4 research outputs found

    Modelling site index in forest stands using airborne hyperspectral imagery and bi-temporal laser scanner data

    Get PDF
    In forest management, site index information is essential for planning silvicultural operations and forecasting forest development. Site index is most commonly expressed as the average height of the dominant trees at a certain index age, and can be determined either by photo interpretation, field measurements, or projection of age combined with height estimates from remote sensing. However, recently it has been shown that site index can be accurately predicted from bi-temporal airborne laser scanner (ALS) data. Furthermore, single-time hyperspectral data have also been shown to be correlated to site index. The aim of the current study was to compare the accuracy of modelling site index using (1) data from bi-temporal ALS; (2) single-time hyperspectral data with different types of preprocessing; and (3) combined bi-temporal ALS and single-time hyperspectral data. The period between the ALS acquisitions was 11 years. The preprocessing of the hyperspectral data included an atmospheric correction and/or a normalization of the reflectance. Furthermore, a selection of pixels was carried out based on NDVI and compared to using all pixels. The results showed that bi-temporal ALS data explained about 70% (R2) of the variation in the site index, and the RMSE values from a cross-validation were 3.0 m and 2.2 m for spruce- and pine-dominated plots, respectively. Corresponding values for the different single-time hyperspectral datasets were 54%, 3.9 m, and 2.5 m. With bi-temporal ALS data and hyperspectral data used in combination, the results indicated that the contribution from the hyperspectral data was marginal compared to just using bi-temporal ALS. We also found that models constructed with normalized hyperspectral data produced lower RMSE values compared to those constructed with atmospherically corrected data, and that a selection of pixels based on NDVI did not improve the results compared to using all pixel

    Effekten av redusert arealdekning av tilgjengelig beregningsceller pÄ presisjonen til bonitetsestimat ved anvendelse av direkte metode for skogbonitering

