: Greedex - a scalable clearing mechanism for utility com-
puting. Electronic Commerce Research 8(4), 235–253 (2008)

[171] Sulistio, A., Yeo, C.S., Buyya, R.: A taxonomy of computer-based simulations and
its mapping to parallel and distributed systems simulation tools. Software: Practice
and Experience 34(7), 653–673 (2004)

[172] Sun, Y.L., Perrott, R., Harmer, T.J., Cunningham, C., Wright, P., Kennedy, J.,
Edmonds, A., Bayon, V., Maza, J., Berginc, G., Hadalin, P.: Sla-aware re-
source management grids and service-oriented architectures for service level agree-
ments. pp. 35–44. Springer US (2010), http://dx.doi.org/10.1007/
978-1-4419-7320-7_4

[173] Takefusa, A., Matsuoka, S., Nakada, H., Aida, K., Nagashima, U.: Overview of
a performance evaluation system for global computing scheduling algorithms. In:
High Performance Distributed Computing, 1999. Proceedings. The Eighth Interna-
tional Symposium on. pp. 97–104 (1999)

[174] Talia, D., Yahyapour, R., Ziegler, W., Wieder, P., Seidel, J., Waldrich, O.: Using
sla for resource management and scheduling - a survey. In: Grid Middleware and
Services, pp. 335–347. Springer US (2008)

[175] Tan, W., Missier, P., Foster, I., Madduri, R., De Roure, D., Goble, C.: A compari-
son of using taverna and bpel in building scientific workflows: the case of cagrid.
Concurrency and Computation: Practice and Experience (2009)

[176] Taylor, S., Surridge, M., Laria, G., Ritrovato, P., Schubert, L.: Business collab-
orations in grids: The brein architectural principals and vo model. In: Altmann,
J., Buyya, R., Rana, O. (eds.) Grid Economics and Business Models, vol. 5745,
pp. 171–181. Springer Berlin Heidelberg (2009), http://dx.doi.org/10.
1007/978-3-642-03864-8_14

[177] Templeton, D.: Beginner’s guide to sun grid engine 6.2 installation and configura-
tion white paper (2009)

[178] Thain, D., Tannenbaum, T., Livny, M.: Condor and the grid. In: Berman, F., Fox,
G., Hey, T. (eds.) Grid Computing: Making the Global Infrastructure a Reality, pp.
299–335 (2003)

http://dx.doi.org/10.1007/978-1-4419-7320-7_4
http://dx.doi.org/10.1007/978-1-4419-7320-7_4
http://dx.doi.org/10.1007/978-3-642-03864-8_14
http://dx.doi.org/10.1007/978-3-642-03864-8_14

Chapter 7 206 BIBLIOGRAPHY

[179] Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
condor experience. Concurrency and Computation: Practice and Experience 17(2-
4), 323–356 (2005)

[180] Thaler, R.H.: Anomalies: The winner’s curse. The Journal of Economic Perspec-
tives 2(1), 191–202 (1988)

[181] The Globus Alliance: Globus homepage (2009), http://www.globus.org/

[182] The Globus Alliance: The ws-resource framework (2012), http://www.

globus.org/wsrf/

[183] Thomas, N., Bradley, J.T., Knottenbelt, W.J.: Stochastic analysis of scheduling
strategies in a grid-based resource model. Software, IEE Proceedings - 151(5),
232–239 (2004)

[184] Toms, L., Caminero, A.C., Carrion, C., Caminero, B.: Network-aware meta-
scheduling in advance with autonomous self-tuning system. Future Generation
Computer Systems 27(5), 486–497 (2011)

[185] Toms, L., Caminero, B., Carrin, C., Caminero, A.: On the improvement of grid
resource utilization: Preventive and reactive rescheduling approaches. Journal of
Grid Computing pp. 1–25 (2012)

[186] Vanmechelen, K., Broeckhove, J.: A comparative analysis of single-unit vickrey
auctions and commodity markets for realizing grid economies with dynamic pric-
ing. In: Veit, D., Altmann, J. (eds.) Grid Economics and Business Models, vol.
4685, pp. 98–111. Springer Berlin / Heidelberg (2007)

[187] Vanmechelen, K., Depoorter, W., Broeckhove, J.: Combining futures and spot mar-
kets: A hybrid market approach to economic grid resource management. Journal
of Grid Computing 9(1), 81–94 (2011)

