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ABSTRACT 

A numerical investigation has been conducted to determine the influence of 

Representative Volume Element (RVE) size and degree of irregularity of 

polymer foam microstructure on its compressive mechanical properties, 

including stiffness, plateau stress and onset strain of densification. Periodic 

two-dimensional RVEs have been generated using a Voronoi-based 

numerical algorithm and compressed. Importantly, self-contact of the foam’s 

internal microstructure has been incorporated through the use of shell 

elements, allowing simulation of the foam well into the densification stage of 

compression; strains of up to 80 percent are applied. Results suggest that the 

stiffness of the foam RVE is relatively insensitive to RVE size but tends to 

soften as the degree of irregularity increases. Both the shape of the plateau 

stress and the onset strain of densification are sensitive to both the RVE size 

and degree of irregularity. Increasing the RVE size and decreasing the degree 

of irregularity both tend to result in a decrease of the gradient of the plateau 
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region, while increasing the RVE size and degree of irregularity both tend to 

decrease the onset strain of densification. Finally, a method of predicting the 

onset strain of densification to an accuracy of about 10 per cent, while 

reducing the computational cost by two orders of magnitude is suggested.    

 

Keywords: foam, micro-macro, RVE, PBC, contact 

 

1 INTRODUCTION 

Foams are an important class of engineering material used in a wide range of 

mechanical applications including lightweight sandwich structures where high 

specific stiffness and strength are important in the sandwich core, as flexible 

cushions to distribute pressure loads (Miltz and Ramon, 1990), and as 

impact energy absorbers where they are often used to limit the transmission 

of inertial forces (Mills et al. 2003). The microstructure of foam is fundamental 

in determining its bulk mechanical response. Consequently, a large body of 

work has been dedicated to understanding the relationship between 

microstructure and macro-scale properties of these materials. Computational 

homogenisation provides a powerful tool to investigate this relationship. 

Importantly, since the technique can include significant geometric changes of 

the material structure across the length scales, it is applicable to the study of 

materials undergoing large deformations (Hardenacke and Hohe, 2009). 

Cellular materials, such as polymer and metal foams, are obvious candidates 

for analysis using this technique, due to their common use in impact and 

cushioning applications where large deformations are anticipated and are 

typically included at the product design stage.  
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Ideally, micro to macro (Laroussi et al. 2002; Zhou and Soboyejo, 2004; 

Dillard et al. 2006 ), or meso to macro (Boubakar et al. 2002) simulation 

strategies can lead to significant time and cost savings typically incurred 

during experimental characterisation, where virtual testing is intended to 

replace the majority of the experimental test matrix. The technique can also 

be applied in material optimisation by informing manufacture processes in 

order to induce beneficial changes in a material’s micro (Duarte and Banhart, 

2000; Blazy et al. 2004; Wouterson et al. 2005) or meso-structure (Boisse 

et al. 2011).  

 

The concept of a Representative Volume Element (RVE) (Hill, 1963) 

employed in combination with a Periodic Boundary Condition applied along its 

edges (Guedes and Kikuchi, 1990; Anthoine, 1995) is often used to obtain 

a homogenised macro-response for a material’s bulk behaviour. Here, the 

volume averaged deformation gradient across the RVE is determined from the 

displacement of its surface, likewise the volume averaged nominal stress is 

computed in terms of the nominal stress on its surface. Once these volume 

averaged behaviours are determined they can be used either in parameter 

fitting for continuum-based constitutive models (Guo et al. 2012), or more 

directly, using a micro-to-macro simulation strategy (Miehe and Koch, 2002; 

Hohe and Becker, 2003).  

 

The accuracy and practicality of computational homogenisation depends on 

the use of RVEs that are both realistic and computationally efficient, two 

criteria that are often at odds with one another (Kouznotsova et al. 2001; 
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Smit et al. 1998; Swan, 1994). The size of the RVE and its level of detail are 

two important considerations. For materials based on a regularly repeating 

micro or mesoscale structure, such as a honeycomb core or a woven textile, 

the choice of RVE size is usually trivial, and can be taken as the repeat unit 

cell within the material (Smit, 1998) (though this choice precludes the 

prediction of deformations with wavelengths longer than the size of the repeat 

unit cell). When it comes to materials possessing random micro-structures, in 

general, the larger the RVE the more microscopic structural information it will 

contain. Ideally, an RVE model should be sufficiently large to be statistically 

representative of the composite (Drugan and Willis, 1996) while small in 

comparison to the larger structure. However, restrictions on computational 

resources impose practical limitations on the size of the RVE and so the 

model should instead be chosen such that it can predict the overall response 

within a desired accuracy. To the best of the authors’ knowledge, there is no 

analytical method of predicting the minimum RVE size for cellular structures 

undergoing large deformations. An important aim of this work is therefore to 

investigate the effects of changing the RVE size, as a function of the property 

under investigation (and consequently the level of compression) and the 

degree of irregularity within the RVE model.  

