33,731 research outputs found

    Modelling Physical Activity in Virtual Reality Games

    Get PDF
    This thesis was inspired by the possibility that virtual reality (VR) games, which are designed primarily to be fun, could also provide exercise. It aimed to gain insights about this by exploring whether people can gain beneficial levels of exercise while playing VR games and how they might use VR games for exercise over several weeks. Furthermore, this work also focuses on how the level of physical activity that can be captured during gameplay and how a long-term user model can be created for individual players, as a foundation for supporting the user in gaining personal informatics insights about their exertion as well as being used for personalisation and external recommendation for VR games. The key contributions of this research are: • The first study of a diverse set of commercial VR games to gain insights about the level of actual and perceived exertion players have. • The first long-term study of VR games in a sedentary workplace to gain insights about the ways people utilise it and the levels of exertion they gain. • Based on reflections on the above studies, this thesis presents a framework and guidelines for designing physical activity VR games. • The systematic creation of a user model for representing a person’s long-term fitness and their VR gameplay, exertion and preferences. • A study of the ways that people can scrutinise their long-term personal informatics user model of exertion from VR game play and incidental walking. These contributions provide a foundation for future researchers and industry practitioners to design VR games that provide beneficial levels of exertion and allow people to gain insights into the relative contribution of the exercise from gameplay

    Augmented reality meeting table: a novel multi-user interface for architectural design

    Get PDF
    Immersive virtual environments have received widespread attention as providing possible replacements for the media and systems that designers traditionally use, as well as, more generally, in providing support for collaborative work. Relatively little attention has been given to date however to the problem of how to merge immersive virtual environments into real world work settings, and so to add to the media at the disposal of the designer and the design team, rather than to replace it. In this paper we report on a research project in which optical see-through augmented reality displays have been developed together with prototype decision support software for architectural and urban design. We suggest that a critical characteristic of multi user augmented reality is its ability to generate visualisations from a first person perspective in which the scale of rendition of the design model follows many of the conventions that designers are used to. Different scales of model appear to allow designers to focus on different aspects of the design under consideration. Augmenting the scene with simulations of pedestrian movement appears to assist both in scale recognition, and in moving from a first person to a third person understanding of the design. This research project is funded by the European Commission IST program (IST-2000-28559)

    Toward future 'mixed reality' learning spaces for STEAM education

    Get PDF
    Digital technology is becoming more integrated and part of modern society. As this begins to happen, technologies including augmented reality, virtual reality, 3d printing and user supplied mobile devices (collectively referred to as mixed reality) are often being touted as likely to become more a part of the classroom and learning environment. In the discipline areas of STEAM education, experts are expected to be at the forefront of technology and how it might fit into their classroom. This is especially important because increasingly, educators are finding themselves surrounded by new learners that expect to be engaged with participatory, interactive, sensory-rich, experimental activities with greater opportunities for student input and creativity. This paper will explore learner and academic perspectives on mixed reality case studies in 3d spatial design (multimedia and architecture), paramedic science and information technology, through the use of existing data as well as additional one-on-one interviews around the use of mixed reality in the classroom. Results show that mixed reality can provide engagement, critical thinking and problem solving benefits for students in line with this new generation of learners, but also demonstrates that more work needs to be done to refine mixed reality solutions for the classroom

    De/construction sites: Romans and the digital playground

    No full text
    The Roman world as attested to archaeologically and as interacted with today has its expression in a great many computational and other media. The place of visualisation within this has been paramount. This paper argues that the process of digitally constructing the Roman world and the exploration of the resultant models are useful methods for interpretation and influential factors in the creation of a popular Roman aesthetic. Furthermore, it suggests ways in which novel computational techniques enable the systematic deconstruction of such models, in turn re-purposing the many extant representations of Roman architecture and material culture

    Using the Proteus virtual environment to train future IT professionals

    Get PDF
    Abstract. Based on literature review it was established that the use of augmented reality as an innovative technology of student training occurs in following directions: 3D image rendering; recognition and marking of real objects; interaction of a virtual object with a person in real time. The main advantages of using AR and VR in the educational process are highlighted: clarity, ability to simulate processes and phenomena, integration of educational disciplines, building an open education system, increasing motivation for learning, etc. It has been found that in the field of physical process modelling the Proteus Physics Laboratory is a popular example of augmented reality. Using the Proteus environment allows to visualize the functioning of the functional nodes of the computing system at the micro level. This is especially important for programming systems with limited resources, such as microcontrollers in the process of training future IT professionals. Experiment took place at Borys Grinchenko Kyiv University and Sumy State Pedagogical University named after A. S. Makarenko with students majoring in Computer Science (field of knowledge is Secondary Education (Informatics)). It was found that computer modelling has a positive effect on mastering the basics of microelectronics. The ways of further scientific researches for grounding, development and experimental verification of forms, methods and augmented reality, and can be used in the professional training of future IT specialists are outlined in the article
    corecore