[188] Venugopal, S., Xingchen, C., Buyya, R.: A negotiation mechanism for advance
resource reservations using the alternate offers protocol. In: Quality of Service,
2008. IWQoS 2008. 16th International Workshop on. pp. 40–49 (2008)

[189] Venugopal, S., Buyya, R.: A deadline and budget constrained scheduling algorithm
for escience applications on data grids. In: Distributed and Parallel Computing, pp.
60–72 (2005)

http://www.globus.org/
http://www.globus.org/wsrf/
http://www.globus.org/wsrf/

Chapter 7 207 BIBLIOGRAPHY

[190] Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. The
Journal of Finance 16(1), 8–37 (1961)

[191] VIOLA: Vertically integrated optical testbed for large applications in dfn (2007),
http://www.viola-testbed.de/

[192] Waldrich, O., Wieder, P., Ziegler, W.: A meta-scheduling service for co-allocating
arbitrary types of resources. In: Parallel Processing and Applied Mathematics, pp.
782–791 (2006)

[193] Weng, C., Lu, X.: Heuristic scheduling for bag-of-tasks applications in combi-
nation with qos in the computational grid. Future Generation Computer Systems
21(2), 271–280 (2005)

[194] Wieczorek, M., Prodan, R., Fahringer, T.: Scheduling of scientific workflows in
the askalon grid environment. Sigmod Record 34(3), 56–62 (2005)

[195] Wieczorek, M., Hoheisel, A., Prodan, R.: Towards a general model of the multi-
criteria workflow scheduling on the grid. Future Generation Computer Systems
25(3), 237–256 (2009)

[196] Wilkes, J.: Utility functions, prices, and negotiation. In: Buyya, R., Bubendorfer,
K. (eds.) Market Oriented Grid and Utility Computing, pp. 67–88. No. Wiley Series
on Parallel and Distributed Computing, John Wiley & Sons, Inc (2008)

[197] Wisconsin-Madison, U.O.: Condor manual version 7.2.4 (2009), http://www.
cs.wisc.edu/condor/manual/

[198] Wolski, R., Brevik, J., Plank, J.S., Bryan, T.: Grid resource allocation and control
using computational economies. In: Berman, F., Fox, G., Hey, T. (eds.) Grid Com-
puting: Making the Global Infrastructure a Reality, pp. 747–771. Wiley, Chichester
(2003)

[199] Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing market-based resource
allocation strategies for the computational grid. International Journal of High Per-
formance Computing Applications 15(3), 258–281 (2001)

[200] Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid
scheduling problems. Future Generation Computer Systems In Press, Accepted
Manuscript (2009)

http://www.viola-testbed.de/
http://www.cs.wisc.edu/condor/manual/
http://www.cs.wisc.edu/condor/manual/

Chapter 7 208 BIBLIOGRAPHY

[201] Xiaohui, W., Zhaohui, D., Shutao, Y., Chang, H., Huizhen, L.: Csf4: A wsrf com-
pliant meta-scheduler. In: World Congress in Computer Science Computer Engi-
neering and Applied Computing. pp. 61–67. Las Vegas, USA. (2006)

[202] Xingchen, C., Nadiminti, K., Chao, J., Venugopal, S., Buyya, R.: Aneka: Next-
generation enterprise grid platform for e-science and e-business applications. In:
e-Science and Grid Computing, IEEE International Conference on. pp. 151–159
(2007)

[203] Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid
computing. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in
Distributed Computing Environments, vol. 146, pp. 173–214. Springer Berlin /
Heidelberg (2008)

[204] Zhang, X., Freschl, J.L., Schopf, J.M.: Scalability analysis of three monitoring
and information systems: Mds2, r-gma, and hawkeye. Journal of Parallel and Dis-
tributed Computing 67(8), 883–902 (2007)

[205] Zini, F., Giulioni, G., Reinicke, M., Streitberger, W.: Ist-fp6-003769 catnets
d2.1 analysis of simulation environment (2005), http://www.catnets.

uni-bayreuth.de/fileadmin/publications/d2_1.pdf

http://www.catnets.uni-bayreuth.de/fileadmin/publications/d2_1.pdf
http://www.catnets.uni-bayreuth.de/fileadmin/publications/d2_1.pdf

	Introduction
	Introduction
	Motivation
	Research Context
	Aim and Objectives
	Methodology
	Contributions
	Thesis Overview

