10,408 research outputs found

    Impaired coronary blood flow at higher heart rates during atrial fibrillation: investigation via multiscale modelling

    Get PDF
    Background. Different mechanisms have been proposed to relate atrial fibrillation (AF) and coronary flow impairment, even in absence of relevant coronary artery disease (CAD). However, the underlying hemodynamics remains unclear. Aim of the present work is to computationally explore whether and to what extent ventricular rate during AF affects the coronary perfusion. Methods. AF is simulated at different ventricular rates (50, 70, 90, 110, 130 bpm) through a 0D-1D multiscale validated model, which combines the left heart-arterial tree together with the coronary circulation. Artificially-built RR stochastic extraction mimics the \emph{in vivo} beating features. All the hemodynamic parameters computed are based on the left anterior descending (LAD) artery and account for the waveform, amplitude and perfusion of the coronary blood flow. Results. Alterations of the coronary hemodynamics are found to be associated either to the heart rate increase, which strongly modifies waveform and amplitude of the LAD flow rate, and to the beat-to-beat variability. The latter is overall amplified in the coronary circulation as HR grows, even though the input RR variability is kept constant at all HRs. Conclusions. Higher ventricular rate during AF exerts an overall coronary blood flow impairment and imbalance of the myocardial oxygen supply-demand ratio. The combined increase of heart rate and higher AF-induced hemodynamic variability lead to a coronary perfusion impairment exceeding 90-110 bpm in AF. Moreover, it is found that coronary perfusion pressure (CPP) is no longer a good measure of the myocardial perfusion for HR higher than 90 bpm.Comment: 8 pages, 5 figures, 3 table

    Non-Newtonian Rheology in Blood Circulation

    Full text link
    Blood is a complex suspension that demonstrates several non-Newtonian rheological characteristics such as deformation-rate dependency, viscoelasticity and yield stress. In this paper we outline some issues related to the non-Newtonian effects in blood circulation system and present modeling approaches based mostly on the past work in this field.Comment: 26 pages, 5 figures, 2 table

    Simulating Drug-Eluting Stents: Progress Made and the Way Forward

    Get PDF
    Drug-eluting stents have signiļ¬cantly improved the treatment of coronary artery disease. Compared with their bare metal predecessors, they offer reduced rates of restenosis and thus represent the current gold standard in percutaneous coronary interventions. Drug-eluting stents have been around for over a decade, and while progress is continually being made, they are not suitable in all patients and lesion types. Furthermore there are still real concerns over incomplete healing and late stent thrombosis. In this paper, some modelling approaches are reviewed and the future of modelling and simulation in this ļ¬eld is discussed

    Stability and energy budget of pressure-driven collapsible channel flows

    Get PDF
    Although self-excited oscillations in collapsible channel flows have been extensively studied, our understanding of their origins and mechanisms is still far from complete. In the present paper, we focus on the stability and energy budget of collapsible channel flows using a fluidā€“beam model with the pressure-driven (inlet pressure specified) condition, and highlight its differences to the flow-driven (i.e. inlet flow specified) system. The numerical finite element scheme used is a spine-based arbitrary Lagrangianā€“Eulerian method, which is shown to satisfy the geometric conservation law exactly. We find that the stability structure for the pressure-driven system is not a cascade as in the flow-driven case, and the mode-2 instability is no longer the primary onset of the self-excited oscillations. Instead, mode-1 instability becomes the dominating unstable mode. The mode-2 neutral curve is found to be completely enclosed by the mode-1 neutral curve in the pressure drop and wall stiffness space; hence no purely mode-2 unstable solutions exist in the parameter space investigated. By analysing the energy budgets at the neutrally stable points, we can confirm that in the high-wall-tension region (on the upper branch of the mode-1 neutral curve), the stability mechanism is the same as proposed by Jensen and Heil. Namely, self-excited oscillations can grow by extracting kinetic energy from the mean flow, with exactly two-thirds of the net kinetic energy flux dissipated by the oscillations and the remainder balanced by increased dissipation in the mean flow. However, this mechanism cannot explain the energy budget for solutions along the lower branch of the mode-1 neutral curve where greater wall deformation occurs. Nor can it explain the energy budget for the mode-2 neutral oscillations, where the unsteady pressure drop is strongly influenced by the severely collapsed wall, with stronger Bernoulli effects and flow separations. It is clear that more work is required to understand the physical mechanisms operating in different regions of the parameter space, and for different boundary conditions

    Self-reported health and health care use in an ageing population in the Agincourt sub-district of rural South Africa.

