35,018 research outputs found

    Modelling the Interfacial Flow of Two Immiscible Liquids in Mixing Processes

    Get PDF
    This paper presents an interface tracking method for modelling the flow of immiscible metallic liquids in mixing processes. The methodology can provide an insight into mixing processes for studying the fundamental morphology development mechanisms for immiscible interfaces. The volume-of-fluid (VOF) method is adopted in the present study, following a review of various modelling approaches for immiscible fluid systems. The VOF method employed here utilises the piecewise linear for interface construction scheme as well as the continuum surface force algorithm for surface force modelling. A model coupling numerical and experimental data is established. The main flow features in the mixing process are investigated. It is observed that the mixing of immiscible metallic liquids is strongly influenced by the viscosity of the system, shear forces and turbulence. The numerical results show good qualitative agreement with experimental results, and are useful for optimisating the design of mixing casting processes

    Dynamic Modelling and Adaptive Traction Control for Mobile Robots

    Full text link
    Mobile robots have received a great deal of research in recent years. A significant amount of research has been published in many aspects related to mobile robots. Most of the research is devoted to design and develop some control techniques for robot motion and path planning. A large number of researchers have used kinematic models to develop motion control strategy for mobile robots. Their argument and assumption that these models are valid if the robot has low speed, low acceleration and light load. However, dynamic modelling of mobile robots is very important as they are designed to travel at higher speed and perform heavy duty work. This paper presents and discusses a new approach to develop a dynamic model and control strategy for wheeled mobile robot which I modelled as a rigid body that roles on two wheels and a castor. The motion control strategy consists of two levels. The first level is dealing with the dynamic of the system and denoted as Low level controller. The second level is developed to take care of path planning and trajectory generation

    Structural modelling and testing of failed high energy pipe runs: 2D and 3D pipe whip

    Get PDF
    Copyright @ 2011 ElsevierThe sudden rupture of a high energy piping system is a safety-related issue and has been the subject of extensive study and discussed in several industrial reports (e.g. [2], [3] and [4]). The dynamic plastic response of the deforming pipe segment under the blow-down force of the escaping liquid is termed pipe whip. Because of the potential damage that such an event could cause, various geometric and kinematic features of this phenomenon have been modelled from the point of view of dynamic structural plasticity. After a comprehensive summary of the behaviour of in-plane deformation of pipe runs [9] and [10] that deform in 2D in a plane, the more complicated case of 3D out-of-plane deformation is discussed. Both experimental studies and modelling using analytical and FE methods have been carried out and they show that, for a good estimate of the “hazard zone” when unconstrained pipe whip motion could occur, a large displacement analysis is essential. The classical, rigid plastic, small deflection analysis (e.g. see [2] and [8]), is valid for estimating the initial failure mechanisms, however it is insufficient for describing the details and consequences of large deflection behaviour

    Virtual manufacturing: prediction of work piece geometric quality by considering machine and set-up

    Get PDF
    Lien vers la version éditeur: http://www.tandfonline.com/doi/full/10.1080/0951192X.2011.569952#.U4yZIHeqP3UIn the context of concurrent engineering, the design of the parts, the production planning and the manufacturing facility must be considered simultaneously. The design and development cycle can thus be reduced as manufacturing constraints are taken into account as early as possible. Thus, the design phase takes into account the manufacturing constraints as the customer requirements; more these constraints must not restrict the creativity of design. Also to facilitate the choice of the most suitable system for a specific process, Virtual Manufacturing is supplemented with developments of numerical computations (Altintas et al. 2005, Bianchi et al. 1996) in order to compare at low cost several solutions developed with several hypothesis without manufacturing of prototypes. In this context, the authors want to predict the work piece geometric more accurately by considering machine defects and work piece set-up, through the use of process simulation. A particular case study based on a 3 axis milling machine will be used here to illustrate the authors’ point of view. This study focuses on the following geometric defects: machine geometric errors, work piece positioning errors due to fixture system and part accuracy

    Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions

    Get PDF
    The paper proposes a new calibration method for parallel manipulators that allows efficient identification of the joint offsets using observations of the manipulator leg parallelism with respect to the base surface. The method employs a simple and low-cost measuring system, which evaluates deviation of the leg location during motions that are assumed to preserve the leg parallelism for the nominal values of the manipulator parameters. Using the measured deviations, the developed algorithm estimates the joint offsets that are treated as the most essential parameters to be identified. The validity of the proposed calibration method and efficiency of the developed numerical algorithms are confirmed by experimental results. The sensitivity of the measurement methods and the calibration accuracy are also studied
    corecore