 

When it comes to the level of detail within the RVE model, one extreme 

strategy is to employ RVEs based on, for example, actual 3-D topologies, 

measured using techniques such as micro-CT imaging (Shan and Gokhale, 

2001; Maire et al. 2003; Michailidis et al. 2011). In this case, issues 

associated with strict application of the PBC have to be resolved (Youssef et 
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al. 2005) and long simulation times associated with the large number of 

continuum elements in the RVE currently restrict practical application for 

complex structures. The other extreme involves significant simplifications in 

the material’s microstructure, involving various measures such as the use of 

numerical algorithms to generate analogous microstructures (Zhu et al. 2000; 

Korner et al. 2002; Roberts and Garboczi, 2002; Kraynik et al. 2003), 

minimisation of the size of the RVE, reduction in the dimensionality of the 

problem and use of structural elements, such as beam or shell rather than 

continuum elements (Chen et al. 1999; Fazekas et al. 2002; Schmidt, 2004). 

Most researchers strike a compromise between these extremes in order to 

produce predictions of acceptable accuracy and reasonable speed (Jang et 

al. 2008; Jang et al. 2010).  

 

A recognised method of generating representative microstructures is through 

Voronoi tessellation (Voronoi, 1908). This numerical technique provides a 

fast and effective method to create beam-based finite element microstructures 

of geometry similar to those of several classes of polymeric and metallic open 

and closed cell foams (Silva et al. 1995; Van Der Burg et al. 1997; 

Shulmeister et al. 1998; Zhu et al. 2000). The method has been used 

previously to generate RVE models with a PBC for parametric investigations 

into the effects of factors such as structural variability, relative density and 

beam cross-section, on the macro-scale response of the foam (Zhu et al. 

2000; Zhu and Windle, 2002; Kraynik et al. 2004; Gong et al. 2005; 

Kraynik, 2006).  
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Typically, the mechanical behaviour of foams under compressive strain can 

be classified into three distinct regions: the linear, plateau and densification 

regimes (Gibson and Ashby, 1997). All the aforementioned investigations 

incorporating a PBC have been limited to the linear and plateau regions due 

to the absence of self-contact within the structure. Others have included self-

contact in order to simulate the impact response of foam while including the 

effect of densification (Zheng et al. 2005; Li et al. 2007; Borovinsek and 

Ren, 2008; Song et al. 2010).  These simulations were conducted without 

application of a PBC, a necessary omission due to the inertial response 

induced during high rate impacts. Thus, the latter were effectively simulations 

of simple macro-scale structures incorporating detail at the micro-scale. To 

the best of the authors’ knowledge, there have been no investigations 

reported in the literature that consider the large-strain compressive behaviour 

of either a two or three-dimensional beam-based RVE that incorporate both 

self-contact and a periodic boundary condition. Here, a method of 

simultaneously including both of these features in two-dimensional RVEs, 

using a commercial FE code is demonstrated.  

 

While a two-dimensional representation is a major simplification compared to 

real foams, the work is nevertheless a first step towards the development of 

the same strategy in a full three-dimensional model. Further, by first 

considering the problem in two dimensions, and then later in three 

dimensions, an intention is to determine which information, if any, translates 

from the much less computationally intensive two dimensional case to the 

three dimensional case. For example, transferable conclusions regarding 
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trends in the optimum RVE size in 2-D could potentially lead to large savings 

in computation time when considering 3-D RVEs.  

 

The structure of the rest of the paper is as follows: In Section 2, the finite 

element model is outlined and the method of generating RVEs with a 

quantified degree of irregularity, a periodic structure and a periodic boundary 

condition is described.  The method of modelling contact, which involves the 

use of equivalent beam-like shell elements, is discussed. Section 3 describes 

the methods of analysis that are applied in interpreting results. The latter are 

presented in Section 4 and conclusions are given in Section 5. 

 

2 FINITE ELEMENT MODEL 

A common practice when constructing RVEs for foam materials is to use 

structural beam and shell elements to produce significant reductions in 

computational cost. Beam elements are particularly well-suited to modelling 

the cellular rib structures of open cell foams (Laroussi et al. 2002, Li et al. 

2006a) and simulations of non-periodic beam-based models involving self-

contact, have been demonstrated previously using commercial finite element 

software, e.g. LSDYNATM (Borovinsek and Ren, 2008).  In this investigation 

the commercial FE code, Abaqus (StandardTM and ExplicitTM) has been 

chosen for several reasons though mainly due to familiarity and the future 

intention to incorporate a material model already defined in an Abaqus user-

subroutine. Nevertheless, this poses a difficulty in that while beam elements 

can detect contact in Abaqus, preliminary simulations using the ExplicitTM 

code (v6.7) suggest mesh penetration is a significant problem and very high 
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mesh densities are required on order to attain reasonable results. However, 

without the inclusion of self-contact within the RVE, it is impossible to 

investigate important material properties such as the true form of the plateau 

stress at high strains, onset strain of densification (Li et al. 2006b) and foam 

stresses during densification. To overcome the restrictions of using beam 

elements, contact has been modelled using equivalent three-dimensional 

quadrilateral shell elements; an approach found to be much more accurate 

than the use of beam elements. This strategy has been employed previously, 

for example, in simulations of honeycomb structures (Honig and Stronge, 

2002; Ruan et al. 2003) and also in modelling the impact behaviour of two-

dimensional, non-periodic cellular structures where the effects of impact 

velocity, relative density and cell-wall thickness on the structure’s mechanical 

response have been analysed (Zheng et al. 2005; Li et al. 2007; Zhang et 

al. 2010). To do this, parameters of the shell elements must be adjusted in 

order to make the shell respond in the same manner as an equivalent beam 

element. The equivalence of beam and shell-based RVEs is discussed and 

demonstrated in Appendix A.  

