1,320 research outputs found

    Ten virtues of structured graphs

    Get PDF
    This paper extends the invited talk by the first author about the virtues of structured graphs. The motivation behind the talk and this paper relies on our experience on the development of ADR, a formal approach for the design of styleconformant, reconfigurable software systems. ADR is based on hierarchical graphs with interfaces and it has been conceived in the attempt of reconciling software architectures and process calculi by means of graphical methods. We have tried to write an ADR agnostic paper where we raise some drawbacks of flat, unstructured graphs for the design and analysis of software systems and we argue that hierarchical, structured graphs can alleviate such drawbacks

    A formal support to business and architectural design for service-oriented systems

    Get PDF
    Architectural Design Rewriting (ADR) is an approach for the design of software architectures developed within Sensoria by reconciling graph transformation and process calculi techniques. The key feature that makes ADR a suitable and expressive framework is the algebraic handling of structured graphs, which improves the support for specification, analysis and verification of service-oriented architectures and applications. We show how ADR is used as a formal ground for high-level modelling languages and approaches developed within Sensoria

    Enforcing Architectural Styles in Presence of Unexpected Distributed Reconfigurations

    Full text link
    Architectural Design Rewriting (ADR, for short) is a rule-based formal framework for modelling the evolution of architectures of distributed systems. Rules allow ADR graphs to be refined. After equipping ADR with a simple logic, we equip rules with pre- and post-conditions; the former constraints the applicability of the rules while the later specifies properties of the resulting graphs. We give an algorithm to compute the weakest pre-condition out of a rule and its post-condition. On top of this algorithm, we design a simple methodology that allows us to select which rules can be applied at the architectural level to reconfigure a system so to regain its architectural style when it becomes compromised by unexpected run-time reconfigurations.Comment: In Proceedings ICE 2012, arXiv:1212.345

    A model-driven approach to non-functional analysis of software architectures

    Get PDF

    Architecture Diagrams: A Graphical Language for Architecture Style Specification

    Get PDF
    Architecture styles characterise families of architectures sharing common characteristics. We have recently proposed configuration logics for architecture style specification. In this paper, we study a graphical notation to enhance readability and easiness of expression. We study simple architecture diagrams and a more expressive extension, interval architecture diagrams. For each type of diagrams, we present its semantics, a set of necessary and sufficient consistency conditions and a method that allows to characterise compositionally the specified architectures. We provide several examples illustrating the application of the results. We also present a polynomial-time algorithm for checking that a given architecture conforms to the architecture style specified by a diagram.Comment: In Proceedings ICE 2016, arXiv:1608.0313

    Modelling Constrained Dynamic Software Architecture with Attributed Graph Rewriting Systems

    Get PDF
    Dynamic software architectures are studied for handling adap- tation in distributed systems, coping with new requirements, new envi- ronments, and failures. Graph rewriting systems have shown their ap- propriateness to model such architectures, particularly while considering the consistency of theirs reconfigurations. They provide generic formal means to specify structural properties, but imply a poor description of specific issues like behavioural properties. This paper lifts this limita- tion by proposing a formal approach for integrating the consideration of constraints, non-trivial attributes, and their propagation within the framework of graph rewriting systems

    Coordination of Dynamic Software Components with JavaBIP

    Get PDF
    JavaBIP allows the coordination of software components by clearly separating the functional and coordination aspects of the system behavior. JavaBIP implements the principles of the BIP component framework rooted in rigorous operational semantics. Recent work both on BIP and JavaBIP allows the coordination of static components defined prior to system deployment, i.e., the architecture of the coordinated system is fixed in terms of its component instances. Nevertheless, modern systems, often make use of components that can register and deregister dynamically during system execution. In this paper, we present an extension of JavaBIP that can handle this type of dynamicity. We use first-order interaction logic to define synchronization constraints based on component types. Additionally, we use directed graphs with edge coloring to model dependencies among components that determine the validity of an online system. We present the software architecture of our implementation, provide and discuss performance evaluation results.Comment: Technical report that accompanies the paper accepted at the 14th International Conference on Formal Aspects of Component Softwar

    Hierarchical design rewriting with Maude

    Get PDF
    Architectural Design Rewriting (ADR) is a rule-based approach for the design of dynamic software architectures. The key features that make ADR a suitable and expressive framework are the algebraic presentation and the use of conditional rewrite rules. These features enable, e.g. hierarchical (top-down, bottom-up or composition-based) design and inductively-defined reconfigurations. The contribution of this paper is twofold: we define Hierarchical Design Rewriting (HDR) and present our prototypical tool support. HDR is a flavour of ADR that exploits the concept of hierarchical graph to deal with system specifications combining both symbolic and interpreted parts. Our prototypical implementation is based on Maude and its presentation serves several purposes. First, we show that HDR is not only a well-founded formal approach but also a tool-supported framework for the design and analysis of software architectures. Second, our illustration tailored to a particular algebra of designs and a particular scenario traces a general methodology for the reuse and exploitation of ADR concepts in other scenarios

    An Algebra of Hierarchical Graphs

    Get PDF
    We define an algebraic theory of hierarchical graphs, whose axioms characterise graph isomorphism: two terms are equated exactly when they represent the same graph. Our algebra can be understood as a high-level language for describing graphs with a node-sharing, embedding structure, and it is then well suited for defining graphical representations of software models where nesting and linking are key aspects
    • 

    corecore