    Get PDF
    Rasjonell skogforvaltning krever nĂžyaktig og presis informasjon om skogen og skogmarka. Bonitet har vist seg Ă„ vĂŠre en variabel som fastsettes med betydelig usikkerhet ved tradisjonelle skogbruksplantakster, i tillegg har de tradisjonelle boniteringsmetoder vĂŠrt arbeidsintensive, og forutsatt at det gjĂžres omfattende feltarbeid. Fordi bonitet er en variabel som er svĂŠrt sentral ved planlegging av skogbrukstiltak er den ogsĂ„ knyttet til store nĂ„verditap nĂ„r den er tilknyttet usikkerhet. Noordermeer et al. (2018) presenterte to nye teknikker for bonitering av skog i Norge. Disse teknikkene – kalt «direkte metode» og «indirekte metode» – baserer seg pĂ„ implementering av FLS-data og arealbasert metode for skogtaksasjon til Ă„ estimere bonitet. Ved bruk av den direkte metoden tilpasses modeller basert pĂ„ laservariabler fra to forskjellige tidspunkt, og deretter predikeres bonitetsverdier for gridceller lagt over skogarealet som skal boniteres. Gjennomsnittsverdien av de predikerte verdien brukes som endelig estimat pĂ„ skogens bonitet. Fordi skoger er komplekse, dynamiske systemer vil det over tid oppstĂ„ forstyrrelser som kan pĂ„virke trĂŠrnes overhĂžydeutvikling eller FLS-variablene som beregnes for skogarealet. Dette gjĂžr at ikke alle gridceller egner seg for prediksjon av bonitet, som medfĂžrer at disse mĂ„ tas ut fĂžr beregningene kan utfĂžres. Det er forelĂžpig ikke kjent hvilken effekt dette uttaket av gridceller vil ha pĂ„ bonitetsestimatet, og det er derfor dette var fokus for denne oppgaven. For Ă„ studere effekten av redusert arealdekke av beregningsceller tilgjengelig til prediksjon ble det utfĂžrt simulering av ulike nivĂ„er av tilgjengelige beregningsceller. Dette ble gjort ved Ă„ fĂžrst tilpasse modeller basert pĂ„ laserdata fra to forskjellige tidspunkt (2010 og 2022). Det ble tilpasset modeller for prediksjon av H40-bonitet basert pĂ„ disse variablene. Fordi det ble antatt stor innbyrdes variasjon mellom laservariablene ble det lagt ekstra vekt pĂ„ Ă„ unngĂ„ multikollinearitet, samtidig som modellene skulle klare Ă„ forklare variasjonen i dataene pĂ„ en god mĂ„te. Det ble testet to forskjellig modelleringsteknikker, mixed-effect modeller og treslagvsie modeller, for Ă„ se om det var noen forskjell mellom teknikkene. De tilpassede modellene ble brukt til Ă„ predikere bonitetsverdier innen grid lagt over enkelte bestand. Selve simuleringsprosessen besto av Ă„ trekke utvalg av ulik stĂžrrelse fra 5 % til 95 % i 5 % klasser (5 %, 10%, 
,95 %). Det ble trukket 10 000 sampler for hver utvalgsprosent, og basert pĂ„ utvalgsgjennomsnittene ble middelfeilen estimert for hvert bestand og hver utvalgsprosent. For Ă„ sjekke at antallet iterasjoner ble satt hĂžyt nok til gi pĂ„litelige estimater av middelfeilen ble det beregnet en variansstabiliseringskriterium basert pĂ„ funn gjort av McRoberts et al. (2022). Fordi middelfeilen mĂ„ antas Ă„ vĂŠre avhengig av bonitetsvariasjonen innen bestand, ble det ogsĂ„ treslagssammensetning og bonitetsvariasjonen beregnet for alle bestand. Modelleringsteknikkene presterte svĂŠrt likt, men de treslagvise modellene presterte marginalt bedre. Middelfeilen viste seg Ă„ avta med Ăžkende utvalgsprosent, der den avtok mest for smĂ„ verdier av beregningsceller. Variansstabiliseringskriteriet viste at det bare ble utfĂžrt nok iterasjoner i litt over halvparten av simuleringene, men i de tilfeller det ikke ble utfĂžrt nok iterasjoner lĂ„ kriteriet svĂŠrt nĂŠrme grensen som ble satt for Ă„ si at kriteriet var oppfylt. Fordi trenden til middelfeilutvikling var sĂ„ tydelig, og fordi antallet iterasjoner mĂ„tte antas Ă„ ligge svĂŠrt nĂŠre grensen, ble det allikevel antatt at resultatet ville blitt det samme dersom antallet iterasjoner hadde blitt Ăžkt. Simuleringen ble utfĂžrt med tilfeldige utvalg av gridceller, og tok derfor ikke hensyn til den romlige autokorrelasjonen som stort sett er til stede i romlige data. Det blir derfor gitt forslag til hvordan simuleringsarbeidet kan bli utfĂžrt for Ă„ ta hensyn til dette ved en annen anledning.Rational forest management requires accurate and precise information. Site index has been shown to be determined with considerable errors when it is estimated for use in forestry, in addition, the traditional methods are also very labor-intensive, and rely on extensive field work. Site index is a very important variable when planning for forestry measures, and it is linked to large net present value losses when it is associated with uncertainty. Noordermeer et al. (2018) presented two new techniques for assessing site index in Norwegian forests. These methods are called “direct method” and “indirect method”. The two methods are based upon implementation of ALS-data and the area-based approach used for forest assessment. The direct method uses models fitted to laser derived metrics from two different point in time to predict site index values for a grid tessellating the area to be assessed. The mean value of the cells is used as the final estimate of a stands site index. Because forest are complex, dynamic systems, disturbances that can affect the trees height development or the laser derived metrics, will occur over time. The implication of which, is that not all grid cells are suitable for prediction of site index. The cells not suitable for prediction must be removed before the site index can be estimated. The effect of removing gridcells are currently not known, thus it was the main focus of this thesis. To study the effect of reduced area coverage of cells suitable for prediction of site index, an intensive simulation was carried out for different levels of cells. This was done by first fitting linear regression models based on laser derived metrics from two point in time (2010 & 2022). It was assumed large multicollinearity between the derived metrics, thus extra care was taken to make sure the selected model concurred the principle of parsimony – that is, a model with enough complexity to explain the variance without being overfitted. Both mixed-effects models and species-specific models were fitted. The fitted models were used to predict the site index values of grids laid over selected stands. The simulation was conducted by randomly sampling 5 % up to 95 % of the gridcells in 5 % classes (5 % , 10 %, 
, 95 %). 10 000 samples were randomly picked for each stand and each sampling fraction. The standard error of the mean value was calculated as the standard deviation of the 10 000-sample means. To check if the number of iterations in the simulation procedure was sufficient a variance-stabilization criterion after findings made by McRoberts et al. (2022) was calculated for each stand and sampling fraction. Because the standard error is assumed to be dependent on the site index variation within each stand, the tree species distribution and site index variability within each stand was calculated. The standard error was shown to decrease with increasing sampling fraction, where the effect was largest for small fractions. Based on the variation-stabilization criterion it was concluded that the number of iterations was sufficient only in about half of the simulations. Though, in the cased where the criterion was not met, the criterium was quite close to the threshold. The effect of decreasing standard error with increasing sampling fractions was really pronounced, and it was assumed that the result would be the same, even if the number of iterations was to be increased. The simulation was carried out with random sampling of grid cells; thus, it doesn’t account for the spatial autocorrelation that usually is present in spatial data. Suggestions are given for how the simulation can be carried out to account for the autocorrelation if the study is to be repeated