 

2.1 Generating a 2-D beam-based RVE with a random periodic 

structure 

Various methods have been reported for the generation of foam-like RVEs 

based on Voronoi tessellation. The methods tend to differ in how the position 

of seed-points, required by the Voronoi tessellation algorithm, are generated 

(e.g. Van der Burg et al. 1997; Grenestedt and Tanaka 1998; Silva and 

Gibson, 1997; Zhu et al. 2001b). Here, a combination of methods proposed 
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by Zhu et al. 2001b and Grenestedt and Tanaka 1998 is utilized. The 

method involves first generating a uniform distribution of seed positions, which 

correspond to the seeding of a perfectly regular honeycomb pattern. Next, a 

set of normally-distributed pseudo-random values are generated within a 

range with limits  . Here  is calculated by  

 

 50,0     ,
100

0 


 


                                                                                               (1) 

 

where  

 

3

2
0

N

A
           (2) 

 

is the minimum distance between neighbouring seeds of a regular honeycomb 

cellular pattern in a closed area, A and N is the number of cells (Zhu et al 

2001a). The parameter, , controls the degree of irregularity within the RVE. 

These random values are added to the initial regular honeycomb seed 

positions (see Figure 1). This new technique has been found to be 

computationally faster than the method proposed by Zhu et al. 2001b, upon 

which it is based. 

 

In order to generate a periodic two-dimensional RVE using this method, first a 

unit square is populated with regular seed positions (the precursor seeding for 

a honeycomb pattern). Equation (1) is then used to perturb these initial seed 
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positions to produce a unit square containing an irregular distribution of seeds. 

This ‘perturbed’ unit square seeding is copied nine times to create a larger 

square containing 3 x 3 identical perturbed unit square seedings. Applying a 

Voronoi tessellation algorithm to the resulting 3 x 3 structure produces a fully 

periodic cellular pattern within the central square, with pairs of counterpart 

nodes on opposing boundaries (see Figure 2). It is noted that for random 

materials, the RVE response should be isotropic (Hill, 1963; Guedes and 

Kikuchi, 1990; Kruyt and Rothenburg, 2004). However, a honeycomb 

structure is slightly anisotropic, for example, simulations show the 

compressive stiffness along the 0o orientation (and in each direction when the 

structure is rotated repeatedly by 60o) is around 14% higher than that when 

the structure is compressed at 30o (see Figure 5a). Consequently the 

honeycomb structure has a regular six-fold polar variation in stiffness. It 

follows that methods of generating Voronoi-based cellular structures by simply 

using a randomly perturbed honeycomb structure, result in RVE behaviour 

that begins with this six-fold symmetry in stiffness and gradually becomes 

more isotropic as the variability factor increases from zero, i.e. memory of the 

initial anisotropy is gradually erased as the value of the variability factor is 

increased. Methods of correcting this anomaly are possible and will be the 

subject of future work.   

 

2.2 Boundary Condition on RVE  

According to Chen et al. 1999 a PBC produces an intermediate stiffness 

response, lower than a Prescribed Displacement Condition but higher than a 

Mixed Boundary Condition when applied to two-dimensional cellular 
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structured RVEs, consequently the PBC is considered the best compromise 

and has been adopted in this investigation. The concepts of a Representative 

Volume Element (RVE) and a Periodic Boundary Condition (PBC) are 

intrinsically linked. To apply a PBC on any two or three dimensional RVE, the 

structure must be fully periodic, meaning that a node on one boundary must 

have a counterpart at the same horizontal (on sides) or vertical (on 

top/bottom) position along the opposite boundary, see Figure 3, where the 

superscripts L, R , T and B indicate the left, right, top and bottom boundaries, 

respectively. A two dimensional PBC requires that: (1) The motion of 

counterpart nodes on each pair of RVE boundaries are constrained to each 

other and (2) Stress continuity across boundaries is preserved. For example, 

considering the first condition and referring to nodes along the side 

boundaries of the RVE shown in Figure 3b, 

 

                                                                      (3) 

3       ,  iUUUU B

i

T

i

L

i

R

i                                                                                                
(4) 

 

where U is the nodal displacement in the ith direction, the subscript, i, 

represents the degree of freedom with i=1,2 indicating displacements in the X 

and Y directions and i=3 indicating rotation perpendicular to the X-Y plane. In 

order to implement the PBC, the ‘EQUATION’ keyword option available in 

AbaqusTM has been employed.  Two dummy nodes are generated, indicated 

in Equation (3) by the superscript di. The second condition implies the traction 

2     to 1           i U U U i d 
i 

L 
i 

R 
i 
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vector acting on opposing boundaries of the RVE is equal and opposite at all 

counterpart points. Using two side nodes as an example,  

 

   LLLRRR  n.n.                                                         (5) 

 

where the unit vectors  RR n  and  LL n  are normal to the right and left 

boundaries at the location of the nodes. The motion of the dummy node 

controlling the relative displacement of the horizontal edges of the RVE is 

prescribed according to the imposed compression strain (and the size of the 

RVE) while the motion of the dummy node controlling the displacement of the 

vertical edges of the RVE is determined by the FE code in order to maintain 

stress equilibrium across the vertical boundaries. No loads are imposed on 

the RVE by the user. Stress continuity at the boundaries when imposing a 

PBC is discussed in detail by Smit et al., 1998.  

