
A Model-Driven Approach to
Non-Functional Analysis of Software Architectures∗

James Skene and Wolfgang Emmerich
Department of Computer Science, University College London

E-mail:{j.skene|w.emmerich }@cs.ucl.ac.uk

Abstract

We present an approach to managing formal models using
Model Driven Architecture (MDA) technologies that deliv-
ers analysis techniques through integration with the design
tools and repositories that practitioners use. Expert mod-
elling knowledge is captured in domain-specific languages
and meta-model constraints. These are represented using
UML and colocated with designs and analysis models, pro-
viding a flexible and visible approach to managing seman-
tic associations. The approach relies on standards to permit
deployment in multiple tools. We demonstrate our approach
with an example in which queuing-network models are as-
sociated with UML design models to predict average case
performance.

1 Introduction

Formal analysis is often the only way to determine
whether an architectural design will meet its non-functional
requirements, such as performance and reliability. Formal
analysis is rarely performed partly because of difficulties
inherent in its application, such as the need to employ un-
usual high-level languages, to combat state space explosion
and a lack of integrated tool support. This has motivated
research into the automated derivation of analysis models
from design models, most commonly based on the Unified
Modelling Language (UML), a widely adopted design nota-
tion capable of capturing details pertinent to a broad range
of analyses. Extensions to UML have also been defined to
improve its amenity to analysis, most notably [6].

This work suffers in several respects. Firstly, UML and
its extensions do not have a formally defined semantic,
meaning that there can be no strong proof of the validity
of a particular derivation, and this is unlikely to change as
it has thus far proved impossible to build a consensus for

∗This research is partly funded through the EU project TAPAS (IST-
2001-34069)

strong formality for UML. Secondly, the derivations pro-
posed in the literature are defined using a number of ad-hoc
techniques ranging from graph-grammars to natural lan-
guage descriptions. The lack of a standard representation
hinders their deployment, and when deployed the technique
becomes coupled to a particular tool. Thirdly, a completely
encapsulated derivation is unlikely to produce successful
analyses every time because of the difficulty in deriving a
feasible and valid model for all designs. This implies that
tools are likely to be brittle if they cannot be adapted.

In [10] we sketched an approach to analysing non-
functional properties of distributed software architectures
based on Model Driven Architecture (MDA) technologies.
MDA is a development approach based on UML models,
in which business knowledge (Platform Independent Mod-
els - PIMs) is maintained seperately from technical arte-
facts, such as design models (Platform Specific Models -
PSMs) and source code. The successful application of the
MDA approach depends on technologies and tools support-
ing flexible modelling of diverse semantic domains (PIMs
and PSMs), and relationships and transformations between
them (deployment of PIMs to PSMs). We use the UML
profile mechanism to define classes of analysis models, de-
sign models and the mapping between the two. Profiles are
denoted using UML and may be injected into any conform-
ing tool, reducing tool tie-in. The derivation is visible and
modifiable within a tool, adding flexability, and its coloca-
tion with design and analysis models reduces ambiguity due
to the relatively informal semantics of UML.

The main contribution of this paper is a substantiation
and evaluation of the ideas in [10], using an example in
which queuing networks are associated with architectural
designs.

The paper proceeds as follows: Section 2 describes our
approach; Section 3 gives an example of the approach ap-
plied to associate queuing networks with architectural de-
signs; Section 4 evaluates the approach; Section 5 describes
related work and Section 6 concludes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Approach

Our approach to delivering expert analysis techniques is
to specify the derivation of a formal analysis model from a
UML design using logical constraints. This is similar to the
derivation of a PSM from a PIM in the MDA development
approach.

The meaning and structure of UML is defined by a meta-
model (the ‘abstract syntax’) and a set of constraints over
the meta-model. The meta-model is object-oriented, con-
taining classes that informally define the meaning of model
elements. This informal semantic is reinforced by con-
straints expressed using the Object Constraint Language
(OCL). These prevent the production of models that would
represent an illogical situation in the real-world.

A profile is a collection of extensions to the meta-model.
It contains ‘stereotypes’, which are labels for model ele-
ments that indicate membership of a ‘virtual meta-class’.
Virtual meta-classes extend meta-classes to provide a re-
fined meaning. This meaning is reinforced using constraints
attached to the stereotype. Model elements may also be
adorned with ‘tagged values’ to specify new properties.

In our approach we define a profile which extends UML
to model specifications in some formal language. This lan-
guage can be used for analysis, so these specification mod-
els can be operated upon to generate results. The MDA
technologies include standard interfaces for operating on
model data [4, 5], so there is the potential to closely inte-
grate model solvers with design tools.

We use a profile for the design domain to direct the
derivation of analysis models. Constraints ensure that de-
sign models are reasonable and contain sufficient detail to
permit a derivation.

The derivation itself is specified in a third profile, al-
lowing reuse of design and analysis profiles. The mapping
profile provides a stereotype on associations. The refined
type of association is constrained to be between two sub-
models, one representing the design and the other the anal-
ysis model. Additional constraints on the contents of the
sub-models, ensuring that the analysis model correctly rep-
resents the design.