	Background
	Introduction
	Grid Computing
	What is the Grid?
	History of the Grid
	First Generation: Coupling Super Computers Together
	Second Generation: Rise of Middleware
	Third Generation: Start of Standardization and Interoperability - Meta-Data, Self* and Automation
	Fourth Generation: Common Middleware Standards
	Fourth Generation: Quality of Service Provision
	Fourth Generation: Economics and User Orientation

	Quality of Service
	What is Quality of Service
	What effects Quality of Service
	Task Heterogeneity
	Resource Heterogeneity
	Network Heterogeneity
	Scheduling Requirements

	QoS Provision Mechanisms
	Advance Reservation
	Check Pointing and Replication
	Modelling Grids
	Scheduling
	Admission Control

	Service Level Agreements
	SLAs in Grids
	WS-Agreement
	Flow of Actions in an Agreement
	Agreement States
	Service Term States
	Guarantee Term States
	Negotiation States

	Requirements for Negotiation
	Negotiation Initiator
	Negotiation Responder
	Negotiation Terms
	Negotiation Requirements due to Economics

	Grid Economics
	Overview of Grid Economy
	Economic Concepts
	Economic Approaches
	Auctions
	Commodity Markets
	Bargaining Model
	Tender Contract
	Catallexy

	Scheduling in Grids
	Aspects of Scheduling in Grids
	Schedule Fragmentation
	Information Availability and Dynamics of the Grid
	Network Oriented Scheduling
	Data Storage
	Bag of Tasks, Workflows and Divisible Load
	Batch vs Online Scheduling

	Summary

	Pricing Policy
	Introduction
	Aims and Objectives

	Related Work
	First Price
	First Reward & Risk Reward
	First Profit, First Opportunity & First Opportunity Rate
	LibraSLA
	Aggregate Utility

	Pricing of the Broker's Job Execution Service
	Input Parameters
	Overview of the Model's Sequence of Events
	Calculating the Service Price
	Overall Effect of the Market

	The Simulator
	Simulators
	Primary Candidates
	Other Simulators
	Summary of Simulators

	ISQoS Pricing Simulator
	Discrete Event Simulation
	Parameter Study Mode
	Discrete Event Simulation Mode

	Experimental: Parameter Variation Study
	Resource and Service Market
	Service Market

	Experimental: Discrete Event Simulation
	Experimental Method
	Configuration
	Results
	Job Acceptance and Slack
	The Effects of Gradient Based Deadlines

	Comparison Study
	Summary

	ISQoS Broker
	Introduction
	Related Work
	Best Effort
	Condor & Condor/G
	Portable Batch System (PBS)
	Oracle Grid Engine
	Globus

	Quality of Service
	OpenCCS (Paderborn Center for Parallel Computing)
	GridWay Metascheduler

	Economic
	Nimrod/G
	GridBus + Aneka
	GEMSS
	Resource Aware Policy Administrator
	GridEcon

	Requirements Analysis
	Requirements
	Development Choice

	Architecture
	Overall Architecture
	Agreement Structure
	Data Representations
	Grid State Representation
	Offer Generation
	Scheduling Algorithms
	Offer Ranking and Selection
	Offer Sorting Mechanisms
	Offer Filtering Mechanisms

	Pricing Mechanisms
	The Available Pricing Mechanisms
	The Effects of Dynamic Pricing Mechanisms

	Feature Comparison
	Cost & Time Guarantees
	Advance Reservation Support
	Queuing vs Scheduling
	Negotiated Job Submission
	Monitoring, Adaptation and Rescheduling
	Advanced Discovery, Scheduling API & Flexible Pricing
	User vs System Centric Scheduling
	Open Standards
	Comparison Study

	Summary

	Job Admission and Profit
	Introduction
	Experimental Research Objectives
	Experimental Setup
	Experimental Method
	Experimental Configuration

	Results
	Summary

	Dynamic Pricing And Offer Prioritisation
	Introduction
	Experimental Research Objective
	Experimental Setup
	Experimental Method
	Experimental Configuration

	Results
	Transition to Economic Constraints Dominance
	Rescheduling
	Causes of Price Instability
	Price Stability

	Discussion upon Price Stability
	Maintaining Selection Pressure
	Effectors of Price Stability

	Recommendations for Countering Price Instability
	Time and Cost Constraints Compared
	Summary

	Conclusion
	Summary
	Contributions
	Future Work
	Cloud Computing Deployment
	Economics

	Bibliography