 

2.3 Beam-based RVEs 

When modelling aluminium open cell foam using a small 3-D RVE and solid 

elements, the effect of variations of rib cross-sectional shape and area, as a 

function of length along the rib, have been found previously to be of 

diminishing importance with decreasing foam relative density (Gong et al. 

2005; Jang et al. 2008). Since only low-density open cell foams are 

considered in the current investigation ( R =0.05), use of beam structures of 

constant cross-section is a reasonable approximation. For small strain 

simulations with no self-contact within the structure each rib of each cell has 

been modelled using five equal length 2-D Timoshenko quadratic beam 
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elements (B21 type element in AbaqusTM) with a constant square cross-

section of side-length, t. The latter is calculated using Equation (6) which 

relates t, to the relative density, R , and total length of the elements within the 

RVE  (Zhu et al. 2001a): 

 





n

k

k

R

l

a
t

1



            (6) 

 

where n is the number of elements, a is the area of RVE and l is the length of 

each individual element.  For all cases, the material model is linear elastic with 

a Young’s modulus, SE  of 1GPa, material density, m  of 2000 kgm-3 and 

Poisson’s ratio = 0.33 consequently it should be noted that all conclusions 

from this work are restricted to linear elastic behaviour of the constituent 

material. More realistic material behaviour will be included in future work in 

order to determine if behaviours such as plastic yielding or strain hardening 

significantly affect the generic findings of this work. The Timoshenko beam 

element formulation is capable of including the effects of transverse shear 

stiffness for thick section beams (recommended for cross section diameters 

up to 1/8th of the structures axial length) and converges on the slender 

element result (zero-transverse shear stiffness) for elements where the cross-

section diameter is less than about 1/15th of the beam’s axial length (Abaqus 

User Manual v6.9). The error in the structural element approximation 

progressively increases at a faster rate as the thickness/length ratio increases 

and inevitably leads to some error. The foam density in this investigation is 
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close to the upper limit of what can be feasibly considered using structural 

elements for 2-D RVEs without causing excessively large errors due to high 

rib thickness/length ratios. For the perfectly regular honeycomb structure, a 

relative density of 0.05 in Equation (6) leads to ratios of about 1/7. For random 

RVEs this ratio varies from rib to rib due to changing rib lengths and use of a 

constant rib thickness throughout the RVE. The average value of the ratio falls 

to about 1/25 for the most irregular case, though here a small proportion of the 

ribs have ratios significantly higher than 1/8. Future work will focus on either 

quantifying this error or implementing techniques to reduce possible error, 

such as imposing a maximum ratio when generating the RVE. All element 

cross-section properties are assigned prior to the analyses and remain 

constant during deformation. In the versions of Abaqus used in this 

investigation (up to and including version 6.12), contact detection between 

shell elements has been found to be significantly more reliable (less 

penetration) than contact detection between beam elements. Consequently, 

for larger strain simulations involving self-contact between the beam 

structures within the RVE, beam elements have been replaced by equivalent 

shell element-based beam structures. The technique behind this change is 

described in Appendix A.   

 

In order to facilitate generic comparison of results with those produced 

elsewhere (e.g. Zhu et al. 2002) a dimensionless ‘reduced stress’ is used 

throughout this investigation, see Equation (7) (Zhu et al. 2006) which allows 

comparison of stress results between RVEs of differing relative density and 

with different  element modulus. 
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                                                                 (7)  

 

3 ANALYSIS 

Depending on the application, various material properties can be of interest 

when designing products incorporating foams, including stiffness, yield stress, 

length and form of the plateau region and onset strain of densification (Li et al 

2006b). In addition, during the course of this investigation an additional 

material parameter has been identified; the contact strain. The latter has been 

found to be a very useful parameter in enhancing computational efficiency 

through guiding simulation strategy and through predicting the onset strain of 

densification using relatively small RVEs (see Section 4.2). Due to the 

gradually changing form of a typical foam’s stress - strain curve, exact 

determination of these parameters can be difficult and so, in Section 3.1, brief 

descriptions of these properties and the methods used to determine their 

values is presented. Properties are considered in the following order: (i) the 

foam stiffness at small strains (< 5%), (ii) the form of the plateau stress and 

(iii) the onset strain of densification and the contact strain. Prior to discussing 

these results, Section 3.2 addresses some of the computational issues that 

have to be addressed in conducting this investigation. 

 

3.1 Property definitions 

The behaviour of the cellular structures examined in this investigation is highly 

non-linear. The reduced stress – strain curves rarely show an initial small-
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strain perfectly linear response due to the gradual yet early onset of bending 

and buckling of beams within the microstructure (see, for example, Video 1). 

Consequently, in order to determine the RVE stiffness, the reduced secant 

modulus, a dimensionless quantity, is calculated at both 1% and 5% 

compressive strain. In contrast, defining equivalent representative quantities 

for the plateau region of the stress-strain curves is less straight forward and 

so only a qualitative comparison of the form of the reduced stress - strain 

curve is performed. The onset strain of densification is the point towards 

the end of the plateau region, at which the gradient of the stress – strain curve 

shows a sudden increase. It is a particularly important quantity when 

considering the behaviour of foams under large compressive strains such as 

in impact, packaging and cushioning applications. Following Li et al 2006b, 

the onset strain of densification can be identified consistently and objectively 

using the location of the maximum of the ‘efficiency function’, , see Equation 

(8).  