Profiles are repesented using UML and may be used
wherever necessary by including them in a model. There-
fore, profiles specified according to our scheme can be im-
ported into standards-compliant tools to enable formal mod-
elling and the consistent association of formal models with
designs.

To provide a completely automated derivation of formal
models it is necessary to implement an additional model
transformation algorithm, perhaps using a tool-specific
scripting language. The mapping constraints provide the
contract for such an algorithm, and can be used to test its
operation. Figure 1 shows the overall approach.

<<profile>> <<profile>> <<profile>>

Design Mapping Analysis

integration

semi-
automatic 

construction

interpretation

translation

design

results

tool 
execution

analysis

results

meta-
model:

model:

Figure 1. Approach

Results can also be reintegrated into design models by
applying a mapping from a results domain to tagged-values
or notes in the design domain. We do not consider this in
this paper.

The approach is applicable to analyses relying on graphi-
cal formalisms, as UML can easily be extended to resemble
these. For example, performance evaluation and functional
analysis using Petri nets or Markov chains. [8] proposes
to use the technique for reliability modelling, and Baysian
networks or fault trees would be an appropriate formalism.
Our example in the next section uses queuing networks to
forecast performance and resource utilisation.

3 Example: Analysing real-time UML using
queuing networks

In this section we provide an example of our approach
applied to define a derivation from a class of architectural
models to queuing networks. To demonstrate the way that
this derivation would be used in practice, we present a
running example based on a hypothetical website content-
management system. The profiles and example packages
are shown in Figure 2.

<<AnalysisContext>>
Website

(Figures 3 & 4)

<<QueuingNetwork>>
WebsiteQN
(Figure 5)

<<ACtoQN>>

<<profile>>
PADesign

<<profile>>
ACtoQNMapping

<<profile>>
AnalysisContext

meta-
model:

model:

Figure 2. Example profiles

The design model profile closely resembles the perfor-

2



mance subprofile of the standard Profile for Schedulabil-
ity, Performance and Time Specification (the ‘real-time pro-
file’) [6], which permits the modelling of systems contain-
ing contended resources. Reuse of such standard profiles
enhances the applicability of our approach.

To permit analysis the designer must model the environ-
ment of the system in terms of populations engaging in use-
cases, identified by a stereotype on an Actor. In our exam-
ple there is a large<<OpenPopulation>> of site users,
characterised by an exponential arrival rate, and also a a
small<<ClosedPopulation>> of editors who interact
after a think-time.

The behaviour of the system is modelled using a se-
quence diagram for each use-case, including<<step>>
actions with resource demands. The ‘user’ use-case is
shown in Figure 3.

User LoadBalancer Webserver1 Webserver2 Database

<<Step>>
{resource=
LB CPU,
demand=10}

<<Step>>
{resource=
Server 1 CPU,
demand=250,
reps=0.5}

<<Step>>
{resource=
Server 2 CPU,
demand=250,
reps=0.5}

<<Step>>
{resource=
Disk,
demand=50,
reps=10}

<<Step>>
{resource=
Disk,
demand=50,
reps=10}

Figure 3. Sequence diagram, describing de-
mands associated with a use-case

The structure and<<resource>> s of the system are
modelled using a deployment diagram, as shown in figure 4

Webserver1

<<resource>>
Server 1 CPU

LoadBalancer

<<resource>>
LB CPU

Webserver2

<<resource>>
Server 2 CPU

CMS

<<resource>>
CMS CPU

Database

<<resource>>
Disk

Figure 4. Deployment diagram, describing
system resources

Profile constraints are presented here in natural lan-
guage, but all have a counterpart defined formally using
OCL. An example is provided later in the section. The full
OCL constraints are available on the web [9].The design
profile constraints are:

1. An analysis context must contain at least one population.
2. A population (stereotype on an actor) must be associated

with a use-case.
3. Every use-case must be realised by exactly one associated

interaction (the dynamic part of a collaboration).
4. Each interaction should include at least one message with a

resource demand.
5. Resources must be uniquely named.
6. Every message with a resource demand must be sent to a role

deployed in a context where the resource is available.

Analysis models are queuing networks. Figure 5 shows
the queuing network derived from our example design, in-
cluding the demands due to editors.

Analysis model constraints:

1. The network must contain at least one workload class
2. Classifiers can be either queues or workloads, not both
3. All associations stereotyped as demands must start from a

classifier stereotyped with a workload and end in one stereo-
typed as a queue.

4. All queues must be demanded by at least one workload class.
5. All workloads must demand at least one queue.

<<Queue>>
LB CPU

<<Queue>>
Server 1 CPU

<<Queue>>
Disk

<<Queue>>
CMS CPU

<<Queue>>
Server 2 CPU

<<OpenWorkload>>
User

{rate = 0.00001}

<<ClosedWorkload>>
Editor

{population=10,
thinktime=720000}

{demand = 10}

{demand = 125}

{demand = 125}

{demand = 250}
{demand = 2000}

{demand = 5000}

Figure 5. Queuing network model

The mapping is defined in the context of a stereotype
ACtoQN defined on an association. Mapping constraints
are:

1. The mapping must be between an analysis context model and
a queuing network model.

2. Every population must correspond to exactly one workload
class in name, type and tagged values.

3. Every workload must have exactly one corresponding popu-
lation.

4. All resources with resource demands in a use-case must be
represented by queues.

3



5. All resource demands present in an interaction must be repre-
sented by demands on associations between the correspond-
ing workload and queue. The demands must equal the sum of
the products of action demands and action repetitions within
the workload.