    IntĂ©gration de donnĂ©es LiDAR aĂ©roportĂ© dans la modĂ©lisation de la croissance en hauteur de l’épinette noire (Picea subser. marianae) dans la forĂȘt borĂ©ale de l’est du Canada

    Get PDF
    La gestion opĂ©rationnelle des forĂȘts rend nĂ©cessaire la prĂ©diction de la croissance des arbres aprĂšs perturbation ou rĂ©colte sylvicole pour estimer la productivitĂ© Ă  l’échelle du paysage. L’indice de qualitĂ© de site (IQS) est un des outils utilisĂ©s Ă  cette fin, en prĂ©disant une hauteur Ă  50 ans. Les perturbations majeures induisent un rajeunissement du paysage, plus ou moins important selon leur frĂ©quence et leur sĂ©vĂ©ritĂ©. Peu d’informations sont disponibles sur les jeunes peuplements puisque l’inventaire Ă©coforestier s’est, par le passĂ©, concentrĂ© sur les peuplements marchands. De plus, l’acquisition de nouvelles donnĂ©es est limitĂ©e par l’accĂšs aux peuplements, liĂ© Ă  la dĂ©tĂ©rioration des chemins forestiers. Le LiDAR (Light Detection And Ranging) fournit des informations tridimensionnelles sur la structure des peuplements sous forme de nuage de point. Une couverture LiDAR aĂ©roportĂ©e sera disponible sur tout le QuĂ©bec mĂ©ridional d’ici 2022 et pourrait permettre l’acquisition d’informations structurelles sur les jeunes peuplements. Le LiDAR a Ă©tĂ© utilisĂ© dans ce projet pour obtenir la hauteur des peuplements forestiers de pessiĂšres Ă  mousses prĂ©sents sur un territoire de 1699 km2 ainsi que des variables environnementales. Les modĂšles dĂ©veloppĂ©s selon deux approches statistiques, par rĂ©gression multiple (RM) et par random forest (RF), se montrent capables de prĂ©dire des hauteurs reprĂ©sentatives (R2 = 0.521 et 0.749, pour les modĂšles IQS_LiDAR^RM et IQS_LiDAR^RFrespectivement). La mise en relation des variables environnementales avec la hauteur a permis d’identifier plusieurs variables explicatives de la hauteur telles que l’ñge des peuplements, la pente et le drainage. Les relations identifiĂ©es ont Ă©tĂ© utilisĂ©es pour construire un modĂšle prĂ©dictif pouvant ĂȘtre appliquĂ© Ă  l’échelle subcontinentale. Les IQSLiDAR crĂ©Ă©s dans ce projet montrent une erreur moyenne situĂ©e entre -5.4 et -3.1 % selon le modĂšle. La mĂ©thodologie dĂ©veloppĂ©e ici fournit aux gestionnaires des forĂȘts du QuĂ©bec un outil prĂ©dictif spatialisĂ© a fine Ă©chelle (20 m de rĂ©solution) applicable Ă  de vastes territoires, permettant une Ă©valuation efficace des stocks forestiers fine et donc, utile Ă  la planification stratĂ©gique des opĂ©rations forestiĂšres
    corecore