 

 
 

 










y

d
1

                                                                                        (8) 

 

where σ is stress, ε is strain and εy is the yield strain of the material (taken 

here at 10% strain). The contact strain introduced here, is very similar to the 

onset strain of densification though the use of computational modelling allows 

a more precise definition; i.e. the strain at which self-contact within the 

microstructure results in an increase of 5 per cent in the stress-strain 

response of the RVE, immediately prior to the permanent divergence of the 
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two curves as the strain increases, as compared to an identical RVE 

deforming without self-contact. It also differs to the onset strain of 

densification in the method by which it is determined. By conducting 

simulations both with and without contact, its location becomes apparent 

when directly comparing the subsequent reduced stress - strain curves; the 

two curves follow similar paths until a certain strain, after which the curves 

diverge (see Figure 4 and Video 1). Experience suggests that in most cases 

self-contact within the RVE microstructure usually starts after about 20% 

(minimum) compressive strain, though only begins to significantly affect the 

form of the reduced stress-strain curve at higher strains, i.e. at and after the 

contact strain. 

 

3.2 Microstructural irregularity, RVE size and Computational 

Resource Considerations 

To study the effect of the degree of irregularity four different values of  have 

been employed in generating RVEs (α = 0, 10, 20, 50). Examples are shown 

in Figure 5 where each image shows RVEs containing 150 cells; the smallest 

RVE size used in this investigation. The relative density of each RVE is kept 

constant however the total element length tends to increase with increasing 

degree of irregularity. Consequently, Equation (6) implies that the average 

thickness of the elements tends to decrease with increasing values of .  

 

Size effects have been explored using RVEs containing 150, 600, 1350 and 

2400 cells which can be conveniently referred to as the sizes 1x150, 4x150, 

9x150 and 16x150 (See Figure 6). Practical limitations on computational 
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resource mean that statistical investigations into the effect of RVE size on 

property predictions for all  values, and the effect of  value on property 

predictions for all RVE sizes would be prohibitively time consuming. To 

illustrate, Figure 7 shows the computation time versus RVE size for the 

explicit shell-based simulations (see Appendix A) including contact 

(simulations conducted using a 64 bit Windows with intel(R)Xeon(R) CPU @ 

2.66GHz and 12GB RAM). A 16x150 cell simulation requires about 80 times 

longer than a 1x150 cell simulation and can take more than 35 hours to reach 

80% compression – see Figure 7. To overcome this computational limitation it 

has been assumed that conclusions regarding the size effect on a given 

property produced using a degree of irregularity with  = 20, can be applied to 

RVEs with  = 0, 10 and 50, see Figure 5. Given that the degree of 

irregularity,  = 20, sits approximately midway between 0 and 50 this 

assumption is considered to be a reasonable compromise. This degree of 

irregularity is considered the most realistic representation of a two-

dimensional slice of open-cellular polymer foam considered in this 

investigation (following preliminary visual comparison with actual micrographs 

of polymer foam cross sections). The strategy of extrapolating these 

conclusions on size effect to RVE behaviour generated using other  values 

means that simulations exploring the effect of changing  value can be 

performed with the smallest sized RVE (to reduce computational 

requirements) and the likely effect on predicted properties due to using this 

smallest RVE size can then be estimated. 
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4 RESULTS 

This section investigates the influence of RVE size and degree of irregularity 

on material properties.  

 

4.1 Small Strain Response of RVE 

From experience, the contact strain always occurs at more than 30% 

compressive strain (sometimes not until about 60% depending primarily on 

the degree of irregularity – see Section 4.2). As such, property predictions 

such as stiffness, made at less than 30% compressive strains do not need to 

include contact. In these cases, as the implicit method is more accurate and 

potentially faster than the explicit method when self-contact within the RVE is 

neglected, stiffness predictions have been made with the implicit static 

general method using beam elements. In order to maintain a standard 

protocol throughout this investigation, the same number of simulations has 

been used to analyse the small strain stiffness of the RVE as with the large 

strain properties (see Section 4.2). As such, aside from the case of the 

perfectly regular RVE ( = 0) which is calculated from a single simulation, all 

other results presented in Figures 8 to 13 are an average of either 15 

simulations ( = 10 & 20) or 10 simulations ( = 50) and the full length of the 

error bars indicates one standard deviation in these results. As might be 

expected, in all cases the amount of variability between repeat results 

decreases as the size of the RVE is increased and increases with increasing 

degree of variability.  
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Figure 8 shows that RVE size has almost no effect on the average secant 

modulus calculated at 1% compression and at 5 % compression the average 

modulus increases only slightly, by about 4% as the RVE size increases from 

1x150 to 16x150 cells. Also, RVE size has little effect on the averaged form of 

the reduced stress – strain curve at small strains, as demonstrated by the 

almost constant difference between the secant modulus determined at 1% 

and 5% compressive strain. These conclusions on the effects of changing 

RVE size suggest that the small RVE should provide accurate estimates for 

the average modulus at 1% compression, while slightly under predicting the 

average modulus at 5% compression, when compared to the larger RVE 

response.   