Constraint 3 above is expressed in OCL as follows
(this constraint relies on the previously defined functions
‘populations’ and ‘workloads’ that return the sets of these
elements in the associated models):

packageFoundation::Core
contextAbstractioninv:
self.stereotype→exists(name = ”ACtoQN”)
implies
self.populations→forAll(w : ModelElement|
self.workloads→one(p : ModelElement|
p.name = w.nameand
(w.stereotype→exists(name = ”OpenWorkload”)implies
p.stereotype→exists(name = ”OpenPopulation”))and
(w.stereotype→exists(name = ”ClosedWorkload”)implies
(p.stereotype→exists(name = ”ClosedPopulation”))))

4 Evaluation

A lack of tool support for OCL currently hinders
widespread use of our approach. We have shown it to be
workable in our example, which we developed using a com-
mercial UML editor, the Rocase OCL Evaluator [3], a re-
search prototyped developed as part of the IST Neptune
project, and an external queuing network evaluator. The
need to develop models and then export them to an external
tools compromises the goal of tight integration of analysis
and design tools. We have reason to be hopeful that the sit-
uation will improve. The reliance of the MDA approach on
model transformations, the use of OCL to describe domain
rules, and an increased emphasis on the meta-modelling of
disparate domains will lead to more standards-based tools
compatible with our approach.

5 Related work

Our work identifies a standard means to describe the
derivation of formal models from UML, so is related to and
we believe compatible with the large amount of work that
covers particular derivations [2]. Our example uses a for-
malisation of part of the real-time profile and derives a sim-
ple queuing network. It resembles the real-time profile to
layered queuing network derivation presented using graph
grammars in [7].

The Precise UML group [1] have proposed the use of
constraints between language and domain meta-models to
describe the semantics of UML. We apply this approach to
mappings, but using profiles instead, to enable tool support.

6 Conclusions

We have presented an approach to associating analy-
sis models with designs using MDA technologies, includ-
ing UML and OCL, and based on model-transformations,
a concept intrinsic to the MDA. The approach addresses
several problems with previous work that derives analysis
models from UML diagrams: It relies on standards so is not
coupled to a particular modelling tool; mappings are visi-
ble and modifiable, increasing the flexibility of tools; map-
pings and analysis models are visible in the same context
as designs, reducing ambiguity due to the lack of a strict
semantic for the design notation.

Despite an existing lack of tool support, we have confi-
dence that the emerging popularity of the MDA will lead
to an increasing adoption of standards-compliant integrated
development environments capable of supporting the kind
of re-deployable automated analysis modelling that we de-
scribe.

References

[1] The precise UML group.http://www.puml.org/ .
[2] WOSP 2002, Third International Workshop on Software and

Performance. ACM Press, 2002.
[3] Computer Science Research Laboratory, “BABES-

BOLYAI” University, Romania. OCL-Evaluator.
http://lci.cs.ubbcluj.ro/ ocle/ .

[4] OMG document formal/02-01-01.XML Metadata Inter-
change (XMI), version 1.2, 2002.

[5] OMG document formal/02-04-03. Meta Object Facility
(MOF), version 1.4, April 2002.

[6] OMG document ptc/03-03-02.UML Profile for Schedula-
bility, Performance, and Time Specification, 2003.

[7] D. Petriu and H. Shen. Applying the UML performance
profile: Graph grammar-based derivation of LQN models
from UML specifications. InProceedings of Performance
TOOLS 2002, 2002.

[8] G. N. Rodrigues, G. Roberts, W. Emmerich, and J. Skene.
Reliability support for the model driven architecture. In
Workshop on Software Architectures for Dependable Sys-
tems (ICSE-WADS). ACM Press, 2003.

[9] J. Skene and W. Emmerich. Full example pro-
files. http://www.cs.ucl.ac.uk/ staff/
j.skene/ FSE-2003-profiles .

[10] J. Skene and W. Emmerich. Model driven performance anal-
ysis of enterprise information systems. InWorkshop on
Test and Analysis of Component Based Systems (ETAPS-
TACoS), Electronic Notes in Theoretical Computer Science
(ENTCS). Elsevier Science B. V., 2003.

4

http://www.puml.org/
http://lci.cs.ubbcluj.ro/ocle/
http://www.cs.ucl.ac.uk/staff/j.skene/FSE-2003-profiles
http://www.cs.ucl.ac.uk/staff/j.skene/FSE-2003-profiles

	Introduction
	Approach
	Example: Analysing real-time UML using queuing networks
	Evaluation
	Related work
	Conclusions

