199,995 research outputs found

    Crash risk estimation and assessment tool

    Get PDF
    Currently in Australia, there are no decision support tools for traffic and transport engineers to assess the crash risk potential of proposed road projects at design level. A selection of equivalent tools already exists for traffic performance assessment, e.g. aaSIDRA or VISSIM. The Urban Crash Risk Assessment Tool (UCRAT) was developed for VicRoads by ARRB Group to promote methodical identification of future crash risks arising from proposed road infrastructure, where safety cannot be evaluated based on past crash history. The tool will assist practitioners with key design decisions to arrive at the safest and the most cost -optimal design options. This paper details the development and application of UCRAT software. This professional tool may be used to calculate an expected mean number of casualty crashes for an intersection, a road link or defined road network consisting of a number of such elements. The mean number of crashes provides a measure of risk associated with the proposed functional design and allows evaluation of alternative options. The tool is based on historical data for existing road infrastructure in metropolitan Melbourne and takes into account the influence of key design features, traffic volumes, road function and the speed environment. Crash prediction modelling and risk assessment approaches were combined to develop its unique algorithms. The tool has application in such projects as road access proposals associated with land use developments, public transport integration projects and new road corridor upgrade proposals

    ThreMA: Ontology-based Automated Threat Modelling for ICT Infrastructures

    Get PDF
    Threat Modelling allows defenders to identify threats to which the target system is exposed. Such a process requires a detailed infrastructure analysis to map threats to assets and to identify possible flaws. Unfortunately, the process is still mostly done manually and without the support of formally sound approaches. Moreover, Threat Modelling often involves teams with different levels of security knowledge, leading to different possible interpretation in the system under analysis representation. Threat modelling automation comes with two main challenges: (i) the need for a standard representation of models and data used in various stages of the process, establishing a formal vocabulary for all involved parties, and (ii) the requirement for a well-defined inference rule set enabling reasoning process automation for threat identification. The paper presents the ThreMA approach to automating threat modelling for ICT infrastructures, aiming at addressing the key automation issues through the use of ontologies. Specifically, a formal vocabulary for modelling an ICT infrastructure, a threat catalog and a set of inference rules needed to support the reasoning process for threat identification are provided. The proposed approach has been validated against actual significant case studies provided by different Stakeholders of the Italian Public Sector

    Public opinion evaluation on social media platforms: a case study of High Speed 2 (HS2) rail infrastructure project

    Get PDF
    Public opinion evaluation is becoming increasingly significant in infrastructure project assessment. The inefficiencies of conventional evaluation approaches can be improved with social media analysis. Posts about infrastructure projects on social media provide a large amount of data for assessing public opinion. This study proposed a hybrid model which combines pre-trained RoBERTa and gated recurrent units for sentiment analysis. We selected the United Kingdom railway project, High Speed 2 (HS2), as the case study. The sentiment analysis showed the proposed hybrid model has good performance in classifying social media sentiment. Furthermore, the study applies latent Dirichlet allocation topic modelling to identify key themes within the tweet corpus, providing deeper insights into the prominent topics surrounding the HS2 project. The findings from this case study serve as the basis for a comprehensive public opinion evaluation framework driven by social media data. This framework offers policymakers a valuable tool to effectively assess and analyse public sentiment

    Smart infrastructure technologies: Crowdsourcing future development and benefits for Australian communities

    Get PDF
    Š 2018 Elsevier Inc. Smart Information and Communications Technology (ICT) is envisaged to provide the capabilities to plan, design, construct, operate and manage Australia\u27s key infrastructure. With over 75% of Australia\u27s population living in cities and accessing public and private goods and services, ICT is positioned as a strategic resource for smart infrastructure developments. In this study, international and domestic stakeholder inputs on the future role of smart ICT in advancing Australia\u27s infrastructure development and operations were crowdsourced for analysis. The study identifies several forms of smart ICT (e.g. building information modelling software) enabled infrastructure that possesses potential to deliver over A$9 billion per annum in domestic economic improvements, with commensurate advancement of communities, regions and urban environments. However, to be effective these smart ICT require enablement through open and interoperable data, sound governance and policy, and government leadership and coordination using dedicated resources. While smart infrastructure development is presently slow and lumbering, the identified smart ICT present as valuable strategic technologies for change and development in domestic communities

    A geospatial investigation of destination choice modelling. The case of the MYCITI integrated rapid transit bus system, Cape Town, South Africa

    Get PDF
    The transport sector plays an integral role in a country's development and economy. Optimised transport networks and infrastructure can lead to increased economic development. Effective transport networks and public transportation systems are, therefore, essential to growing the South African economy. With an increasing demand for transportation services required by the South African population, the need exists to expand the capacity of local public transport networks. With this need declared, and grants released by the government, a high demand exists for the estimation, analysis, optimisation and forecast of public transport systems in South Africa. Public transportation studies are directly related to commuter demand as a result of commuter choices. Therefore, a key component for understanding the operational functionality of a public transport system lies in the accurate modelling of commuter choices. Although the spatial separation of activities forms the essence of travel demand, incorporating the effects of geospatial properties in travel behaviour modelling has only been formally studied in recent years. These recent studies noted a trend proposing that geospatial properties can influence travel behaviour. In the stated research, the need to investigate the effect of geospatial properties on travel behaviour was highlighted. With travel behaviour being the result of commuter choices, a multinomial logit choice modelling study was conducted to investigate the effect of geospatial properties on commuter destination choice for the case of the MyCiTi Integrated Rapid Transit system in Cape Town, South Africa

    CRC for Construction Innovation : annual report 2008-2009

    Get PDF

    Emergence of District-Heating Networks; Barriers and Enablers in the Development Process

    Get PDF
    Infrastructure provision business models that promise resource efficiencies and additional benefits, such as job creation, community cohesion and crime reduction exist at sub-national scales. These local business models, however, exist only as isolated cases of good practice and their expansion and wider adoption has been limited in the context of many centralised systems that are currently the norm. In this contribution, we present a conceptual agent based model for analysing the potential for different actors to implement local infrastructure provision business models. The model is based on agents’ ability to overcome barriers that occur throughout the development (i.e. feasibility, business case, procurement, and construction), and operation and maintenance of alternative business models. This presents a novel approach insofar as previous models have concentrated on the acceptance of alternative value provision models rather than the emergence of underlying business models. We implement the model for the case study of district heating networks in the UK, which have the potential to significantly contribute to carbon emission reductions, but remain under-developed compared with other European countries

    Developing a Pilot Case and Modelling the Development of a Large European CO<sub>2</sub> Transport Infrastructure -The GATEWAY H2020 Project

    Get PDF
    The H2020 GATEWAY project aims to develop a comprehensive model Pilot Case which, intentionally, will pave the ground for CCS deployment in Europe. It will result from the assessment of, technical, commercial, judicial and societal issues related to a future CO2 transport infrastructure. The Pilot Case derived on this basis, will emphasize a gateway for CO2 transport in the North Sea Basin. Four potential pilot cases have been evaluated through a combination of techno-economic modelling of the individual cases and evaluation against more qualitative criteria. The chosen Pilot Case, Rotterdam Nucleus, will be refined and developed during the remaining period of the GATEWAY project. To maximise impact, the GATEWAY project adapts its work to lay the foundation for a future application to a European ‘Project of Common Interest’ (PCI). Continuous dialogue with the most relevant stakeholders is an important part of GATEWAY, as a Coordination and Support Action (CSA) H2020 project
    • …
    corecore