 

 

Considering the effect of the degree of irregularity, Figure 9 shows that the 

modulus at 1% strain is almost unchanged as  increases from 0 to 50. In 

contrast, when considering the modulus at 5% compressive strain there is 

significant softening, by about 25%, when the degree of irregularity increases 

from  = 0 to 50. Perhaps conversely, Zhu et al. 2001a found the secant 

modulus calculated at 0.1% compressive strain increased with increasing 

degree of irregularity, though the extremely small strain used to calculate the 

modulus could possibly account for this difference in behaviour. 

 

 

4.2 Large strain response of RVE 

The plateau region usually begins at around 10% compressive strain and 

continues until the onset strain of densification. The reason behind the 
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yielding of the foam and the form of the plateau region is generally attributed 

to bending, buckling or torsion (for 3-D deformation) within the foam 

microstructure (Banhart and Baumeister, 1998; Elliott et al. 2002; Jang et 

al. 2010) (or some combination of all three mechanisms). Video 1 tends to 

corroborate this view, showing bending and buckling of the beam elements 

tends to begin at relatively low strains (around 10%) and a strongly non-linear 

response is predicted despite the use of a simple linear elastic material 

behaviour in the beam elements.  

 

As explained in Section 3, the onset strain of densification is determined here 

using Equation (8). By definition, both the onset strain of densification and 

contact strain can only be predicted if self-contact within the RVE is modelled. 

It will be shown that the onset strain of densification always occurs at higher 

strains than the contact strain. In order to predict the onset strain of 

densification and contact strain the dynamic explicit method using shell-based 

RVEs with contact detection enabled has been employed (see Appendix A).  

 

Examining first the form of the plateau stress, Figure 10 shows how the shape 

of the reduced stress - strain curve changes with RVE size. The plateau 

becomes flatter for larger RVEs with a slightly negative gradient developing 

between 20 to 35% strain. This is due to an increase in stress at around 20% 

strain along with a small decrease in stress between 30 to 40% strain with 

increasing RVE size. These conclusions suggest a small RVE can be 

expected to provide only an approximate estimate for the magnitude of the 

plateau stress and the form of the plateau may be less flat and lack the 
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slightly negative gradient seen in larger RVEs. Examining the effect of 

changing the degree of irregularity, Figure 11 shows that the form of the 

plateau region of the reduced stress – strain curve becomes less horizontal 

and more inclined as  increases, i.e. the foam behaves gradually less like an 

ideal energy absorbing material as the degree of irregularity increases. The 

small RVE size probably serves to exaggerate the size of this positive 

gradient but the general trend in behaviour remains clear; an increase in the 

degree of irregularity increases the size of the positive slope in the plateau 

region. Zhu et al. 2006 made a similar comparison of the reduced stress-

strain curves of two-dimensional beam-based RVEs with four different degree 

of irregularity (including honeycomb and Poisson Voronoi). Their results 

suggested that as irregularity increases, the level of the whole of the plateau 

stress decreases. In their investigation the RVE was constructed from about 

60 cells and self-contact within the microstructure was not considered. 

 

Examining now the onset strain of densification and contact strain, these are 

marked on the reduced stress – strain curves as ‘OSD’ and ‘CS’ in both 

Figures 10 and 11 and are also plotted as a function of RVE size in Figure 12 

and as a function of degree of irregularity in Figure 13. Figures 10 and 12 

show that for a given degree of irregularity ( = 20) the onset strain of 

densification decreases with increasing RVE size and converges towards the 

contact strain which remains almost constant with RVE size. This suggests 

that the onset strain of densification is more sensitive to the RVE size than the 

contact strain, an observation that prompts two interesting possibilities (i) the 

contact strain of a small RVE could be used to predict the onset strain of 
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densification in larger RVEs (ii) the difference between the contact strain and 

onset strain of densification could be used to quantify the influence of RVE 

size; a large difference would suggest the RVE is too small and can be 

improved by increasing its size. If point (i) were to prove correct, this would 

allow dramatic savings in computational resource when aiming to correctly 

predict the foam’s onset strain of densification. For example, referring to 

Section 3.2, the smallest RVE simulations (1X150 cells) require only about 

1/80th of the time of the largest RVE simulations (16x150 cells). In order to find 

the contact strain in the quickest time, simulations using small RVEs must be 

conducted, both with and without contact. Simulations without contact are 

relatively fast and increase the overall computation time by around only 20 per 

cent. In addition to requiring longer simulation time, around 50 per cent of the 

largest RVE simulations (this figure depends on the degree of irregularity of 

the RVE) produce errors before reaching large compressive strains (due to 

excessively distorted elements) and have to be discarded. This discard rate 

effectively increases the overall computational time for the large RVEs to 

about 130 times that of the small RVE simulations. Thus, the time saving 

involved in using the contact strain of small RVEs to estimate the onset strain 

of densification for the large RVEs is around two orders of magnitude. 

 

 

Now considering the effects of the degree of irregularity, Figures 11 and 13 

show how the onset strain of densification remains almost constant as  

increases while the contact strain significantly decreases. Results of Figure 11 

and the open points in Figure 13 are all conducted using the smallest RVE 
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size of 1x150 cells and are therefore likely to be adversely influenced by size 

effects that have been shown to strongly affect both the form of the plateau 

region and the onset strain of densification.  