    Get PDF
    BACKGROUND: South Africa is experiencing a demographic and epidemiological transition with an increase in population aged 50 years and older and rising prevalence of non-communicable diseases. This, coupled with high HIV and tuberculosis prevalence, puts an already weak health service under greater strain. OBJECTIVE: To measure self-reported chronic health conditions and chronic disease risk factors, including smoking and alcohol use, and to establish their association with health care use in a rural South African population aged 50 years or older. METHODS: The Study on Global Ageing and Adult Health (SAGE), in collaboration with the INDEPTH Network and the World Health Organization, was implemented in the Agincourt sub-district in rural northeast South Africa where there is a long-standing health and socio-demographic surveillance system. Household-based interviews were conducted in a random sample of people aged 50 years and older. The interview included questions on self-reported health and health care use, and some physical measurements, including blood pressure and anthropometry. RESULTS: Four hundred and twenty-five individuals aged 50 years or older participated in the study. Musculoskeletal pain was the most prevalent self-reported condition (41.7%; 95% Confidence Interval [CI] 37.0-46.6) followed by hypertension (31.2%; 95% CI 26.8-35.9) and diabetes (6.1%; 95% CI 4.1-8.9). All self-reported conditions were significantly associated with low self-reported functionality and quality of life, 57% of participants had hypertension, including 44% of those who reported normal blood pressure. A large waist circumference and current alcohol consumption were associated with high risk of hypertension in men, whereas in women, old age, high waist-hip ratio, and less than 6 years of formal education were associated with high risk of hypertension. Only 45% of all participants reported accessing health care in the last 12 months. Those who reported higher use of the health facilities also reported lower levels of functioning and quality of life. CONCLUSIONS: Self-reported chronic health conditions, especially hypertension, had a high prevalence in this population and were strongly associated with higher levels of health care use. The primary health care system in South Africa will need to provide care for people with non-communicable diseases

    Numerical simulation of blood flow and pressure drop in the pulmonary arterial and venous circulation

    Get PDF
    A novel multiscale mathematical and computational model of the pulmonary circulation is presented and used to analyse both arterial and venous pressure and flow. This work is a major advance over previous studies by Olufsen et al. (Ann Biomed Eng 28:1281ā€“1299, 2012) which only considered the arterial circulation. For the first three generations of vessels within the pulmonary circulation, geometry is specified from patient-specific measurements obtained using magnetic resonance imaging (MRI). Blood flow and pressure in the larger arteries and veins are predicted using a nonlinear, cross-sectional-area-averaged system of equations for a Newtonian fluid in an elastic tube. Inflow into the main pulmonary artery is obtained from MRI measurements, while pressure entering the left atrium from the main pulmonary vein is kept constant at the normal mean value of 2 mmHg. Each terminal vessel in the network of ā€˜largeā€™ arteries is connected to its corresponding terminal vein via a network of vessels representing the vascular bed of smaller arteries and veins. We develop and implement an algorithm to calculate the admittance of each vascular bed, using bifurcating structured trees and recursion. The structured-tree models take into account the geometry and material properties of the ā€˜smallerā€™ arteries and veins of radii ā‰„ 50 Ī¼ m. We study the effects on flow and pressure associated with three classes of pulmonary hypertension expressed via stiffening of larger and smaller vessels, and vascular rarefaction. The results of simulating these pathological conditions are in agreement with clinical observations, showing that the model has potential for assisting with diagnosis and treatment for circulatory diseases within the lung
    • ā€¦
    corecore