67,980 research outputs found

    The XDEM Multi-physics and Multi-scale Simulation Technology: Review on DEM-CFD Coupling, Methodology and Engineering Applications

    Get PDF
    The XDEM multi-physics and multi-scale simulation platform roots in the Ex- tended Discrete Element Method (XDEM) and is being developed at the In- stitute of Computational Engineering at the University of Luxembourg. The platform is an advanced multi- physics simulation technology that combines flexibility and versatility to establish the next generation of multi-physics and multi-scale simulation tools. For this purpose the simulation framework relies on coupling various predictive tools based on both an Eulerian and Lagrangian approach. Eulerian approaches represent the wide field of continuum models while the Lagrange approach is perfectly suited to characterise discrete phases. Thus, continuum models include classical simulation tools such as Computa- tional Fluid Dynamics (CFD) or Finite Element Analysis (FEA) while an ex- tended configuration of the classical Discrete Element Method (DEM) addresses the discrete e.g. particulate phase. Apart from predicting the trajectories of individual particles, XDEM extends the application to estimating the thermo- dynamic state of each particle by advanced and optimised algorithms. The thermodynamic state may include temperature and species distributions due to chemical reaction and external heat sources. Hence, coupling these extended features with either CFD or FEA opens up a wide range of applications as diverse as pharmaceutical industry e.g. drug production, agriculture food and processing industry, mining, construction and agricultural machinery, metals manufacturing, energy production and systems biology

    A new displacement-based approach to calculate stress intensity factors with the boundary element method

    Get PDF
    The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs). The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has be-come very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM) in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes

    Computational modelling and experimental characterisation of heterogeneous materials

    Get PDF
    Heterogeneous materials can exhibit behaviour under load that cannot be described by classical continuum elasticity. Beams in bending can show a relative stiffening as the beam depth tends to zero, a size effect. Size effects are recognised in higher order continuum elastic theories such as micropolar elasticity. The drawback of higher order theories is the requirement of addition constitutive relations and associated properties that are often difficult to establish experimentally. Furthermore the finite element method, of great benefit in classical elasticity, has shown limitations when applied to micropolar elasticity. The determination of additional constitutive properties and the computational modelling of micropolar elasticity will be discussed in the context of a model heterogeneous material loaded in simple 3 point bending. The model material was created by drilling holes in aluminium bar in a regular pattern, with the hole axis normal to the plane of bending. The bending tests show that a size effect is present. These results are compared against modelling the detailed beam geometries in the finite element package ANSYS, which again shows the size effect. These two bending test are used to extract the additional micropolar elastic material properties. A comparison is then made against analytical solutions,numerical solutions using a micropolar beam finite element and a micropolar plane stress control volume method.It will be shown that the need for extensive experimental testing to determine the additional constitutive properties may not be necessary with the appropriate use of numerical methods

    Large strain compressive response of 2-D periodic representative volume element for random foam microstructures

    Get PDF
    A numerical investigation has been conducted to determine the influence of Representative Volume Element (RVE) size and degree of irregularity of polymer foam microstructure on its compressive mechanical properties, including stiffness, plateau stress and onset strain of densification. Periodic two-dimensional RVEs have been generated using a Voronoi-based numerical algorithm and compressed. Importantly, self-contact of the foam’s internal microstructure has been incorporated through the use of shell elements, allowing simulation of the foam well into the densification stage of compression; strains of up to 80 percent are applied. Results suggest that the stiffness of the foam RVE is relatively insensitive to RVE size but tends to soften as the degree of irregularity increases. Both the shape of the plateau stress and the onset strain of densification are sensitive to both the RVE size and degree of irregularity. Increasing the RVE size and decreasing the degree of irregularity both tend to result in a decrease of the gradient of the plateau region, while increasing the RVE size and degree of irregularity both tend to decrease the onset strain of densification. Finally, a method of predicting the onset strain of densification to an accuracy of about 10 per cent, while reducing the computational cost by two orders of magnitude is suggested

    Evolving discontinuities and cohesive fracture

    Get PDF
    Multi-scale methods provide a new paradigm in many branches of sciences, including applied mechanics. However, at lower scales continuum mechanics can become less applicable, and more phenomena enter which involve discon- tinuities. The two main approaches to the modelling of discontinuities are briefly reviewed, followed by an in-depth discussion of cohesive models for fracture. In this discussion emphasis is put on a novel approach to incorporate triaxi- ality into cohesive-zone models, which enables for instance the modelling of crazing in polymers, or of splitting cracks in shear-critical concrete beams. This is followed by a discussion on the representation of cohesive crack models in a continuum format, where phase-field models seem promising
    corecore