 

A final set of 10 simulations was conducted using RVEs with the maximum 

degree of irregularity ( = 50) and using the largest RVE size. The resulting 

average reduced stress – strain curve is shown in Figure 14 and the 

corresponding onset strain of densification and contact strain found using this 

curve are plotted as filled points in Figure 13. This final set of simulations 

(using  = 50) is designed to see if the same trends in terms of size effect that 

were found using  = 20, also occur when using  = 50. The results plotted in 

Figure 13 and 14 show once again that (a) the low strain zone of the plateau 

region is increased in value, creating a lower stress-strain gradient along the 

length of the plateau region (b) the contact strain remains stationary when the 

RVE size is increased from 1x150 to 16x150 cells and (c) the onset strain of 

densification decreases, effectively moving towards the contact strain. In this 

case using  = 50, the decrease is not sufficiently large for the two strain 

measures to closely coincide even when using the largest RVE, though the 

result does suggest that the contact strain, which is again almost RVE size 

independent, could once again serve as a good indicator of the onset strain of 

densification, as suggested in point (i) above. According to point (ii), the result 

suggests that the largest RVE (16x150 cells) should be increased further still if 

the adverse influence of size effects is to be fully eliminated. Attempts to run 

25x150 cell simulations with  = 50 were conducted in order to explore this 

possibility. However, due to the exponentially increasing computational power 



  

 25 

requirement (now more than 400,000 seconds for a 5% strain increment for 

25x150 cell RVE, leading to simulation times of more than 8 weeks for a 

single simulation with strains of 60% compression) and also due the more 

frequent production of simulation errors when using  = 50 due to distorted 

elements, a rigorous stochastic investigation could not be performed without a 

significant increase in computational resource. This final investigation is 

therefore deferred to future work, when access to high performance super-

computing facilities is anticipated.  

 

5 CONCLUSIONS 

Two-dimensional beam-based RVEs with different size and degree of 

irregularity have been generated using a Voronoi tessellation method. The 

inclusion of self-contact within the microstructure in the simulations has 

permitted the mechanical response of the RVEs to be investigated to very 

high compression strains, often greater than 80 per cent. To the best of the 

authors’ knowledge, this is the first time that the analysis of important 

mechanical properties of structural foams, such as plateau shape and the 

onset strain of densification, have been investigated using a periodic RVE 

constructed using structural elements. Use of the latter means that simulation 

time is dramatically reduced compared to equivalent FE investigations using 

3-D continuum elements to model the microstructure. Nevertheless, these 

large strain properties, which so far have been investigated using only linear 

elastic material behaviour, are shown to be sensitive to RVE size and ideally 

require large RVEs of at least 16x150 cells in order to eliminate size effects. 

This currently leads to long computation times (greater than 35 hours for 1 
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simulation using the current computer specification – see Section 3.2), which 

can be prohibitively costly when running multiple simulations in order to 

determine average stress-strain curves and stochastic variability between 

results. With this issue in mind, an important finding in this investigation is the 

discovery that the contact strain in a small RVE appears to be an excellent 

indicator of the onset strain of densification in a large RVE for degrees of 

irregularity of up to  = 20, and possibly for even higher values of 

microstructural irregularity. This finding can reduce computational 

requirements by a factor of around 100 times for these 2-D simulations. If this 

discovery holds true for 3-D simulations, then the savings in computation time 

are expected to be considerably greater still, a question that may form the 

subject of a future study. 
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Appendix A 

A.1 Equivalent shell-based RVEs 

Three dimensional general purpose linear shell elements with reduced 

integration (Type S4R element in Abaqus) have been used. As with the 

Timoshenko beam elements, (B21), transverse stiffness is considered and the 

behaviour of these elements converges to shear flexible theory for thick shells 

and to classical theory for thin shells (Abaqus User Manual v6.9). By 

appropriate adjustment of their structural and material parameters, the axial 



  

 27 

and flexural mechanical response of beam and shell elements can be made 

equivalent. In this investigation, the thickness of beam and shell elements is 

equal while the width of the shell elements in the Z direction is 10 times the 

thickness, see Figure A1. Decreasing this factor results in faster simulation 

times but increases the risk of numerical convergence problems. Note that for 

reasons of computational efficiency this investigation aims to use structural 

elements throughout. Equivalent shell elements are therefore calibrated 

against beam elements rather than against a continuum element model of a 

beam in order to maintain the same underlying assumptions in the models 

and to therefore facilitate direct comparison of shell-element and beam-

element based RVEs (see, for example, Section A.2).  

 

Equations (A1) and (A2) are the main structural equations for the bending 

modulus of rectangular cross-section beam and shell elements for slender 

beams and thin shells.  
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where q is the applied load, h is the shell thickness, w is the deflection (of the 

beam/shell),   is the Poisson’s ration, I is the second moment of inertia of the 

beam, E is the Young’s modulus and D represents the flexural rigidity of 
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beam/shell. The Poisson’s ratio of the material, which is present in the shell 

formulation, see Equation (A2), is absent from the beam formulation (Saada, 

1974) and so the shell’s material Poisson’s ratio must be set to 0 to produce 

an equivalent response as the beam elements. In addition, a structural 

element’s ‘effective section’ Poisson’s ratio controls the element’s thickness 

behaviour as a result of axial or in-plane strains. As mentioned in Section 2.3, 

the beam’s cross-sectional area is constant, implying a default effective 

section Poisson’s ratio of 0. In contrast, for shell elements, unless specified 

otherwise the element’s effective section is predicted using Equation (A3) and 

can be chosen between 0 and 0.5. (Abaqus User Manual) 
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where, s , is the effective section Poisson’s ratio, t, is the shell thickness and 

A, is the shell sectional area, the subscript o indicates the original value of t 

and A. In order to produce a constant cross-sectional area, as with the beam 

elements, s is chosen as 0. All nodal displacements are constrained to lie 

within the X-Y plane and nodal rotations are constrained about the Z axis only. 

By normalising the shell RVE force response by the shell width elongation 

factor (i.e. by dividing by 10), exactly the same mechanical response as an 

equivalent beam-based RVE (B21) is obtained. The following section of this 

appendix examines the correspondence between implicit and explicit 

simulations and issues related to computational resource before 
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A.2 Comparison between beam and equivalent shell-based 

RVEs 

Preliminary simulations were conducted to assess the correspondence 

between implicit simulations employing beam elements and explicit 

simulations employing equivalent shell elements. An example result is shown 

in Figure A2, in this case applying 50% strain, using an RVE containing 150 

cells with  = 0. Identical RVEs were used when drawing the comparison. 

Similar comparative tests on a range of RVEs (different sizes and 

irregularities) produced equally close results. 
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FIGURE CAPTIONS 
 
Figure 1: Generation of a random cellular structure using a Voronoi 
tessellation method. The broken lines indicate a honeycomb pattern 
generated from regularly-spaced seeds (white circles).  By adding 
perturbations to the honeycomb seeds, an alternative seeding (black stars) is 
used to generate a randomised structure.  

 
Figure 2: An example of a fully periodic Voronoi structure (the central square). 
 

Figure 3: (a) Schematic representation of a 2-D material composed of a 
periodic microstructure consisting of a repeated RVE. (b) Two-dimensional 
RVE with applied PBC showing counterpart nodes on opposing faces. 
 

Figure 4: Example of determination of contact strain (for an RVE with high 

degree of irregularity,  = 50). 
 

Figure 5: Single size RVE (about 150 cells) with different degree of 
irregularities with same size and material specifications. 
 

Figure 6: RVE 1X150, 4X150, 9X150 and 16X150 with 150, 600, 1350 and 
2400 cells respectively. 
 

Figure 7: The average simulation cost of each RVE size per 5% compression. 
 

Figure 8: Effect of RVE size on reduced secant modulus at 1% and 5% 
compressive strain using α=20. 
 

Figure 9: Effect of degree of irregularity on secant modulus of the 1x150 cell 
RVEs. 
 

Figure 10: Averaged reduced stress-strain curves for RVEs of different size 
and α = 20. The form of the plateau stress region is sensitive to the size of 
RVE. Densification strain (OSD) and contact strain (CS) are indicated in the 
figure. Error bars indicate 1 standard deviation of 10 simulations. 
 

Figure 11: Averaged reduced Stress-Strain curves for 1x150 RVE with 
increasing α.  
 

Figure 12: Onset strain of densification and contact strains for RVEs with 
different size but the same degree of irregularity (α=20). 
 

Figure 13: Onset strain of densification and contact strain for RVEs with 
varying α. Open points correspond to an RVE of size 1X150 cells, closed 
points correspond to an RVE of size 16X150 cells. (The closed points are 

offset slightly to  = 22 and 52 for clarity, though they still correspond to  = 
20 and 50).  
 

Figure 14:  Average reduced stress – strain curve for the largest RVE when  
= 50. 
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Figure A1: Schematic representation of four nodded 3D shell-based RVE 
based on 2D beam-based RVE where the shell width is 10 times than beam 
and shell thickness. 
 
Figure A2: Comparison between implicit simulation using beam elements and 
explicit simulations using shell elements, here α = 20 and the RVE size is 
1x150 cells.  
 
Video 1: A typical simulation of the compression of a 1x150 cell RVE, here 

with  = 20, is shown in Video 1. The video shows the deformation of the 
microstructure of an identical RVE simulated both with self-contact (left) and 
without self-contact (right). The corresponding reduced stress verses strain 
curves are plotted above, the circles (o) are associated with the simulation 
with self-contact, the stars (*) are associated with simulations without self-
contact. 
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Highlights of the paper 

 

 The main aim of this investigation is to study the effect of combining both a periodic 

boundary condition and self-contact within the foam microstructure in modelling 2-D 

cellular structures 

 The microstructure has been modelled using structural finite elements (beam and shell), use 

of beam-equivalent shell elements has enabled more accurate modelling of the self-contact 

within the microstructure 

 By including self-contact within the material’s microstructure the response of the foam 

beyond the onset strain of densification has been predicted 

 We introduced a new characteristic strain, referred to here as the ‘contact strain’ and find 

that the onset strain of densification in larger RVEs can be predicted by the contact strain in 

small RVEs; an observation that can lead to a drastic improvement in computational 

efficiency when aiming to predict the onset strain of densification, by more than 100 times 


	Alsayednoor.pdf
	0B0Bhttp://eprints.gla.ac.uk/84099/




